openff.toolkit.topology.FrozenMolecule

class openff.toolkit.topology.FrozenMolecule(other=None, file_format=None, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY, allow_undefined_stereo=False)[source]

Immutable chemical representation of a molecule, such as a small molecule or biopolymer.

Examples

Create a molecule from a sdf file

>>> from openff.toolkit.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf')
>>> molecule = FrozenMolecule.from_file(sdf_filepath)

Convert to OpenEye OEMol object

>>> oemol = molecule.to_openeye()

Create a molecule from an OpenEye molecule

>>> molecule = FrozenMolecule.from_openeye(oemol)

Convert to RDKit Mol object

>>> rdmol = molecule.to_rdkit()

Create a molecule from an RDKit molecule

>>> molecule = FrozenMolecule.from_rdkit(rdmol)

Create a molecule from IUPAC name (requires the OpenEye toolkit)

>>> molecule = FrozenMolecule.from_iupac('imatinib')

Create a molecule from SMILES

>>> molecule = FrozenMolecule.from_smiles('Cc1ccccc1')

Warning

This API is experimental and subject to change.

__init__(other=None, file_format=None, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY, allow_undefined_stereo=False)[source]

Create a new FrozenMolecule object

Parameters
  • other (optional, default=None) –

    If specified, attempt to construct a copy of the Molecule from the specified object. This can be any one of the following:

    • a Molecule object

    • a file that can be used to construct a Molecule object

    • an openeye.oechem.OEMol

    • an rdkit.Chem.rdchem.Mol

    • a serialized Molecule object

  • file_format (str, optional, default=None) – If providing a file-like object, you must specify the format of the data. If providing a file, the file format will attempt to be guessed from the suffix.

  • toolkit_registry (a ToolkitRegistry or) – ToolkitWrapper object, optional, default=GLOBAL_TOOLKIT_REGISTRY ToolkitRegistry or ToolkitWrapper to use for I/O operations

  • allow_undefined_stereo (bool, default=False) – If loaded from a file and False, raises an exception if undefined stereochemistry is detected during the molecule’s construction.

Examples

Create an empty molecule:

>>> empty_molecule = FrozenMolecule()

Create a molecule from a file that can be used to construct a molecule, using either a filename or file-like object:

>>> from openff.toolkit.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf')
>>> molecule = FrozenMolecule(sdf_filepath)
>>> molecule = FrozenMolecule(open(sdf_filepath, 'r'), file_format='sdf')
>>> import gzip
>>> mol2_gz_filepath = get_data_file_path('molecules/toluene.mol2.gz')
>>> molecule = FrozenMolecule(gzip.GzipFile(mol2_gz_filepath, 'r'), file_format='mol2')

Create a molecule from another molecule:

>>> molecule_copy = FrozenMolecule(molecule)

Convert to OpenEye OEMol object

>>> oemol = molecule.to_openeye()

Create a molecule from an OpenEye molecule:

>>> molecule = FrozenMolecule(oemol)

Convert to RDKit Mol object

>>> rdmol = molecule.to_rdkit()

Create a molecule from an RDKit molecule:

>>> molecule = FrozenMolecule(rdmol)

Create a molecule from a serialized molecule object:

>>> serialized_molecule = molecule.__getstate__()
>>> molecule_copy = Molecule(serialized_molecule)

Methods

__init__([other, file_format, ...])

Create a new FrozenMolecule object

apply_elf_conformer_selection([percentage, ...])

Applies the ELF method to select a set of diverse conformers which have minimal electrostatically strongly interacting functional groups from a molecules conformers.

are_isomorphic(mol1, mol2[, ...])

Determines whether the two molecules are isomorphic by comparing their graph representations and the chosen node/edge attributes.

assign_fractional_bond_orders([...])

Update and store list of bond orders this molecule.

assign_partial_charges(partial_charge_method)

Calculate partial atomic charges for this molecule using an underlying toolkit, and assign the new values to the partial_charges attribute.

canonical_order_atoms([toolkit_registry])

Canonical order the atoms in a copy of the molecule using a toolkit, returns a new copy.

chemical_environment_matches(query[, ...])

Retrieve all matches for a given chemical environment query.

compute_partial_charges_am1bcc([...])

Calculate partial atomic charges for this molecule using AM1-BCC run by an underlying toolkit and assign them to this molecule's partial_charges attribute.

compute_virtual_site_positions_from_atom_positions(...)

Compute the positions of the virtual sites in this molecule given a set of external coordinates.

compute_virtual_site_positions_from_conformer(...)

Compute the position of all virtual sites given an existing conformer specified by its index.

enumerate_protomers([max_states])

Enumerate the formal charges of a molecule to generate different protomoers.

enumerate_stereoisomers([undefined_only, ...])

Enumerate the stereocenters and bonds of the current molecule.

enumerate_tautomers([max_states, ...])

Enumerate the possible tautomers of the current molecule

find_rotatable_bonds([...])

Find all bonds classed as rotatable ignoring any matched to the ignore_functional_groups list.

from_bson(serialized)

Instantiate an object from a BSON serialized representation.

from_dict(molecule_dict)

Create a new Molecule from a dictionary representation

from_file(file_path[, file_format, ...])

Create one or more molecules from a file

from_inchi(inchi[, allow_undefined_stereo, ...])

Construct a Molecule from a InChI representation

from_iupac(iupac_name[, toolkit_registry, ...])

Generate a molecule from IUPAC or common name

from_json(serialized)

Instantiate an object from a JSON serialized representation.

from_mapped_smiles(mapped_smiles[, ...])

Create an Molecule from a mapped SMILES made with cmiles.

from_messagepack(serialized)

Instantiate an object from a MessagePack serialized representation.

from_openeye(oemol[, allow_undefined_stereo])

Create a Molecule from an OpenEye molecule.

from_pdb_and_smiles(file_path, smiles[, ...])

Create a Molecule from a pdb file and a SMILES string using RDKit.

from_pickle(serialized)

Instantiate an object from a pickle serialized representation.

from_qcschema(qca_record[, client, ...])

Create a Molecule from a QCArchive molecule record or dataset entry based on attached cmiles information.

from_rdkit(rdmol[, allow_undefined_stereo, ...])

Create a Molecule from an RDKit molecule.

from_smiles(smiles[, ...])

Construct a Molecule from a SMILES representation

from_toml(serialized)

Instantiate an object from a TOML serialized representation.

from_topology(topology)

Return a Molecule representation of an OpenFF Topology containing a single Molecule object.

from_xml(serialized)

Instantiate an object from an XML serialized representation.

from_yaml(serialized)

Instantiate from a YAML serialized representation.

generate_conformers([toolkit_registry, ...])

Generate conformers for this molecule using an underlying toolkit.

generate_unique_atom_names()

Generate unique atom names using element name and number of times that element has occurred e.g.

get_bond_between(i, j)

Returns the bond between two atoms

is_isomorphic_with(other, **kwargs)

Check if the molecule is isomorphic with the other molecule which can be an openff.toolkit.topology.Molecule, or TopologyMolecule or nx.Graph().

nth_degree_neighbors(n_degrees)

Return canonicalized pairs of atoms whose shortest separation is exactly n bonds.

remap(mapping_dict[, current_to_new])

Remap all of the indexes in the molecule to match the given mapping dict

strip_atom_stereochemistry(smarts[, ...])

Delete stereochemistry information for certain atoms, if it is present.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dictionary representation of the molecule.

to_file(file_path, file_format[, ...])

Write the current molecule to a file or file-like object

to_hill_formula()

Generate the Hill formula of this molecule.

to_inchi([fixed_hydrogens, toolkit_registry])

Create an InChI string for the molecule using the requested toolkit backend.

to_inchikey([fixed_hydrogens, toolkit_registry])

Create an InChIKey for the molecule using the requested toolkit backend.

to_iupac([toolkit_registry])

Generate IUPAC name from Molecule

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_networkx()

Generate a NetworkX undirected graph from the Molecule.

to_openeye([aromaticity_model])

Create an OpenEye molecule

to_pickle()

Return a pickle serialized representation.

to_qcschema([multiplicity, conformer, extras])

Create a QCElemental Molecule.

to_rdkit([aromaticity_model])

Create an RDKit molecule

to_smiles([isomeric, explicit_hydrogens, ...])

Return a canonical isomeric SMILES representation of the current molecule.

to_toml()

Return a TOML serialized representation.

to_topology()

Return an OpenFF Topology representation containing one copy of this molecule

to_xml([indent])

Return an XML representation.

to_yaml()

Return a YAML serialized representation.

Attributes

amber_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the central atom first in each improper.

angles

Get an iterator over all i-j-k angles.

atoms

Iterate over all Atom objects.

bonds

Iterate over all Bond objects.

conformers

Returns the list of conformers for this molecule.

has_unique_atom_names

True if the molecule has unique atom names, False otherwise.

hill_formula

Get the Hill formula of the molecule

impropers

Iterate over all improper torsions in the molecule.

n_angles

number of angles in the Molecule.

n_atoms

The number of Atom objects.

n_bonds

The number of Bond objects.

n_conformers

Returns the number of conformers for this molecule.

n_impropers

number of possible improper torsions in the Molecule.

n_particles

The number of Particle objects, which corresponds to how many positions must be used.

n_propers

number of proper torsions in the Molecule.

n_virtual_particles

The number of VirtualParticle objects.

n_virtual_sites

The number of VirtualSite objects.

name

The name (or title) of the molecule

partial_charges

Returns the partial charges (if present) on the molecule.

particles

Iterate over all Particle objects.

propers

Iterate over all proper torsions in the molecule

properties

The properties dictionary of the molecule

smirnoff_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the central atom second in each improper.

torsions

Get an iterator over all i-j-k-l torsions.

total_charge

Return the total charge on the molecule

virtual_sites

Iterate over all VirtualSite objects.

property has_unique_atom_names

True if the molecule has unique atom names, False otherwise.

generate_unique_atom_names()[source]

Generate unique atom names using element name and number of times that element has occurred e.g. ‘C1x’, ‘H1x’, ‘O1x’, ‘C2x’, …

The character ‘x’ is appended to these generated names to reduce the odds that they clash with an atom name or type imported from another source.

strip_atom_stereochemistry(smarts, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Delete stereochemistry information for certain atoms, if it is present. This method can be used to “normalize” molecules imported from different cheminformatics toolkits, which differ in which atom centers are considered stereogenic.

Parameters
  • smarts (str or ChemicalEnvironment) – Tagged SMARTS with a single atom with index 1. Any matches for this atom will have any assigned stereocheistry information removed.

  • toolkit_registry (a ToolkitRegistry or ToolkitWrapper object, optional, default=GLOBAL_TOOLKIT_REGISTRY) – ToolkitRegistry or ToolkitWrapper to use for I/O operations

to_dict()[source]

Return a dictionary representation of the molecule.

Returns

molecule_dict (OrderedDict) – A dictionary representation of the molecule.

classmethod from_dict(molecule_dict)[source]

Create a new Molecule from a dictionary representation

Parameters

molecule_dict (OrderedDict) – A dictionary representation of the molecule.

Returns

molecule (Molecule) – A Molecule created from the dictionary representation

to_smiles(isomeric=True, explicit_hydrogens=True, mapped=False, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Return a canonical isomeric SMILES representation of the current molecule. A partially mapped smiles can also be generated for atoms of interest by supplying an atom_map to the properties dictionary.

Note

RDKit and OpenEye versions will not necessarily return the same representation.

Parameters
  • isomeric (bool optional, default= True) – return an isomeric smiles

  • explicit_hydrogens (bool optional, default=True) – return a smiles string containing all hydrogens explicitly

  • mapped (bool optional, default=False) – return a explicit hydrogen mapped smiles, the atoms to be mapped can be controlled by supplying an atom map into the properties dictionary. If no mapping is passed all atoms will be mapped in order, else an atom map dictionary from the current atom index to the map id should be supplied with no duplicates. The map ids (values) should start from 0 or 1.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for SMILES conversion

Returns

smiles (str) – Canonical isomeric explicit-hydrogen SMILES

Examples

>>> from openff.toolkit.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf')
>>> molecule = Molecule(sdf_filepath)
>>> smiles = molecule.to_smiles()
classmethod from_inchi(inchi, allow_undefined_stereo=False, toolkit_registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit)[source]

Construct a Molecule from a InChI representation

Parameters
  • inchi (str) – The InChI representation of the molecule.

  • allow_undefined_stereo (bool, default=False) – Whether to accept InChI with undefined stereochemistry. If False, an exception will be raised if a InChI with undefined stereochemistry is passed into this function.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for InChI-to-molecule conversion

Returns

molecule (openff.toolkit.topology.Molecule)

Examples

Make cis-1,2-Dichloroethene:

>>> molecule = Molecule.from_inchi('InChI=1S/C2H2Cl2/c3-1-2-4/h1-2H/b2-1-')
to_inchi(fixed_hydrogens=False, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Create an InChI string for the molecule using the requested toolkit backend. InChI is a standardised representation that does not capture tautomers unless specified using the fixed hydrogen layer.

For information on InChi see here https://iupac.org/who-we-are/divisions/division-details/inchi/

Parameters
  • fixed_hydrogens (bool, default=False) – If a fixed hydrogen layer should be added to the InChI, if True this will produce a non standard specific InChI string of the molecule.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for molecule-to-InChI conversion

Returns

inchi (str) – The InChI string of the molecule.

Raises

InvalidToolkitRegistryError – If an invalid object is passed as the toolkit_registry parameter

to_inchikey(fixed_hydrogens=False, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Create an InChIKey for the molecule using the requested toolkit backend. InChIKey is a standardised representation that does not capture tautomers unless specified using the fixed hydrogen layer.

For information on InChi see here https://iupac.org/who-we-are/divisions/division-details/inchi/

Parameters
  • fixed_hydrogens (bool, default=False) – If a fixed hydrogen layer should be added to the InChI, if True this will produce a non standard specific InChI string of the molecule.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for molecule-to-InChIKey conversion

Returns

inchi_key (str) – The InChIKey representation of the molecule.

Raises

InvalidToolkitRegistryError – If an invalid object is passed as the toolkit_registry parameter

classmethod from_smiles(smiles, hydrogens_are_explicit=False, toolkit_registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit, allow_undefined_stereo=False)[source]

Construct a Molecule from a SMILES representation

Parameters
  • smiles (str) – The SMILES representation of the molecule.

  • hydrogens_are_explicit (bool, default = False) – If False, the cheminformatics toolkit will perform hydrogen addition

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for SMILES-to-molecule conversion

  • allow_undefined_stereo (bool, default=False) – Whether to accept SMILES with undefined stereochemistry. If False, an exception will be raised if a SMILES with undefined stereochemistry is passed into this function.

Returns

molecule (openff.toolkit.topology.Molecule)

Examples

>>> molecule = Molecule.from_smiles('Cc1ccccc1')
static are_isomorphic(mol1, mol2, return_atom_map=False, aromatic_matching=True, formal_charge_matching=True, bond_order_matching=True, atom_stereochemistry_matching=True, bond_stereochemistry_matching=True, strip_pyrimidal_n_atom_stereo=True, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Determines whether the two molecules are isomorphic by comparing their graph representations and the chosen node/edge attributes. Minimally connections and atomic_number are checked.

If nx.Graphs() are given they must at least have atomic_number attributes on nodes. other optional attributes for nodes are: is_aromatic, formal_charge and stereochemistry. optional attributes for edges are: is_aromatic, bond_order and stereochemistry.

Warning

This API is experimental and subject to change.

Parameters
  • mol1 (an openff.toolkit.topology.molecule.FrozenMolecule or TopologyMolecule or nx.Graph()) –

  • mol2 (an openff.toolkit.topology.molecule.FrozenMolecule or TopologyMolecule or nx.Graph()) – The molecule to test for isomorphism.

  • return_atom_map (bool, default=False, optional) – will return an optional dict containing the atomic mapping.

  • aromatic_matching (bool, default=True, optional) – compare the aromatic attributes of bonds and atoms.

  • formal_charge_matching (bool, default=True, optional) – compare the formal charges attributes of the atoms.

  • bond_order_matching (bool, deafult=True, optional) – compare the bond order on attributes of the bonds.

  • atom_stereochemistry_matching (bool, default=True, optional) – If False, atoms’ stereochemistry is ignored for the purpose of determining equality.

  • bond_stereochemistry_matching (bool, default=True, optional) – If False, bonds’ stereochemistry is ignored for the purpose of determining equality.

  • strip_pyrimidal_n_atom_stereo (bool, default=True, optional) – If True, any stereochemistry defined around pyrimidal nitrogen stereocenters will be disregarded in the isomorphism check.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for removing stereochemistry from pyrimidal nitrogens.

Returns

  • molecules_are_isomorphic (bool)

  • atom_map (default=None, Optional,) – [Dict[int,int]] ordered by mol1 indexing {mol1_index: mol2_index} If molecules are not isomorphic given input arguments, will return None instead of dict.

is_isomorphic_with(other, **kwargs)[source]

Check if the molecule is isomorphic with the other molecule which can be an openff.toolkit.topology.Molecule, or TopologyMolecule or nx.Graph(). Full matching is done using the options described bellow.

Warning

This API is experimental and subject to change.

Parameters
  • other (openff.toolkit.topology.Molecule or TopologyMolecule or nx.Graph()) –

  • return_atom_map (bool, default=False, optional) – will return an optional dict containing the atomic mapping.

  • aromatic_matching (bool, default=True, optional) –

  • atoms. (compare the formal charges attributes of the) –

  • formal_charge_matching (bool, default=True, optional) –

  • atoms.

  • bond_order_matching (bool, deafult=True, optional) –

  • bonds. (compare the bond order on attributes of the) –

  • atom_stereochemistry_matching (bool, default=True, optional) – If False, atoms’ stereochemistry is ignored for the purpose of determining equality.

  • bond_stereochemistry_matching (bool, default=True, optional) – If False, bonds’ stereochemistry is ignored for the purpose of determining equality.

  • strip_pyrimidal_n_atom_stereo (bool, default=True, optional) – If True, any stereochemistry defined around pyrimidal nitrogen stereocenters will be disregarded in the isomorphism check.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for removing stereochemistry from pyrimidal nitrogens.

Returns

isomorphic (bool)

generate_conformers(toolkit_registry=GLOBAL_TOOLKIT_REGISTRY, n_conformers=10, rms_cutoff=None, clear_existing=True, make_carboxylic_acids_cis=True)[source]

Generate conformers for this molecule using an underlying toolkit.

If n_conformers=0, no toolkit wrapper will be called. If n_conformers=0 and clear_existing=True, molecule.conformers will be set to None.

Parameters
  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for SMILES-to-molecule conversion

  • n_conformers (int, default=1) – The maximum number of conformers to produce

  • rms_cutoff (openmm.unit.Quantity-wrapped float, in units of distance, optional, default=None) – The minimum RMS value at which two conformers are considered redundant and one is deleted. Precise implementation of this cutoff may be toolkit-dependent. If None, the cutoff is set to be the default value for each ToolkitWrapper (generally 1 Angstrom).

  • clear_existing (bool, default=True) – Whether to overwrite existing conformers for the molecule

  • make_carboxylic_acids_cis (bool, default=True) – Guarantee all conformers have exclusively cis carboxylic acid groups (COOH) by rotating the proton in any trans carboxylic acids 180 degrees around the C-O bond. Works around a bug in conformer generation by the OpenEye toolkit where trans COOH is much more common than it should be.

Examples

>>> molecule = Molecule.from_smiles('CCCCCC')
>>> molecule.generate_conformers()
Raises

InvalidToolkitRegistryError – If an invalid object is passed as the toolkit_registry parameter

compute_virtual_site_positions_from_conformer(conformer_idx)[source]

Compute the position of all virtual sites given an existing conformer specified by its index.

Parameters

conformer_idx (int) – The index of the conformer.

Returns

  • openmm.unit.Quantity of dimension [Length] in unit Angstroms wrapping a

  • numpy.ndarray – The positions of the virtual particles belonging to this virtual site. The array is the size (M, 3) where M is the number of virtual particles belonging to this virtual site.

compute_virtual_site_positions_from_atom_positions(atom_positions)[source]

Compute the positions of the virtual sites in this molecule given a set of external coordinates. The coordinates do not need come from an internal conformer, but are assumed to have the same shape and be in the same order.

Parameters
  • atom_positions (openmm.unit.Quantity of dimension [Length] wrapping a) –

  • numpy.ndarray – The positions of all atoms in the molecule. The array is the size (N, 3) where N is the number of atoms in the molecule.

Returns

  • openmm.unit.Quantity of dimension [Length] in unit Angstroms wrapping a

  • numpy.ndarray – The positions of the virtual particles belonging to this virtual site. The array is the size (M, 3) where M is the number of virtual particles belonging to this virtual site.

apply_elf_conformer_selection(percentage: float = 2.0, limit: int = 10, toolkit_registry: Optional[Union[ToolkitRegistry, ToolkitWrapper]] = GLOBAL_TOOLKIT_REGISTRY, **kwargs)[source]

Applies the ELF method to select a set of diverse conformers which have minimal electrostatically strongly interacting functional groups from a molecules conformers.

Notes

  • The input molecule should have a large set of conformers already generated to select the ELF conformers from.

  • The selected conformers will be retained in the conformers list while unselected conformers will be discarded.

See also

OpenEyeToolkitWrapper.apply_elf_conformer_selection, RDKitToolkitWrapper.apply_elf_conformer_selection

Parameters
  • toolkit_registry – The underlying toolkit to use to select the ELF conformers.

  • percentage – The percentage of conformers with the lowest electrostatic interaction energies to greedily select from.

  • limit – The maximum number of conformers to select.

compute_partial_charges_am1bcc(use_conformers=None, strict_n_conformers=False, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Calculate partial atomic charges for this molecule using AM1-BCC run by an underlying toolkit and assign them to this molecule’s partial_charges attribute.

Parameters
  • strict_n_conformers (bool, default=False) – Whether to raise an exception if an invalid number of conformers is provided for the given charge method. If this is False and an invalid number of conformers is found, a warning will be raised.

  • use_conformers (iterable of openmm.unit.Quantity-wrapped numpy arrays, each with shape (n_atoms, 3) and dimension of distance. Optional, default=None) – Coordinates to use for partial charge calculation. If None, an appropriate number of conformers for the given charge method will be generated.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for the calculation

Examples

>>> molecule = Molecule.from_smiles('CCCCCC')
>>> molecule.generate_conformers()
>>> molecule.compute_partial_charges_am1bcc()
Raises

InvalidToolkitRegistryError – If an invalid object is passed as the toolkit_registry parameter

assign_partial_charges(partial_charge_method, strict_n_conformers=False, use_conformers=None, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY, normalize_partial_charges=True)[source]

Calculate partial atomic charges for this molecule using an underlying toolkit, and assign the new values to the partial_charges attribute.

Parameters
  • partial_charge_method (string) – The partial charge calculation method to use for partial charge calculation.

  • strict_n_conformers (bool, default=False) – Whether to raise an exception if an invalid number of conformers is provided for the given charge method. If this is False and an invalid number of conformers is found, a warning will be raised.

  • use_conformers (iterable of openmm.unit.Quantity-wrapped numpy arrays, each with shape (n_atoms, 3) and dimension of distance. Optional, default=None) – Coordinates to use for partial charge calculation. If None, an appropriate number of conformers will be generated.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for the calculation.

  • normalize_partial_charges (bool, default=True) – Whether to offset partial charges so that they sum to the total formal charge of the molecule. This is used to prevent accumulation of rounding errors when the partial charge assignment method returns values at limited precision.

Examples

>>> molecule = Molecule.from_smiles('CCCCCC')
>>> molecule.assign_partial_charges('am1-mulliken')
Raises

InvalidToolkitRegistryError – If an invalid object is passed as the toolkit_registry parameter

assign_fractional_bond_orders(bond_order_model=None, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY, use_conformers=None)[source]

Update and store list of bond orders this molecule. Bond orders are stored on each bond, in the bond.fractional_bond_order attribute.

Warning

This API is experimental and subject to change.

Parameters
  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional, default=None) – ToolkitRegistry or ToolkitWrapper to use for SMILES-to-molecule conversion

  • bond_order_model (string, optional. Default=None) – The bond order model to use for fractional bond order calculation. If None, “am1-wiberg” will be used.

  • use_conformers (iterable of openmm.unit.Quantity(np.array) with shape (n_atoms, 3) and dimension of distance, optional, default=None) – The conformers to use for fractional bond order calculation. If None, an appropriate number of conformers will be generated by an available ToolkitWrapper.

Examples

>>> molecule = Molecule.from_smiles('CCCCCC')
>>> molecule.assign_fractional_bond_orders()
Raises

InvalidToolkitRegistryError – If an invalid object is passed as the toolkit_registry parameter

to_networkx()[source]

Generate a NetworkX undirected graph from the Molecule.

Nodes are Atoms labeled with particle indices and atomic elements (via the element node atrribute). Edges denote chemical bonds between Atoms. Virtual sites are not included, since they lack a concept of chemical connectivity.

Returns

graph (networkx.Graph) – The resulting graph, with nodes (atoms) labeled with atom indices, elements, stereochemistry and aromaticity flags and bonds with two atom indices, bond order, stereochemistry, and aromaticity flags

Examples

Retrieve the bond graph for imatinib (OpenEye toolkit required)

>>> molecule = Molecule.from_iupac('imatinib')
>>> nxgraph = molecule.to_networkx()
find_rotatable_bonds(ignore_functional_groups=None, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Find all bonds classed as rotatable ignoring any matched to the ignore_functional_groups list.

Parameters
Returns

bonds (List[openff.toolkit.topology.molecule.Bond]) – The list of openff.toolkit.topology.molecule.Bond instances which are rotatable.

property partial_charges

Returns the partial charges (if present) on the molecule.

Returns

partial_charges (a openmm.unit.Quantity - wrapped numpy array [1 x n_atoms] or None) – The partial charges on this Molecule’s atoms. Returns None if no charges have been specified.

property n_particles

The number of Particle objects, which corresponds to how many positions must be used.

property n_atoms

The number of Atom objects.

property n_virtual_sites

The number of VirtualSite objects.

property n_virtual_particles

The number of VirtualParticle objects.

property n_bonds

The number of Bond objects.

property n_angles

number of angles in the Molecule.

Type

int

property n_propers

number of proper torsions in the Molecule.

Type

int

property n_impropers

number of possible improper torsions in the Molecule.

Type

int

property particles

Iterate over all Particle objects.

property atoms

Iterate over all Atom objects.

property conformers

Returns the list of conformers for this molecule. This returns a list of openmm.unit.Quantity-wrapped numpy arrays, of shape (3 x n_atoms) and with dimensions of distance. The return value is the actual list of conformers, and changes to the contents affect the original FrozenMolecule.

property n_conformers

Returns the number of conformers for this molecule.

property virtual_sites

Iterate over all VirtualSite objects.

property bonds

Iterate over all Bond objects.

property angles

Get an iterator over all i-j-k angles.

property torsions

Get an iterator over all i-j-k-l torsions. Note that i-j-k-i torsions (cycles) are excluded.

Returns

torsions (iterable of 4-Atom tuples)

property propers

Iterate over all proper torsions in the molecule

property impropers

Iterate over all improper torsions in the molecule.

Returns

impropers (set of tuple) – An iterator of tuples, each containing the indices of atoms making up a possible improper torsion.

property smirnoff_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the central atom second in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current SMIRNOFF parameterization, three of these six orderings will be used for the actual assignment of the improper term and measurement of the angles. These three orderings capture the three unique angles that could be calculated around the improper center, therefore the sum of these three terms will always return a consistent energy.

The exact three orderings that will be applied during parameterization can not be determined in this method, since it requires sorting the particle indices, and those indices may change when this molecule is added to a Topology.

For more details on the use of three-fold (‘trefoil’) impropers, see https://openforcefield.github.io/standards/standards/smirnoff/#impropertorsions

Returns

impropers (set of tuple) – An iterator of tuples, each containing the indices of atoms making up a possible improper torsion. The central atom is listed second in each tuple.

property amber_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the central atom first in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current AMBER parameterization, one of these six orderings will be used for the actual assignment of the improper term and measurement of the angle. This method does not encode the logic to determine which of the six orderings AMBER would use.

Returns

impropers (set of tuple) – An iterator of tuples, each containing the indices of atoms making up a possible improper torsion. The central atom is listed first in each tuple.

nth_degree_neighbors(n_degrees)[source]

Return canonicalized pairs of atoms whose shortest separation is exactly n bonds. Only pairs with increasing atom indices are returned.

Parameters

n (int) – The number of bonds separating atoms in each pair

Returns

neighbors (iterator of tuple of Atom) – Tuples (len 2) of atom that are separated by n bonds.

Notes

The criteria used here relies on minimum distances; when there are multiple valid paths between atoms, such as atoms in rings, the shortest path is considered. For example, two atoms in “meta” positions with respect to each other in a benzene are separated by two paths, one length 2 bonds and the other length 4 bonds. This function would consider them to be 2 apart and would not include them if n=4 was passed.

property total_charge

Return the total charge on the molecule

property name

The name (or title) of the molecule

property properties

The properties dictionary of the molecule

property hill_formula

Get the Hill formula of the molecule

to_hill_formula() str[source]

Generate the Hill formula of this molecule.

Returns

formula (the Hill formula of the molecule)

:raises NotImplementedError : if the molecule is not of one of the specified types.:

chemical_environment_matches(query, unique=False, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Retrieve all matches for a given chemical environment query.

Parameters
Returns

matches (list of atom index tuples) – A list of tuples, containing the indices of the matching atoms.

Examples

Retrieve all the carbon-carbon bond matches in a molecule

>>> molecule = Molecule.from_iupac('imatinib')
>>> matches = molecule.chemical_environment_matches('[#6X3:1]~[#6X3:2]')
classmethod from_iupac(iupac_name, toolkit_registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit, allow_undefined_stereo=False, **kwargs)[source]

Generate a molecule from IUPAC or common name

Parameters
Returns

  • molecule (Molecule) – The resulting molecule with position

  • .. note :: This method requires the OpenEye toolkit to be installed.

Examples

Create a molecule from an IUPAC name

>>> molecule = Molecule.from_iupac('4-[(4-methylpiperazin-1-yl)methyl]-N-(4-methyl-3-{[4-(pyridin-3-yl)pyrimidin-2-yl]amino}phenyl)benzamide')

Create a molecule from a common name

>>> molecule = Molecule.from_iupac('imatinib')
to_iupac(toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Generate IUPAC name from Molecule

Returns

  • iupac_name (str) – IUPAC name of the molecule

  • .. note :: This method requires the OpenEye toolkit to be installed.

Examples

>>> from openff.toolkit.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf')
>>> molecule = Molecule(sdf_filepath)
>>> iupac_name = molecule.to_iupac()
classmethod from_topology(topology)[source]

Return a Molecule representation of an OpenFF Topology containing a single Molecule object.

Parameters

topology (openff.toolkit.topology.Topology) – The Topology object containing a single Molecule object. Note that OpenMM and MDTraj Topology objects are not supported.

Returns

molecule (openff.toolkit.topology.Molecule) – The Molecule object in the topology

Raises

ValueError – If the topology does not contain exactly one molecule.

Examples

Create a molecule from a Topology object that contains exactly one molecule

>>> molecule = Molecule.from_topology(topology)  
to_topology()[source]

Return an OpenFF Topology representation containing one copy of this molecule

Returns

topology (openff.toolkit.topology.Topology) – A Topology representation of this molecule

Examples

>>> molecule = Molecule.from_iupac('imatinib')
>>> topology = molecule.to_topology()
classmethod from_file(file_path, file_format=None, toolkit_registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit, allow_undefined_stereo=False)[source]

Create one or more molecules from a file

Parameters
  • file_path (str or file-like object) – The path to the file or file-like object to stream one or more molecules from.

  • file_format (str, optional, default=None) – Format specifier, usually file suffix (eg. ‘MOL2’, ‘SMI’) Note that not all toolkits support all formats. Check ToolkitWrapper.toolkit_file_read_formats for your loaded toolkits for details.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper,) –

  • optionalToolkitRegistry or ToolkitWrapper to use for file loading. If a Toolkit is passed, only the highest-precedence toolkit is used

  • default=GLOBAL_TOOLKIT_REGISTRYToolkitRegistry or ToolkitWrapper to use for file loading. If a Toolkit is passed, only the highest-precedence toolkit is used

  • allow_undefined_stereo (bool, default=False) – If false, raises an exception if oemol contains undefined stereochemistry.

Returns

molecules (Molecule or list of Molecules) – If there is a single molecule in the file, a Molecule is returned; otherwise, a list of Molecule objects is returned.

Examples

>>> from openff.toolkit.tests.utils import get_monomer_mol2_file_path
>>> mol2_file_path = get_monomer_mol2_file_path('cyclohexane')
>>> molecule = Molecule.from_file(mol2_file_path)
to_file(file_path, file_format, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Write the current molecule to a file or file-like object

Parameters
  • file_path (str or file-like object) – A file-like object or the path to the file to be written.

  • file_format (str) – Format specifier, one of [‘MOL2’, ‘MOL2H’, ‘SDF’, ‘PDB’, ‘SMI’, ‘CAN’, ‘TDT’] Note that not all toolkits support all formats

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper,) –

  • optionalToolkitRegistry or ToolkitWrapper to use for file writing. If a Toolkit is passed, only the highest-precedence toolkit is used

  • default=GLOBAL_TOOLKIT_REGISTRYToolkitRegistry or ToolkitWrapper to use for file writing. If a Toolkit is passed, only the highest-precedence toolkit is used

Raises

ValueError – If the requested file_format is not supported by one of the installed cheminformatics toolkits

Examples

>>> molecule = Molecule.from_iupac('imatinib')
>>> molecule.to_file('imatinib.mol2', file_format='mol2')  
>>> molecule.to_file('imatinib.sdf', file_format='sdf')  
>>> molecule.to_file('imatinib.pdb', file_format='pdb')  
enumerate_tautomers(max_states=20, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Enumerate the possible tautomers of the current molecule

Parameters
Returns

molecules (List[openff.toolkit.topology.Molecule]) – A list of openff.toolkit.topology.Molecule instances not including the input molecule.

enumerate_stereoisomers(undefined_only=False, max_isomers=20, rationalise=True, toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Enumerate the stereocenters and bonds of the current molecule.

Parameters
  • undefined_only (bool optional, default=False) – If we should enumerate all stereocenters and bonds or only those with undefined stereochemistry

  • max_isomers (int optional, default=20) – The maximum amount of molecules that should be returned

  • rationalise (bool optional, default=True) – If we should try to build and rationalise the molecule to ensure it can exist

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, default=GLOBAL_TOOLKIT_REGISTRY) – ToolkitRegistry or ToolkitWrapper to use to enumerate the stereoisomers.

Returns

molecules (List[openff.toolkit.topology.Molecule]) – A list of Molecule instances not including the input molecule.

enumerate_protomers(max_states=10)[source]

Enumerate the formal charges of a molecule to generate different protomoers.

Parameters

max_states (int optional, default=10,) – The maximum number of protomer states to be returned.

Returns

molecules (List[openff.toolkit.topology.Molecule],) – A list of the protomers of the input molecules not including the input.

classmethod from_rdkit(rdmol, allow_undefined_stereo=False, hydrogens_are_explicit=False)[source]

Create a Molecule from an RDKit molecule.

Requires the RDKit to be installed.

Parameters
  • rdmol (rkit.RDMol) – An RDKit molecule

  • allow_undefined_stereo (bool, default=False) – If False, raises an exception if rdmol contains undefined stereochemistry.

  • hydrogens_are_explicit (bool, default=False) – If False, RDKit will perform hydrogen addition using Chem.AddHs

Returns

molecule (openff.toolkit.topology.Molecule) – An OpenFF molecule

Examples

Create a molecule from an RDKit molecule

>>> from rdkit import Chem
>>> from openff.toolkit.tests.utils import get_data_file_path
>>> rdmol = Chem.MolFromMolFile(get_data_file_path('systems/monomers/ethanol.sdf'))
>>> molecule = Molecule.from_rdkit(rdmol)
to_rdkit(aromaticity_model=DEFAULT_AROMATICITY_MODEL)[source]

Create an RDKit molecule

Requires the RDKit to be installed.

Parameters

aromaticity_model (str, optional, default=DEFAULT_AROMATICITY_MODEL) – The aromaticity model to use

Returns

rdmol (rdkit.RDMol) – An RDKit molecule

Examples

Convert a molecule to RDKit

>>> from openff.toolkit.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf')
>>> molecule = Molecule(sdf_filepath)
>>> rdmol = molecule.to_rdkit()
classmethod from_openeye(oemol, allow_undefined_stereo=False)[source]

Create a Molecule from an OpenEye molecule.

Requires the OpenEye toolkit to be installed.

Parameters
  • oemol (openeye.oechem.OEMol) – An OpenEye molecule

  • allow_undefined_stereo (bool, default=False) – If False, raises an exception if oemol contains undefined stereochemistry.

Returns

molecule (openff.toolkit.topology.Molecule) – An OpenFF molecule

Examples

Create a Molecule from an OpenEye OEMol

>>> from openeye import oechem
>>> from openff.toolkit.tests.utils import get_data_file_path
>>> ifs = oechem.oemolistream(get_data_file_path('systems/monomers/ethanol.mol2'))
>>> oemols = list(ifs.GetOEGraphMols())
>>> molecule = Molecule.from_openeye(oemols[0])
to_qcschema(multiplicity=1, conformer=0, extras=None)[source]

Create a QCElemental Molecule.

Warning

This API is experimental and subject to change.

Parameters
  • multiplicity (int, default=1,) – The multiplicity of the molecule; sets molecular_multiplicity field for QCElemental Molecule.

  • conformer (int, default=0,) – The index of the conformer to use for the QCElemental Molecule geometry.

  • extras (dict, default=None) – A dictionary that should be included in the extras field on the QCElemental Molecule. This can be used to include extra information, such as a smiles representation.

Returns

qcelemental.models.Molecule – A validated QCElemental Molecule.

Examples

Create a QCElemental Molecule:

>>> import qcelemental as qcel
>>> mol = Molecule.from_smiles('CC')
>>> mol.generate_conformers(n_conformers=1)
>>> qcemol = mol.to_qcschema()
Raises
  • MissingDependencyError – If qcelemental is not installed, the qcschema can not be validated.

  • InvalidConformerError – No conformer found at the given index.

classmethod from_mapped_smiles(mapped_smiles, toolkit_registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit, allow_undefined_stereo=False)[source]

Create an Molecule from a mapped SMILES made with cmiles. The molecule will be in the order of the indexing in the mapped smiles string.

Warning

This API is experimental and subject to change.

Parameters
Returns

offmol (openff.toolkit.topology.molecule.Molecule) – An OpenFF molecule instance.

Raises

SmilesParsingError – If the given SMILES had no indexing picked up by the toolkits.

classmethod from_qcschema(qca_record, client=None, toolkit_registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit, allow_undefined_stereo=False)[source]

Create a Molecule from a QCArchive molecule record or dataset entry based on attached cmiles information.

For a molecule record, a conformer will be set from its geometry.

For a dataset entry, if a corresponding client instance is provided, the starting geometry for that entry will be used as a conformer.

A QCElemental Molecule produced from Molecule.to_qcschema can be round-tripped through this method to produce a new, valid Molecule.

Parameters
  • qca_record (dict) – A QCArchive molecule record or dataset entry.

  • client (optional, default=None,) – A qcportal.FractalClient instance to use for fetching an initial geometry. Only used if qca_record is a dataset entry.

  • toolkit_registry (openff.toolkit.utils.toolkits.ToolkitRegistry or openff.toolkit.utils.toolkits.ToolkitWrapper, optional) – ToolkitRegistry or ToolkitWrapper to use for SMILES-to-molecule conversion

  • allow_undefined_stereo (bool, default=False) – If false, raises an exception if qca_record contains undefined stereochemistry.

Returns

molecule (openff.toolkit.topology.Molecule) – An OpenFF molecule instance.

Examples

Get Molecule from a QCArchive molecule record:

>>> from qcportal import FractalClient
>>> client = FractalClient()
>>> offmol = Molecule.from_qcschema(client.query_molecules(molecular_formula="C16H20N3O5")[0])

Get Molecule from a QCArchive optimization entry:

>>> from qcportal import FractalClient
>>> client = FractalClient()
>>> optds = client.get_collection("OptimizationDataset",
                                  "SMIRNOFF Coverage Set 1")
>>> offmol = Molecule.from_qcschema(optds.get_entry('coc(o)oc-0'))

Same as above, but with conformer(s) from initial molecule(s) by providing client to database:

>>> offmol = Molecule.from_qcschema(optds.get_entry('coc(o)oc-0'), client=client)
Raises
  • AttributeError

    • If the record dict can not be made from qca_record. - If a client is passed and it could not retrieve the initial molecule.

  • KeyError – If the dict does not contain the canonical_isomeric_explicit_hydrogen_mapped_smiles.

  • InvalidConformerError – Silent error, if the conformer could not be attached.

classmethod from_pdb_and_smiles(file_path, smiles, allow_undefined_stereo=False)[source]

Create a Molecule from a pdb file and a SMILES string using RDKit.

Requires RDKit to be installed.

Warning

This API is experimental and subject to change.

The molecule is created and sanitised based on the SMILES string, we then find a mapping between this molecule and one from the PDB based only on atomic number and connections. The SMILES molecule is then reindexed to match the PDB, the conformer is attached, and the molecule returned.

Note that any stereochemistry in the molecule is set by the SMILES, and not the coordinates of the PDB.

Parameters
  • file_path (str) – PDB file path

  • smiles (str) – a valid smiles string for the pdb, used for stereochemistry, formal charges, and bond order

  • allow_undefined_stereo (bool, default=False) – If false, raises an exception if SMILES contains undefined stereochemistry.

Returns

molecule (openff.toolkit.Molecule) – An OFFMol instance with ordering the same as used in the PDB file.

Raises

InvalidConformerError – If the SMILES and PDB molecules are not isomorphic.

canonical_order_atoms(toolkit_registry=GLOBAL_TOOLKIT_REGISTRY)[source]

Canonical order the atoms in a copy of the molecule using a toolkit, returns a new copy.

Warning

This API is experimental and subject to change.

Parameters
remap(mapping_dict, current_to_new=True)[source]

Remap all of the indexes in the molecule to match the given mapping dict

Warning

This API is experimental and subject to change.

Parameters
  • mapping_dict (dict,) – A dictionary of the mapping between indexes, this should start from 0.

  • current_to_new (bool, default=True) – If this is True, then mapping_dict is of the form {current_index: new_index}; otherwise, it is of the form {new_index: current_index}

Returns

new_molecule (openff.toolkit.topology.molecule.Molecule) – An openff.toolkit.Molecule instance with all attributes transferred, in the PDB order.

to_openeye(aromaticity_model=DEFAULT_AROMATICITY_MODEL)[source]

Create an OpenEye molecule

Requires the OpenEye toolkit to be installed.

Parameters

aromaticity_model (str, optional, default=DEFAULT_AROMATICITY_MODEL) – The aromaticity model to use

Returns

oemol (openeye.oechem.OEMol) – An OpenEye molecule

Examples

Create an OpenEye molecule from a Molecule

>>> molecule = Molecule.from_smiles('CC')
>>> oemol = molecule.to_openeye()
get_bond_between(i, j)[source]

Returns the bond between two atoms

Parameters
  • i (int or Atom) – Atoms or atom indices to check

  • j (int or Atom) – Atoms or atom indices to check

Returns

bond (Bond) – The bond between i and j.

classmethod from_bson(serialized)

Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/

Parameters

serialized (bytes) – A BSON serialized representation of the object

Returns

instance (cls) – An instantiated object

classmethod from_json(serialized)

Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/

Parameters

serialized (str) – A JSON serialized representation of the object

Returns

instance (cls) – An instantiated object

classmethod from_messagepack(serialized)

Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html

Parameters

serialized (bytes) – A MessagePack-encoded bytes serialized representation

Returns

instance (cls) – Instantiated object.

classmethod from_pickle(serialized)

Instantiate an object from a pickle serialized representation.

Warning

This is not recommended for safe, stable storage since the pickle specification may change between Python versions.

Parameters

serialized (str) – A pickled representation of the object

Returns

instance (cls) – An instantiated object

classmethod from_toml(serialized)

Instantiate an object from a TOML serialized representation.

Specification: https://github.com/toml-lang/toml

Parameters

serlialized (str) – A TOML serialized representation of the object

Returns

instance (cls) – An instantiated object

classmethod from_xml(serialized)

Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/

Parameters

serialized (bytes) – An XML serialized representation

Returns

instance (cls) – Instantiated object.

classmethod from_yaml(serialized)

Instantiate from a YAML serialized representation.

Specification: http://yaml.org/

Parameters

serialized (str) – A YAML serialized representation of the object

Returns

instance (cls) – Instantiated object

to_bson()

Return a BSON serialized representation.

Specification: http://bsonspec.org/

Returns

serialized (bytes) – A BSON serialized representation of the objecft

to_json(indent=None)

Return a JSON serialized representation.

Specification: https://www.json.org/

Parameters

indent (int, optional, default=None) – If not None, will pretty-print with specified number of spaces for indentation

Returns

serialized (str) – A JSON serialized representation of the object

to_messagepack()

Return a MessagePack representation.

Specification: https://msgpack.org/index.html

Returns

serialized (bytes) – A MessagePack-encoded bytes serialized representation of the object

to_pickle()

Return a pickle serialized representation.

Warning

This is not recommended for safe, stable storage since the pickle specification may change between Python versions.

Returns

serialized (str) – A pickled representation of the object

to_toml()

Return a TOML serialized representation.

Specification: https://github.com/toml-lang/toml

Returns

serialized (str) – A TOML serialized representation of the object

to_xml(indent=2)

Return an XML representation.

Specification: https://www.w3.org/XML/

Parameters

indent (int, optional, default=2) – If not None, will pretty-print with specified number of spaces for indentation

Returns

serialized (bytes) – A MessagePack-encoded bytes serialized representation.

to_yaml()

Return a YAML serialized representation.

Specification: http://yaml.org/

Returns

serialized (str) – A YAML serialized representation of the object