openforcefield Documentation
Release 0.8.4

Open Force Field Consortium

Mar 09, 2021






CONTENTS

1 User Guide 3
2 API documentation 65

Index 513







openforcefield Documentation, Release 0.8.4

A modern, extensible library for molecular mechanics force field science from the Open Force Field Initiative

CONTENTS 1


http://openforcefield.org

openforcefield Documentation, Release 0.8.4

2 CONTENTS



CHAPTER
ONE

USER GUIDE

1.1 Installation

1.1.1 Installing via conda

The simplest way to install the Open Forcefield Toolkit is via the conda package manager. Packages are
provided on the omnia Anaconda Cloud channel for Linux, OS X, and Win platforms. The openforcefield
Anaconda Cloud page has useful instructions and download statistics.

If you are using the anaconda scientific Python distribution, you already have the conda package manager
installed. If not, the quickest way to get started is to install the miniconda distribution, a lightweight minimal
installation of Anaconda Python.

On linux, you can install the Python 3 version into $HOME/miniconda3 with (on bash systems):

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash ./Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda3

$ source ~/miniconda3/etc/profile.d/conda.sh

$ conda activate base

On osx, you want to use the osx binary

$ curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -0
$ bash ./Miniconda3-latest-Mac0OSX-x86_64.sh -b -p $HOME/miniconda3

$ source ~/miniconda3/etc/profile.d/conda.sh

$ conda activate base

You may want to add the new source ~/miniconda3/etc/profile.d/conda.sh line to your ~/.bashrc file to
ensure Anaconda Python can enabled in subsequent terminal sessions. conda activate base will need to be
run in each subsequent terminal session to return to the environment where the toolkit will be installed.

Note that openforcefield will be installed into this local Python installation, so that you will not need to
worry about disrupting existing Python installations.

Note: Installation via the conda package manager is the preferred method since all dependencies are
automatically fetched and installed for you.



http://www.continuum.io/blog/conda
http://anaconda.org/omnia
https://anaconda.org/omnia/openforcefield
https://anaconda.org/omnia/openforcefield
https://anaconda.org/omnia/openforcefield/files
https://www.continuum.io/downloads/
http://conda.pydata.org/miniconda.html

openforcefield Documentation, Release 0.8.4

1.1.2 Required dependencies

The openforcefield toolkit makes use of the Omnia and Conda Forge free and open source community
package repositories:

$ conda config --add channels omnia --add channels conda-forge
$ conda update --all

This only needs to be done once.

Note: If automation is required, provide the --yes argument to conda update and conda install comam-
nds. More information on the conda command-line API can be found in the conda online documentation.

Release build

You can install the latest stable release build of openforcefield via the conda package with

$ conda config --add channels omnia --add channels conda-forge
$ conda install openforcefield

This version is recommended for all users not actively developing new forcefield parameterization algo-
rithms.

Note: The conda package manager will install dependencies from binary packages automatically, including
difficult-to-install packages such as OpenMM, numpy, and scipy. This is really the easiest way to get started.

Upgrading your installation

To update an earlier conda installation of openforcefield to the latest release version, you can use conda
update:

$ conda update openforcefield

4 Chapter 1. User Guide



http://www.omnia.md
https://conda-forge.org/
https://conda.io/docs/commands.html

openforcefield Documentation, Release 0.8.4

Optional dependencies

This toolkit can optionally make use of the OpenEye toolkit if the user has a license key installed. Academic
laboratories intending to release results into the public domain can obtain a free license key, while other
users (including academics intending to use the software for purposes of generating protected intellectual
property) must pay to obtain a license.

To install the OpenEye toolkits (provided you have a valid license file):

$ conda install --yes -c openeye openeye-toolkits

No essential openforcefield release capabilities require the OpenEye toolkit, but the Open Force Field de-
velopers make use of it in parameterizing new open source force fields. It is known that there are certain
differences in toolkit behavior between RDKit and OpenEye when reading a small fraction of molecules, and
we encourage you to report any unexpected behavior that may be caused by toolkit differences to our issue
tracker.

1.1.3 Alternative method: Single-file installer

As of release 0.4.1, single-file installers are available for each Open Force Field Toolkit release. These are
provided primarily for users who do not have access to the Anaconda cloud for installing packages. These
installers have few requirements beyond a Linux or OSX operating system and will, in one command, produce
a functional Python executable containing the Open Force Field Toolkit, as well as all required dependencies.
The installers are very similar to the widely-used Miniconda *. sh files. Accordingly, installation using the
“single-file installer” does not require root access.

The installers are between 200 and 300 MB each, and can be downloaded from the “Assets” section of the
Toolkit’s GitHub Releases page. They are generated using a workflow leveraging the “conda constructor”
utility.

Please report any installer difficulties to the OFF Toolkit Issue tracker, as we hope to make this a major
distribution channel for the toolkit moving forward.

Installation

Download the appropriate installer (openforcefield-<X.Y.Z>-py37-<your platform>-x86_64.sh) from the
“Assets” section at the bottom of the desired release. Then, install the toolkit with the following command:

$ bash openforcefield-<X.Y.Z>-py37-<your platform>-x86_64.sh

and follow the prompts.

Note: You must have write access to the installation directory. This is generally somewhere in the user’s
home directory. When prompted, we recommend NOT making modifications to your bash_profile.

1.1. Installation 5


https://www.eyesopen.com/toolkit-development
https://www.eyesopen.com/licensing-philosophy
https://www.eyesopen.com/pricing
https://github.com/openforcefield/openforcefield/issues
https://github.com/openforcefield/openforcefield/issues
https://github.com/openforcefield/openforcefield/releases/
https://github.com/openforcefield/toolkit-installer-constructor
https://github.com/openforcefield/toolkit-installer-constructor
https://github.com/openforcefield/openforcefield/issues
https://github.com/openforcefield/openforcefield/releases/
https://github.com/openforcefield/openforcefield/releases/

openforcefield Documentation, Release 0.8.4

Warning: We recommend that you do not install this package as root. Conda is intended to support
on-the-fly creation of several independent environments, and managing a multi-user conda installation
is somewhat involved.

Usage

Any time you want to use this conda environment in a terminal, run

$ source <install_directory>/etc/profile.d/conda.sh
$ conda activate base

Once the base environment is activated, your system will default to use python (and other executables) from
the newly installed conda environment.

Installing optional OpenEye toolkits

We're waiting on permission to redistribute the OpenEye toolkits inside the single-file installer, so for now
the installers only ship with the open-source backend (RDKit+AmberTools). With this in mind, the conda
environment created by the installer contains the conda package manager itself, which can be used to install
the OpenEye toolkits if you have access to the Anaconda cloud.

$ conda install -c openeye openeye-toolkits

Note: The OpenEye Toolkits conda package still requires a valid OpenEye license file to run.

1.2 Release History

Releases follow the major.minor.micro scheme recommended by PEP440, where
* major increments denote a change that may break API compatibility with previous major releases
* minor increments add features but do not break API compatibility

* micro increments represent bugfix releases or improvements in documentation

6 Chapter 1. User Guide


https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/admin-multi-user-install.html
https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/admin-multi-user-install.html
https://www.python.org/dev/peps/pep-0440/#final-releases

openforcefield Documentation, Release 0.8.4

1.2.1 0.8.4 - Minor feature and bugfix release

This release is intended to be functionally identical to 0.9.1. The only difference is that it uses the
“openforcefield” namespace.

This release is a final patch for the 0.8.X series of releases of the toolkit, and also marks the last version of
the toolkit which will be imported as import openforcefield.XXX / from openforcefield import XXX.From
version 0.9.0 onwards the toolkit will be importable only as import openff.toolkit.XXX / from openff.
toolkit import XXX.

Note This change will also be accompanied by a renaming of the package from openforcefield to
openff-toolkit, so users need not worry about accidentally pulling in a version with changed imports.
Users will have to explicitly choose to install the openff-toolkit package once released which will contain
the breaking import changes.

New features
* PR #839: Add support for computing WBOs from multiple conformers using the AmberTools and
OpenEye toolkits, and from ELF10 conformers using the OpenEye toolkit wrapper.

* PR #832: Expose ELF conformer selection through the Molecule API via a new
apply_elf_conformer_selection function.

* PR #831: Expose ELF conformer selection through the OpenEye wrapper.

* PR #790: Fixes Issue #720 where qcschema roundtrip to/from results in an error due to missing cmiles
entry in attributes.

* PR #793: Add an initial ELF conformer selection implementation which uses RDKit.

* PR #799: Closes Issue #746 by adding Molecule.smirnoff_impropers, Molecule.amber_impropers,
TopologyMolecule.smirnoff_impropers, TopologyMolecule.amber_impropers, Topology.
smirnoff_impropers, and Topology.amber_impropers.

* PR #847: Instances of ParameterAttribute documentation can now specify their docstrings with the
optional docstring argument to the __init__() method.

* PR #827: The setter for Topology.box_vectors now infers box vectors when box lengths are pass as a
list of length 3.

Behavior changed

* PR #802: Fixes Issue #408. The 1-4 scaling factor for electrostatic interactions is now properly set by
the value specified in the force field. Previously it fell back to a default value of 0.83333. The toolkit
may now produce slightly different energies as a result of this change.

* PR #839: The average WBO will now be returned when multiple conformers are provided to
assign_fractional_bond_orders using use_conformers.

* PR #816: Force field file paths are now loaded in a case-insensitive manner.

1.2. Release History 7


https://github.com/openforcefield/openforcefield/pull/839
https://github.com/openforcefield/openforcefield/pull/832
https://github.com/openforcefield/openff-toolkit/pull/831
https://github.com/openforcefield/openforcefield/pull/790
https://github.com/openforcefield/openforcefield/issues/720
https://github.com/openforcefield/openff-toolkit/pull/793
https://github.com/openforcefield/openff-toolkit/pull/799
https://github.com/openforcefield/openff-toolkit/issues/746
https://github.com/openforcefield/openforcefield/pull/847
https://github.com/openforcefield/openff-toolkit/pull/827
https://github.com/openforcefield/openforcefield/pull/802
https://github.com/openforcefield/openforcefield/issues/408
https://github.com/openforcefield/openforcefield/pull/839
https://github.com/openforcefield/openforcefield/pull/816

openforcefield Documentation, Release 0.8.4

Bugfixes

* PR #849: Changes create_openmm_system so that it no longer uses the conformers on existing ref-
erence molecules (if present) to calculate Wiberg bond orders. Instead, new conformers are always
generated during parameterization.

* PR #838: Corrects spacing of “forcefield” to “force field” throughout documentation. Fixes Issue #112.
* PR #846: Corrects dead links throughout release history. Fixes Issue #835.

* PR #847: Documentation now compiles with far fewer warnings, and in many cases more correctly.
Additionally, ParameterAttribute documentation no longer appears incorrectly in classes where it is
used. Fixes Issue #397.

* PR #802: Fixes Issue #408. The 1-4 scaling factor for electrostatic interactions is now properly set by
the value specified in the force field. Previously it fell back to a default value of 0.83333. The toolkit
may now produce slightly different energies as a result of this change.

1.2.2 0.8.3 - Major bugfix release

This release fixes a critical bug in van der Waals parameter assignment.

This release is also a final patch for the 0.8.X series of releases of the toolkit, and also marks the last
version of the toolkit which will be imported as import openforcefield.XXX / from openforcefield import
XXX. From version 0.9.0 onwards the toolkit will be importable only as import openff.toolkit.XXX / from
openff.toolkit import XXX.

Note This change will also be accompanied by a renaming of the package from openforcefield to
openff-toolkit, so users need not worry about accidentally pulling in a version with changed imports.
Users will have to explicitly choose to install the openff-toolkit package once released which will contain
the breaking import changes.

Bugfixes

* PR #808: Fixes Issue #807, which tracks a major bug in the interconversion between a vdW sigma
and rmin_half parameter.

New features
* PR #794: Adds a decorator @requires_package that denotes a function requires an optional depen-
dency.

* PR #790: Fixes Issue #720 where qcschema roundtrip to/from results in an error due to missing cmiles
entry in attributes.

* PR #805: Adds a deprecation warning for the up-coming release of the openff-toolkit package and
its import breaking changes.

8 Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/849
https://github.com/openforcefield/openforcefield/pull/838
https://github.com/openforcefield/openforcefield/issues/112
https://github.com/openforcefield/openff-toolkit/pull/846
https://github.com/openforcefield/openff-toolkit/issues/835
https://github.com/openforcefield/openforcefield/pull/847
https://github.com/openforcefield/openforcefield/issues/397
https://github.com/openforcefield/openforcefield/pull/802
https://github.com/openforcefield/openforcefield/issues/408
https://github.com/openforcefield/openforcefield/pull/808
https://github.com/openforcefield/openforcefield/issues/807
https://github.com/openforcefield/openforcefield/pull/794
https://github.com/openforcefield/openforcefield/pull/790
https://github.com/openforcefield/openforcefield/issues/720
https://github.com/openforcefield/openforcefield/pull/805

openforcefield Documentation, Release 0.8.4

1.2.3 0.8.2 - Bugfix release

WARNING: This release was later found to contain a major bug, Issue #807, and produces incorrect
energies.

Bugfixes

* PR #786: Fixes Issue #785 where RDKitToolkitWrapper would sometimes expect stereochemistry to
be defined for non-stereogenic bonds when loading from SDF.

* PR #786: Fixes an issue where using the Molecule copy constructor (newmol = Molecule(oldmol))
would result in the copy sharing the same .properties dict as the original (as in, changes to the
.properties dict of the copy would be reflected in the original).

* PR #789: Fixes a regression noted in Issue #788 where creating vdWHandler.vdWType or setting sigma
or rmin_half using Quantities represented as strings resulted in an error.

1.2.4 0.8.1 - Bugfix and minor feature release

WARNING: This release was later found to contain a major bug, Issue #807, and produces incorrect
energies.

API-breaking changes

e PR #757: Renames test_forcefields/smirnoff99Frosst.offxml to test_forcefields/
test_forcefield.offxml to avoid confusion with any of the ACTUAL released FFs in the
smirnoff99Frosst line

* PR #751: Removes the optional oetools=("oechem”, "oequacpac”, "oeiupac"”, "oeomega") keyword
argument from OpenEyeToolkitWrapper.is_available, as there are no special behaviors that are ac-
cessed in the case of partially-licensed OpenEye backends. The new behavior of this method is the
same as if the default value above is always provided.

Behavior Changed

* PR #583: Methods such as Molecule.from_rdkit and Molecule.from_openeye, which delegate their
internal logic to ToolkitRegistry functions, now guarantee that they will return an object of the
correct type when being called on Molecule-derived classes. Previously, running these constructors
using subclasses of FrozenMolecule would not return an instance of that subclass, but rather just an
instance of a Molecule.

* PR #753: ParameterLookupError is now raised when passing to ParameterList.index a SMIRKS pat-
tern not found in the parameter list.

1.2. Release History 9


https://github.com/openforcefield/openforcefield/issues/807
https://github.com/openforcefield/openforcefield/pull/xyz
https://github.com/openforcefield/openforcefield/issues/785
https://github.com/openforcefield/openforcefield/pull/786
https://github.com/openforcefield/openforcefield/pull/789
https://github.com/openforcefield/openforcefield/issues/788
https://github.com/openforcefield/openforcefield/issues/807
https://github.com/openforcefield/openforcefield/pull/757
https://github.com/openforcefield/smirnoff99Frosst/
https://github.com/openforcefield/openforcefield/pull/751
https://github.com/openforcefield/openforcefield/pull/583
https://github.com/openforcefield/openforcefield/pull/753

openforcefield Documentation, Release 0.8.4

New features

* PR #751: Adds LicenseError, a subclass of ToolkitUnavailableException which is raised when at-
tempting to add a cheminformatics ToolkitWrapper for a toolkit that is installed but unlicensed.

PR #678: Adds ForceField.deregister_parameter_handler.

PR #730: Adds Topology.is_periodic.

PR #753: Adds ParameterHandler.__getitem__ to look up individual ParameterType objects.

Bugfixes

* PR #745: Fixes bug when serializing molecule with conformers to JSON.

* PR #750: Fixes a bug causing either sigma or rmin_half to sometimes be missing on vdwWHandler.
vdWType objects.

* PR #756: Fixes bug when running vdWHandler.create_force using a vdWHandler that was initialized
using the API.

* PR #776: Fixes a bug in which the Topology. from_openmm and Topology. from_mdtraj methods would
dangerously allow unique_molecules=None.

* PR #777: RDKitToolkitWrapper now outputs the full warning message when
allow_undefined_stereo=True (previously the description of which stereo was undefined was
squelched)

1.2.5 0.8.0 - Virtual Sites

This release implements the SMIRNOFF virtual site specification. The implementation enables support for
models using off-site charges, including 4- and 5-point water models, in addition to lone pair modeling
on various functional groups. The primary focus was on the ability to parameterize a system using virtual
sites, and generating an OpenMM system with all virtual sites present and ready for evaluation. Support for
formats other than OpenMM has not be implemented in this release, but may come with the appearance of
the OpenFF system object. In addition to implementing the specification, the toolkit Molecule objects now
allow the creation and manipulation of virtual sites.

Major Feature: Support for the SMIRNOFF VirtualSite tag
Virtual sites can be added to a System in two ways:

* SMIRNOFF Force Fields can contain a VirtualSites tag , specifying the addition of virtual sites according
to SMARTS-based rules.

* Virtual sites can be added to a Molecule, and these will appear in the final OpenMM system if a virtual
site handler is present in the ForceField.

Virtual sites are the first parameters which directly depend on 3D conformation, where the position of
the virtual sites are based on vectors defined on the atoms that were matched during parameterization.
Because of this, a virtual site matching the triplet of atoms 1-2-3 will define a point that is different from a
triplet matching 3-2-1. This is similar to defining “right-handed” and “left-handed” coordinate systems. This
subtlety interplays with two major concepts in force field development:

1) we sometimes want to define a single virtual site describing two points with the same parameters
(distance, angle, etc.), such as 5-point water models

2) we have a match that produces multiple orderings of the atoms (e.g. if wildcards are present in the
SMARTS pattern), and we only want one to be applied.

10 Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/751
https://github.com/openforcefield/openforcefield/pull/678
https://github.com/openforcefield/openforcefield/pull/730
https://github.com/openforcefield/openforcefield/pull/753
https://github.com/openforcefield/openforcefield/pull/745
https://github.com/openforcefield/openforcefield/pull/750
https://github.com/openforcefield/openforcefield/pull/756
https://github.com/openforcefield/openforcefield/pull/776
https://github.com/openforcefield/openforcefield/pull/777
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#virtualsites-virtual-sites-for-off-atom-charges

openforcefield Documentation, Release 0.8.4

Case 1) is very useful for parameter optimization, where a single SMARTS-based parameter can be used to
optimize both points, such as the angle defining the virtual points for a 5-point water model. Case 2) is
the typical scenario for the nitrogen lone pair in ammonia, where only one point needs to be specified. We
discuss a few more illustrative examples below. Beyond these attributes, the virtual site specification allows
a policy for specifying how to handle exclusions in the OpenMM force evaluator. The current default is to
add pairwise energy exclusions in the OpenMM system between a virtual site and all tagged atoms matched
in its SMARTS (exclusion_policy="parents”, ). Currently defined are "none"”, "minimal”, and "parents”,
where "minimal” specifies the single atom that the virtual site defines as the “origin”. For water, for example,
"minimal” would mean just the oxygen, whereas "parents” would mean all three atoms.

In order to give consistent and intended behavior, the specification was modified from its draft form in
following manner: The "name” and "match” attributes have been added to each virtual site parameter type.
These changes allow for

* specifying different virtual site types using the same atoms

* allowing two virtual sites with the same type and same atoms but different physical parameters to be
added simultaneously

* allowing the ability to control whether the virtual site encodes one or multiple particles, based on the
number of ways the matching atoms can be ordered.

The "name” attribute encodes whether the virtual site to be added should override an existing virtual site
of the same type (e.g. hierarchy preference), or if this virtual site should be added in addition to the other
existing virtual sites on the given atoms. This means that different virtual site types can share the same
group of parent atoms and use the same name without overwriting each other (the default name is EP for all
sites, which gives the expected hierarchical behavior used in other SMIRNOFF tags).

The "match” attribute accepts either "once” or "all_permutations”, offering control for situations where a
SMARTS pattern can possibly match the same group of atoms in different orders (either due to wildcards or
local symmetry) and it is desired to either add just one or all of the possible virtual particles. The default
value is "all_permutations”, but for TrivalentLonePair it is always set to "once”, regardless of what the file
contains, since all orderings always place the particle in the exact same position.

The following cases exemplify our reasoning in implementing this behavior, and should draw caution to
complex issues that may arise when designing virtual site parameters. Let us consider 4-, 5-, and 6-point
water models:

* A 4-point water model with a DivalentLonePair: This can be implemented by specifying match="once
"  outOfPlaneAngle="0*degree”, and distance=-.15%angstrom”. Since the SMIRKS pattern "[#1:
1]-[#8X2:2]1-[#2:3]" would match water twice and would create two particles in the exact same
position if all_permutations was specified, we specify "once” to have only one particle generated.
Although having two particles in the same position should not affect the physics if the proper exclusion
policy is applied, it would effectively make the 4-point model just as expensive as 5-point models.

* A 5-point water model with a DivalentLonePair: This can be implemented by using match=
"all_permutations” (unlike the 4-point model), outOfPlaneAngle="56.26xdegree, and distance=0.
7xangstrom, for example. Here the permutations will cause particles to be placed at +56.26 degrees,
and changing any of the physical quantities will affect both particles.

* A 6-point water model with both DivalentLonePair sites above. Since these two parameters look
identical, it is unclear whether they should both be applied or if one should override the other. The
toolkit never compares the physical numbers to determine equality as this can lead to instability during
e.g. parameter fitting. To get this to work, we specify name="EP1" for the first parameter, and name="EP2
" for the second parameter. This instructs the parameter handler keep them separate, and therefore
both are applied. (If both had the same name, then the typical SMIRNOFF hierarchy rules are used,
and only the last matched parameter would be applied.)

1.2. Release History 11



openforcefield Documentation, Release 0.8.4

* Dinitrogen, N#N with a BondCharge virtual site. Since we want a BondCharge on both ends, we specify
match="all_permutations”.

* Formaldehyde, H2C=0, with MonovalentLonePair virtual site(s) on the oxygen, with the aim of modeling
both lone pairs. This one is subtle, since [#1:3]-[#6X3:2]=[#8X1:1] matches two unique groups of
atoms (1-3-4 and 2-3-4). It is important to note in this situation that match="all_permutations”
behaves exactly the same as match="once". Due to the anchoring hydrogens (1 and 2) being symmetric
but opposite about the bond between 3 and 4, a single parameter does correctly place both lone pairs.
A standing issue here is that the default exclusion policy (parents) will allow these two virtual sites
to interact since they have different indexed atoms (parents), causing the energy to be different than
the non-virtual site parameterization. In the future, the exclusion_policy="1ocal" will account for
this, and make virtual sites that share at least one “parent” atom not interact with each other. As a
special note: when applying a MonovalentLonePair to a completely symmetric molecule, e.g. water,
all_permutations can come into play, but this will apply two particles (one for each hydrogen).

Finally, the toolkit handles the organization of atoms and virtual sites in a specific manner. Virtual sites
are expected to be added after all molecules in the topology are present. This is because the Open Force
Field Toolkit organizes a topology by placing all atoms first, then all virtual sites last. This differs from the
OpenMM Modeller object, for example, which interleaves the order of atoms and virtual sites in such a way
that all particles of a molecule are contiguous. In addition, due to the fact that a virtual site may contain
multiple particles coupled to single parameters, the toolkit makes a distinction between a virtual site, and a
virtual particle. A virtual site may represent multiple virtual particles, so the total number of particles cannot
be directly determined by simply summing the number of atoms and virtual sites in a molecule. This is taken
into account, however, and the Molecule and Topology classes now implement particle iterators.

Minor Feature: Support for the 0.4 ChargeIncrementModel tag

To allow for more convenient fitting of ChargeIncrement parameters, it is now possible to specify one
less charge_increment value than there are tagged atoms in a ChargeIncrement’s smirks. The missing
charge_increment value will be calculated at parameterization-time to make the sum of the charge con-
tributions from a ChargeIncrement parameter equal to zero. Since this change allows for force fields
that are incompatible with the previous specification, this new style of ChargeIncrement must specify a
ChargeIncrementModel section version of @.4. All @.3-compatible ChargeIncrement parameters are compat-
ible with the @.4 ChargeIncrementModel specification.

More details and examples of this change are available in The ChargelncrementModel tag in the SMIRNOFF
specification

New features

* PR #726: Adds support for the 0.4 ChargeIncrementModel spec, allowing for the specification of one
fewer charge_increment values than there are tagged atoms in the smirks, and automatically assigning
the final atom an offsetting charge.

* PR #548: Adds support for the VirtualSites tag in the SMIRNOEFF specification
* PR #548: Adds replace and all_permutations kwarg to

Molecule.add_bond_charge_virtual_site

Molecule.add_monovalent_lone_pair_virtual_site

Molecule.add_divalent_lone_pair_virtual_site

Molecule.add_trivalent_lone_pair_virtual_site
* PR #548: Adds orientations to

— BondChargeVirtualSite

12 Chapter 1. User Guide


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#chargeincrementmodel-small-molecule-and-fragment-charges
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#chargeincrementmodel-small-molecule-and-fragment-charges
https://github.com/openforcefield/openforcefield/pull/726
https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/548

openforcefield Documentation, Release 0.8.4

— MonovalentLonePairVirtualSite
— DivalentlLonePairVirtualSite
— TrivalentLonePairVirtualSite
* PR #548: Adds
— VirtualParticle
— TopologyVirtualParticle
— BondChargeVirtualSite.get_openmm_virtual_site
— MonovalentLonePairVirtualSite.get_openmm_virtual_site
— DivalentLonePairVirtualSite.get_openmm_virtual_site
— TrivalentLonePairVirtualSite.get_openmm_virtual_site
— ValenceDict.key_transform
— ValenceDict.index_of
— ImproperDict.key_transform
— ImproperDict.index_of

* PR #705: Adds interpolation based on fractional bond orders for harmonic bonds. This includes inter-
polation for both the force constant k and/or equilibrium bond distance length. This is accompanied
by a bump in the <Bonds> section of the SMIRNOFF spec (but not the entire spec).

* PR #718: Adds .rings and .n_rings to Molecule and .is_in_ring to Atom and Bond

Bugfixes

* PR #682: Catches failures in Molecule. from_iupac instead of silently failing.

* PR #743: Prevents the non-bonded (vdW) cutoff from silently falling back to the OpenMM default of 1
nm in Forcefield.create_openmm_system and instead sets its to the value specified by the force field.

* PR #737: Prevents OpenEye from incidentally being used in the conformer generation step of
AmberToolsToolkitWrapper.assign_fractional_bond_orders.

Behavior changed
* PR #705: Changes the default values in the <Bonds> section of the SMIRNOFF spec

to fractional_bondorder_method="AM1-Wiberg” and potential="(k/2)*(r-length)~2", which is
backwards-compatible with and equivalent to potential="harmonic".

Examples added

* PR #548: Adds a virtual site example notebook to run an OpenMM simulation with virtual sites, and
compares positions and potential energy of TIPSP water between OpenFF and OpenMM forcefields.

1.2. Release History 13


https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/705
https://github.com/openforcefield/openforcefield/pull/718
https://github.com/openforcefield/openforcefield/pull/682
https://github.com/openforcefield/openforcefield/pull/743
https://github.com/openforcefield/openforcefield/pull/737
https://github.com/openforcefield/openforcefield/pull/705
https://github.com/openforcefield/openforcefield/pull/548

openforcefield Documentation, Release 0.8.4

API-breaking changes

* PR #548: Methods
— Molecule.add_bond_charge_virtual_site
— Molecule.add_monovalent_lone_pair_virtual_site
— Molecule.add_divalent_lone_pair_virtual_site
— Molecule.add_trivalent_lone_pair_virtual_site
now only accept a list of atoms, not a list of integers, to define to parent atoms
* PR #548: Removes VirtualParticle.molecule_particle_index
e PR #548: Removes outOfPlaneAngle from
— DivalentlLonePairVirtualSite
— TrivalentlLonePairVirtualSite
* PR #548: Removes inPlaneAngle from TrivalentlLonePairVirtualSite

* PR #548: Removes weights from

BondChargeVirtualSite

MonovalentLonePairVirtualSite

DivalentLonePairVirtualSite

TrivalentLonePairVirtualSite

Tests added

* PR #548: Adds test for
— The virtual site parameter handler
— TIP5P water dimer energy and positions

— Adds tests to for virtual site/particle indexing/counting

1.2.6 0.7.2 - Bugfix and minor feature release

New features
* PR #662: Adds .aromaticity_model of ForceField and .TAGNAME of ParameterHandler as public at-
tributes.
* PR #667 and PR #681 linted the codebase with black and isort, respectively.

e PR #675 adds .toolkit_version to ToolkitWrapper and .registered_toolkit_versions to
ToolkitRegistry.

* PR #696 Exposes a setter for ForceField.aromaticity_model

e PR #685 Adds a custom __hash__ function to ForceField

14 Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/548
https://github.com/openforcefield/openforcefield/pull/662
https://github.com/openforcefield/openforcefield/pull/667
https://github.com/openforcefield/openforcefield/pull/681
https://github.com/openforcefield/openforcefield/pull/675
https://github.com/openforcefield/openforcefield/pull/696
https://github.com/openforcefield/openforcefield/pull/685

openforcefield Documentation, Release 0.8.4

Behavior changed
* PR #684: Changes ToolkitRegistry to return an empty registry when initialized with no arguments,
i.e. ToolkitRegistry() and makes the register_imported_toolkit_wrappers argument private.

* PR #711: The setter for Topology.box_vectors now infers box vectors (a 3x3 matrix) when box lengths
(a 3x1 array) are passed, assuming an orthogonal box.

* PR #649: Makes SMARTS searches stereochemistry-specific (if stereo is specified in the SMARTS) for
both OpenEye and RDKit backends. Also ensures molecule aromaticity is re-perceived according to
the ForceField’s specified aromaticity model, which may overwrite user-specified aromaticity on the
Molecule

* PR #648: Removes the utils.structure module, which was deprecated in 0.2.0.

* PR #670: Makes the Topology returned by create_openmm_system contain the partial charges and
partial bond orders (if any) assigned during parameterization.

* PR #675 changes the exception raised when no antechamber executable is found from IOError to
AntechamberNotFoundError

* PR #696 Adds an aromaticity_model keyword argument to the ForceField constructor, which defaults
to DEFAULT_AROMATICITY_MODEL.

Bugfixes
* PR #715: Closes issue Issue #475 writing a “PDB” file using OE backend rearranges the order of the
atoms by pushing the hydrogens to the bottom.

* PR #649: Prevents 2020 OE toolkit from issuing a warning caused by doing stereo-specific smarts
searches on certain structures.

* PR #724: Closes issue Issue #502 Adding a utility function Topology.to file() to write topology and
positions to a “PDB” file using openmm backend for pdb file write.

Tests added

* PR #694: Adds automated testing to code snippets in docs.
* PR #715: Adds tests for pdb file writes using OE backend.
* PR #724: Adds tests for the utility function Topology.to_file().

1.2.7 0.7.1 - OETK2020 Compatibility and Minor Update

This is the first of our patch releases on our new planned monthly release schedule.

Detailed release notes are below, but the major new features of this release are updates for compatibility with
the new 2020 OpenEye Toolkits release, the get_available_force_fields function, and the disregarding of
pyrimidal nitrogen stereochemistry in molecule isomorphism checks.

1.2. Release History 15


https://github.com/openforcefield/openforcefield/pull/684
https://github.com/openforcefield/openforcefield/pull/711
https://github.com/openforcefield/openforcefield/pull/648
https://github.com/openforcefield/openforcefield/pull/648
https://github.com/openforcefield/openforcefield/pull/670
https://github.com/openforcefield/openforcefield/pull/675
https://github.com/openforcefield/openforcefield/pull/696
https://github.com/openforcefield/openforcefield/pull/715
https://github.com/openforcefield/openforcefield/issues/475
https://github.com/openforcefield/openforcefield/pull/648
https://github.com/openforcefield/openforcefield/pull/724
https://github.com/openforcefield/openforcefield/issues/502
https://github.com/openforcefield/openforcefield/pull/694
https://github.com/openforcefield/openforcefield/pull/715
https://github.com/openforcefield/openforcefield/pull/724

openforcefield Documentation, Release 0.8.4

Behavior changed

* PR #646: Checking for Molecule equality using the == operator now disregards all pyrimidal
nitrogen stereochemistry by default. To re-enable, use Molecule.{is|are}_isomorphic with the
strip_pyrimidal_n_atom_stereo=False keyword argument.

* PR #646: Adds an optional toolkit_registry keyword argument to Molecule.are_isomorphic, which
identifies the toolkit that should be used to search for pyrimidal nitrogens.

Bugfixes

PR #647: Updates OpenEyeToolkitWrapper for 2020.0.4 OpenEye Toolkit behavior/API changes.

PR #646: Fixes a bug where Molecule.chemical_environment_matches was not able to accept a
ChemicalEnvironment object as a query.

* PR #634: Fixes a bug in which calling RDKitToolkitWrapper.from_file directly would not load files
correctly if passed lowercase file_format. Note that this bug did not occur when calling Molecule.
from_file.

PR #631: Fixes a bug in which calling unit_to_string returned None when the unit is dimensionless.
Now "dimensionless” is returned.

PR #630: Closes issue Issue #629 in which the wrong exception is raised when attempting to instan-
tiate a ForceField from an unparsable string.

New features

PR #632: Adds ForceField.registered_parameter_handlers

PR #614: Adds ToolkitRegistry.deregister_toolkit to de-register registered toolkits, which can
include toolkit wrappers loaded into GLOBAL_TOOLKIT_REGISTRY by default.

* PR #656: Adds a new allowed amlelfie option to the OpenEye implementation of
assign_partial_charges which calculates the average partial charges at the AM1 level of theory using
conformers selected using the ELF10 method.

e PR #643: Adds openforcefield. typing.engines.smirnoff.forcefield.
get_available_force_fields, which returns paths to the files of force fields available through
entry point plugins.

1.2.8 0.7.0 - Charge Increment Model, Proper Torsion interpolation, and new Molecule
methods

This is a relatively large release, motivated by the idea that changing existing functionality is bad so we
shouldn’t do it too often, but when we do change things we should do it all at once.

Here’s a brief rundown of what changed, migration tips, and how to find more details in the full release
notes below:

* To provide more consistent partial charges for a given molecule, existing conformers are now disre-
garded by default by Molecule.assign_partial_charges. Instead, new conformers are generated for
use in semiempirical calculations. Search for use_conformers.

* Formal charges are now always returned as simtk.unit.Quantity objects, with units
of elementary charge. To convert them to integers, use from simtk import unit

16 Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/646
https://github.com/openforcefield/openforcefield/pull/646
https://github.com/openforcefield/openforcefield/pull/647
https://github.com/openforcefield/openforcefield/pull/646
https://github.com/openforcefield/openforcefield/pull/634
https://github.com/openforcefield/openforcefield/pull/631
https://github.com/openforcefield/openforcefield/pull/630
https://github.com/openforcefield/openforcefield/issues/629
https://github.com/openforcefield/openforcefield/pull/632
https://github.com/openforcefield/openforcefield/pull/614
https://github.com/openforcefield/openforcefield/pull/656
https://github.com/openforcefield/openforcefield/pull/643

openforcefield Documentation, Release 0.8.4

and atom.formal_charge.value_in_unit(unit.elementary_charge) or mol.total_charge.
value_in_unit(unit.elementary_charge). Search atom.formal_charge.

The OpenFF Toolkit now automatically reads and writes partial charges in SDF files. Search for atom.
dprop.PartialCharges.

The OpenFF Toolkit now has different behavior for handling multi-molecule and multi-conformer SDF
files. Search multi-conformer.

The OpenFF Toolkit now distinguishes between partial charges that are all-zero and partial charges
that are unknown. Search partial_charges = None.

Topology . to_openmm now assigns unique atoms names by default. Search ensure_unique_atom_names.

Molecule equality checks are now done by graph comparison instead of SMILES comparison. Search
Molecule.are_isomorphic.

The ChemicalEnvironment module was almost entirely removed, as it is an outdated duplicate of some
Chemper functionality. Search ChemicalEnvironment.

TopologyMolecule. topology_particle_start_index has been removed from the TopologyMolecule
API, since atoms and virtualsites are no longer contiguous in the Topology particle indexing system.
Search topology_particle_start_index.

compute_wiberg_bond_orders has been renamed to assign_fractional_bond_orders.

There are also a number of new features, such as:

Support for ChargeIncrementModel sections in force fields.
Support for ProperTorsion k interpolation in force fields using fractional bond orders.

Support for AM1-Mulliken, Gasteiger, and other charge methods using the new
assign_partial_charges methods.

Support for AM1-Wiberg bond order calculation using either the OpenEye or RDKit/AmberTools back-
ends and the assign_fractional_bond_orders methods.

Initial (limited) interoperability with QCArchive, via Molecule.to_gcschema and from_gcschema.
A Molecule.visualize method.

Several additional Molecule methods, including state enumeration and mapped SMILES creation.

Major Feature: Support for the SMIRNOFF ChargeIlncrementModel tag

The ChargelncrementModel tag in the SMIRNOFF specification provides analagous functionality to AM1-

BCC,

except that instead of AM1-Mulliken charges, a number of different charge methods can be called, and

instead of a fixed library of two-atom charge corrections, an arbitrary number of SMIRKS-based, N-atom
charge corrections can be defined in the SMIRNOFF format.

The initial implementation of the SMIRNOFF ChargeIncrementModel tag accepts keywords for version,
partial_charge_method, and number_of_conformers. partial_charge_method can be any string, and it is up
to the ToolkitWrapper’s compute_partial_charges methods to understand what they mean. For geometry-
independent partial_charge_method choices, number_of_conformers should be set to zero.

SMIRKS-based parameter application for ChargeIncrement parameters is different than other SMIRNOFF
sections. The initial implementation of ChargeIncrementModelHandler follows these rules:

an atom can be subject to many ChargeIncrement parameters, which combine additively.

a ChargeIncrement that matches a set of atoms is overwritten only if another ChargeIncrement matches
the same group of atoms, regardless of order. This overriding follows the normal SMIRNOFF hierarchy.

1.2. Release History 17


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#chargeincrementmodel-small-molecule-and-fragment-charges

openforcefield Documentation, Release 0.8.4

To give a concise example, what if a molecule A-B(-C)-D were being parametrized, and the force field defined
ChargeIncrement SMIRKS in the following order?

1) [A:1]-[B:2]

2) [B:11-[A:2]

3) [A:11-[B:2]1-[C:3]

4) [*:11-[B:2]1(-[*:31)-[*:4]
5) [D:11-[B:2](-[*:31)-[*:4]

In the case above, the Chargelncrement from parameters 1 and 4 would NOT be applied to the molecule,
since another parameter matching the same set of atoms is specified further down in the parameter hierarchy
(despite those subsequent matches being in a different order).

Ultimately, the Chargelncrement contributions from parameters 2, 3, and 5 would be summed and applied.

It’s also important to identify a behavior that these rules were written to avoid: if not for the “regardless of
order” clause in the second rule, parameters 4 and 5 could actually have been applied six and two times,
respectively (due to symmetry in the SMIRKS and the use of wildcards). This situation could also arise as
a result of molecular symmetry. For example, a methyl group could match the SMIRKS [C:1]1([H:21) ([H:
31) ([H:4]) six ways (with different orderings of the three hydrogen atoms), but the user would almost
certainly not intend for the charge increments to be applied six times. The “regardless of order” clause was
added specifically to address this.

In short, the first time a group of atoms becomes involved in a ChargeIncrement together, the System gains
a new parameter “slot”. Only another ChargeIncrement which applies to the exact same group of atoms (in
any order) can take over the “slot”, pushing the original ChargeIncrement out.

Major Feature: Support for ProperTorsion k value interpolation

Chaya Stern’s work showed that we may be able to produce higher-quality proper torsion parameters by
taking into account the “partial bond order” of the torsion’s central bond. We now have the machinery to
compute AM1-Wiberg partial bond orders for entire molecules using the assign_fractional_bond_orders
methods of either OpenEyeToolkitWrapper or AmberToolsToolkitWrapper. The thought is that, if some sim-
ple electron population analysis shows that a certain aromatic bond’s order is 1.53, maybe rotations about
that bond can be described well by interpolating 53% of the way between the single and double bond k
values.

Full details of how to define a torsion-interpolating SMIRNOFF force fields are available in the ProperTorsions
section of the SMIRNOFF specification.

Behavior changed

* PR #508: In order to provide the same results for the same chemical species, regardless
of input conformation, Molecule assign_partial_charges, compute_partial_charges_amibcc, and
assign_fractional_bond_orders methods now default to ignore input conformers and generate new
conformer(s) of the molecule before running semiempirical calculations. Users can override this be-
havior by specifying the keyword argument use_conformers=molecule.conformers.

* PR #281: Closes Issue #250 by adding support for partial charge I/0 in SDF. The partial charges are
stored as a property in the SDF molecule block under the tag <atom.dprop.PartialCharge>.

* PR #281: If a Molecule’s partial_charges attribute is set to None (the default value), calling
to_openeye will now produce a OE molecule with partial charges set to nan. This would previously
produce an OE molecule with partial charges of 0.0, which was a loss of information, since it wouldn’t
be clear whether the original OFFMol’s partial charges were REALLY all-zero as opposed to None.
OpenEye toolkit wrapper methods such as from_smiles and from_file now produce OFFMols with

18 Chapter 1. User Guide


https://chayast.github.io/fragmenter-manuscript/
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#fractional-torsion-bond-orders
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#fractional-torsion-bond-orders
https://github.com/openforcefield/openforcefield/pull/508
https://github.com/openforcefield/openforcefield/pull/281
https://github.com/openforcefield/openforcefield/issues/250
https://github.com/openforcefield/openforcefield/pull/281

openforcefield Documentation, Release 0.8.4

partial_charges = None when appropriate (previously these would produce OFFMols with all-zero
charges, for the same reasoning as above).

* PR #281: Molecule to_rdkit now sets partial charges on the RDAtom’s PartialCharges property (this
was previously set on the partial_charges property). If the Molecule’s partial charges attribute is
None, this property will not be defined on the RDAtom:s.

* PR #281: Enforce the behavior during SDF I/0 that a SDF may contain multiple molecules, but that
the OFF Toolkit does not assume that it contains multiple conformers of the same molecule. This is an
important distinction, since otherwise there is ambiguity around whether properties of one entry in
a SDF are shared among several molecule blocks or not, or how to resolve conflicts if properties are
defined differently for several “conformers” of chemically-identical species (More info here). If the
user requests the OFF Toolkit to write a multi-conformer Molecule to SDF, only the first conformer will
be written. For more fine-grained control of writing properties, conformers, and partial charges, con-
sider using Molecule.to_rdkit or Molecule.to_openeye and using the functionality offered by those
packages.

* PR #281: Due to different constraints placed on the data types allowed by external toolkits, we make
our best effort to preserve Molecule properties when converting molecules to other packages, but
users should be aware that no guarantee of data integrity is made. The only data format for keys and
values in the property dict that we will try to support through a roundtrip to another toolkit’s Molecule
object is string.

* PR #574: Removed check that all partial charges are zero after assignment by quacpac when AM1BCC
used for charge assignment. This check fails erroneously for cases in which the partial charge assign-
ments are correctly all zero, such as for N#N. It is also an unnecessary check given that quacpac will
reliably indicate when it has failed to assign charges.

* PR #597: Energy-minimized sample systems with Parsley 1.1.0.
* PR #558: The Topology particle indexing system now orders TopologyVirtualSites after all atoms.

* PR #469: When running Topology.to_openmm, unique atom names are generated if the provided atom
names are not unique (overriding any existing atom names). This uniqueness extends only to atoms in
the same molecule. To disable this behavior, set the kwarg ensure_unique_atom_names=False.

* PR #472: Molecule.__eq__ now uses the new Molecule.are_isomorphic to perform the similarity
checking.

* PR #472: The Topology.from_openmm and Topology.add_molecule methods now use the Molecule.
are_isomorphic method to match molecules.

* PR #551: Implemented the ParameterHandler.get_parameter function (would previously return
None).

API-breaking changes

* PR #471: Closes Issue #465. atom.formal_charge and molecule.total_charge now return simtk.
unit.Quantity objects instead of integers. To preserve backward compatibility, the setter for atom.
formal_charge can accept either a simtk.unit.Quantity or an integer.

* PR #601: Removes almost all of the previous ChemicalEnvironment API, since this entire module
was simply copied from Chemper several years ago and has fallen behind on updates. Currently
only ChemicalEnvironment.get_type, ChemicalEnvironment.validate, and an equivalent classmethod
ChemicalEnvironment.validate_smirks remain. Also, please comment on this GitHub issue if you
HAVE been using the previous extra functionality in this module and would like us to prioritize creation
of a Chemper conda package.

1.2. Release History 19


https://github.com/openforcefield/openforcefield/pull/281
https://github.com/openforcefield/openforcefield/pull/281
https://docs.eyesopen.com/toolkits/python/oechemtk/oemol.html#dude-where-s-my-sd-data
https://github.com/openforcefield/openforcefield/pull/281
https://github.com/openforcefield/openforcefield/pull/574
https://github.com/openforcefield/openforcefield/pull/597
https://github.com/openforcefield/openforcefield/pull/558
https://github.com/openforcefield/openforcefield/pull/469
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/551
https://github.com/openforcefield/openforcefield/pull/471
https://github.com/openforcefield/openforcefield/issues/465
https://github.com/openforcefield/openforcefield/pull/601
https://github.com/MobleyLab/chemper
https://github.com/MobleyLab/chemper/issues/90

openforcefield Documentation, Release 0.8.4

PR #558: Removes TopologyMolecule.topology_particle_start_index, since the Topology par-
ticle indexing system now orders TopologyVirtualSites after all atoms. TopologyMolecule.
topology_atom_start_index and TopologyMolecule.topology_virtual_site_start_index are still
available to access the appropriate values in the respective topology indexing systems.

PR #508: OpenEyeToolkitWrapper.compute_wiberg_bond_orders is now OpenEyeToolkitWrapper.
assign_fractional_bond_orders. The charge_model keyword is now bond_order_model. The allowed
values of this keyword have changed from am1 and pm3 to am1-wiberg and pm3-wiberg, respectively.

PR #508: Molecule. compute_wiberg_bond_ordersis now Molecule.assign_fractional_bond_orders.

PR  #595: Removed functions openforcefield.utils.utils.temporary_directory and
openforcefield.utils.utils.temporary_cd and replaced their behavior with tempfile.
TemporaryDirectory().

New features

PR #471: Closes Issue #208 by implementing support for the ChargeIncrementModel tag in the
SMIRNOFF specification.

PR #471: Implements Molecule.assign_partial_charges, which calls one of the newly-
implemented OpenEyeToolkitWrapper.assign_partial_charges, and AmberToolsToolkitWrapper.
assign_partial_charges. strict_n_conformers is a optional boolean keyword argument indicat-
ing whether an IncorrectNumConformersError should be raised if an invalid number of conform-
ers is supplied during partial charge calculation. For example, if two conformers are supplied,
but partial_charge_method="AM1BCC" is also set, then there is no clear use for the second con-
former. The previous behavior in this case was to raise a warning, and to preserve that behavior,
strict_n_conformers defaults to a value of False.

PR #471: Adds keyword argument raise_exception_types (default: [Exception]) to
ToolkitRegistry.call. The default value will provide the previous OpenFF Toolkit behavior, which
is that the first ToolkitWrapper that can provide the requested method is called, and it either returns
on success or raises an exception. This new keyword argument allows the ToolkitRegistry to ignore
certain exceptions, but treat others as fatal. If raise_exception_types = [], the ToolkitRegistry will
attempt to call each ToolkitWrapper that provides the requested method and if none succeeds, a single
ValueError will be raised, with text listing the errors that were raised by each ToolkitWrapper.

PR #601: Adds RDKitToolkitWrapper.get_tagged_smarts_connectivity and
OpenEyeToolkitWrapper.get_tagged_smarts_connectivity, which allow the use of either toolkit
for smirks/tagged smarts validation.

PR #600: Adds ForceField.__getitem__ to look up ParameterHandler objects based on their string
names.

PR #508: Adds AmberToolsToolkitWrapper.assign_fractional_bond_orders.

PR #469: The Molecule «class adds Molecule.has_unique_atom_names and Molecule.
has_unique_atom_names.

PR #472: Adds to the Molecule class Molecule.are_isomorphic and Molecule.is_isomorphic_with
and Molecule.hill_formula and Molecule.to_hill_formula and Molecule.to_qgcschema and
Molecule.from_gcschema and Molecule. from_mapped_smiles and Molecule. from_pdb_and_smiles and
Molecule.canonical_order_atoms and Molecule.remap

Note: The to_gcschema method accepts an extras dictionary which is passed into the vali-
dated qcelemental.models.Molecule object.

20

Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/558
https://github.com/openforcefield/openforcefield/pull/508
https://github.com/openforcefield/openforcefield/pull/508
https://github.com/openforcefield/openforcefield/pull/595
https://github.com/openforcefield/openforcefield/pull/471
https://github.com/openforcefield/openforcefield/issues/208
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#chargeincrementmodel-small-molecule-and-fragment-charges
https://github.com/openforcefield/openforcefield/pull/471
https://github.com/openforcefield/openforcefield/pull/471
https://github.com/openforcefield/openforcefield/pull/601
https://github.com/openforcefield/openforcefield/pull/600
https://github.com/openforcefield/openforcefield/pull/508
https://github.com/openforcefield/openforcefield/pull/469
https://github.com/openforcefield/openforcefield/pull/472

openforcefield Documentation, Release 0.8.4

e PR #506: The Molecule class adds Molecule.find_rotatable_bonds

* PR #521: Adds Molecule.to_inchi and Molecule.to_inchikey and Molecule.from_inchi

Warning: InChl was not designed as an molecule interchange format and using it as
one is not recommended. Many round trip tests will fail when using this format due to
a loss of information. We have also added support for fixed hydrogen layer nonstandard
InChl which can help in the case of tautomers, but overall creating molecules from InChl
should be avoided.

* PR #529: Adds the ability to write out to XYZ files via Molecule.to_file Both single frame and
multiframe XYZ files are supported. Note reading from XYZ files will not be supported due to the lack
of connectivity information.

* PR #535: Extends the the API for the Molecule.to_smiles to allow for the creation of cmiles identifiers
through combinations of isomeric, explicit hydrogen and mapped smiles, the default settings will return
isomeric explicit hydrogen smiles as expected.

Warning: Atom maps can be supplied to the properties dictionary to modify which
atoms have their map index included, if no map is supplied all atoms will be mapped in
the order they appear in the Molecule.

* PR #563: Adds test_forcefields/ion_charges.offxml, giving LibraryCharges for monatomic ions.

e PR #543: Adds 3 new methods to the Molecule class which allow the enumeration of molecule
states. These are Molecule.enumerate_tautomers, Molecule.enumerate_stereoisomers, Molecule.
enumerate_protomers

Warning: Enumerate protomers is currently only available through the OpenEye toolkit.

* PR #573: Adds quacpac error output to quacpac failure in  Molecule.
compute_partial_charges_amlbcc.

e PR #560: Added visualization method to the the Molecule class.

* PR #620: Added the ability to register parameter handlers via entry point plugins. This functionality
is accessible by initializing a ForceField with the load_plugins=True keyword argument.

* PR #582: Added fractional bond order interpolation Adds return_topology kwarg to Forcefield.
create_openmm_system, which returns the processed topology along with the system when True (de-
fault False).

Tests added

* PR #558: Adds tests ensuring that the new Topology particle indexing system are properly imple-
mented, and that TopologyVirtualSites reference the correct TopologyAtoms.

* PR #469: Added round-trip SMILES test to add coverage for Molecule. from_smiles.

* PR #469: Added tests for unique atom naming behavior in Topology.to_openmm, as well as tests of the
ensure_unique_atom_names=False kwarg disabling this behavior.

e PR #472: Added tests for Molecule.hill_formula and Molecule.to_hill_formula for the various
supported input types.

1.2. Release History 21


https://github.com/openforcefield/openforcefield/pull/506
https://github.com/openforcefield/openforcefield/pull/521
https://github.com/openforcefield/openforcefield/pull/529
https://github.com/openforcefield/openforcefield/pull/535
https://github.com/openforcefield/openforcefield/pull/563
https://github.com/openforcefield/openforcefield/pull/543
https://github.com/openforcefield/openforcefield/pull/573
https://github.com/openforcefield/openforcefield/issues/560
https://github.com/openforcefield/openforcefield/pull/620
https://github.com/openforcefield/openforcefield/pull/582
https://github.com/openforcefield/openforcefield/pull/558
https://github.com/openforcefield/openforcefield/pull/469
https://github.com/openforcefield/openforcefield/pull/469
https://github.com/openforcefield/openforcefield/pull/472

openforcefield Documentation, Release 0.8.4

PR #472: Added round-trip test for Molecule.from_qcschema and Molecule.to_gcschema.

PR #472: Added tests for Molecule.is_isomorphic_with and Molecule.are_isomorphic with various
levels of isomorphic graph matching.

PR #472: Added toolkit dependent tests for Molecule.canonical_order_atoms due to differences in
the algorithms used.

PR #472: Added a test for Molecule.from_mapped_smiles using the molecule from issue #412 to
ensure it is now fixed.

PR #472: Added a test for Molecule.remap, this also checks for expected error when the mapping is
not complete.

PR #472: Added tests for Molecule.from_pdb_and_smiles to check for a correct combination of smiles
and PDB and incorrect combinations.

PR #509: Added test for Molecule.chemical_environment_matches to check that the complete set of
matches is returned.

PR #509: Added test for Forcefield.create_openmm_system to check that a protein system can be
created.

PR #506: Added a test for the molecule identified in issue #513 as losing aromaticity when converted
to rdkit.

PR #506: Added a verity of toolkit dependent tests for identifying rotatable bonds while ignoring the
user requested types.

PR #521: Added toolkit independent round-trip InChl tests which add coverage for Molecule.to_inchi
and Molecule.from_inchi. Also added coverage for bad inputs and Molecule. to_inchikey.

PR #529: Added to XYZ file coverage tests.

PR #563: Added LibraryCharges parameterization test for monatomic ions in test_forcefields/
ion_charges.offxml.

PR #543: Added tests to assure that state enumeration can correctly find molecules tautomers,
stereoisomers and protomers when possible.

PR #573: Added test for quacpac error output for quacpac failure in Molecule.
compute_partial_charges_amlbcc.

PR #579: Adds regression tests to ensure RDKit can be be used to write multi-model PDB files.

PR #582: Added fractional bond order interpolation tests, tests for ValidatedDict.

Bugfixes

* PR #558: Fixes a bug where TopologyVirtualSite.atoms would not correctly apply TopologyMolecule

atom ordering on top of the reference molecule ordering, in cases where the same molecule appears
multiple times, but in a different order, in the same Topology.

Issue #460: Creates unique atom names in Topology.to_openmm if the existing ones are not unique.
The lack of unique atom names had been causing problems in workflows involving downstream tools
that expect unique atom names.

Issue #448: We can now make molecules from mapped smiles using Molecule.from_mapped_smiles
where the order will correspond to the indeing used in the smiles. Molecules can also be re-indexed at
any time using the Molecule.remap.

Issue #462: We can now instance the Molecule from a QCArchive entry record instance or dictionary
representation.

22

Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/pull/509
https://github.com/openforcefield/openforcefield/pull/509
https://github.com/openforcefield/openforcefield/pull/506
https://github.com/openforcefield/openforcefield/pull/506
https://github.com/openforcefield/openforcefield/pull/521
https://github.com/openforcefield/openforcefield/pull/529
https://github.com/openforcefield/openforcefield/pull/563
https://github.com/openforcefield/openforcefield/pull/543
https://github.com/openforcefield/openforcefield/pull/573
https://github.com/openforcefield/openforcefield/pull/579
https://github.com/openforcefield/openforcefield/pull/582
https://github.com/openforcefield/openforcefield/pull/558
https://github.com/openforcefield/openforcefield/issues/460
https://github.com/openforcefield/openforcefield/issues/448
https://github.com/openforcefield/openforcefield/issues/462

openforcefield Documentation, Release 0.8.4

* Issue #412: We can now instance the Molecule using Molecule.from_mapped_smiles. This re-
solves an issue caused by RDKit considering atom map indices to be a distinguishing feature of
an atom, which led to erroneous definition of chirality (as otherwise symmetric substituents would
be seen as different). We anticipate that this will reduce the number of times you need to
type allow_undefined_stereo=True when processing molecules that do not actually contain stereo-
chemistrty.

* Issue #513: The Molecule. to_rdkit now re-sets the aromaticity model after sanitizing the molecule.

e Issue #500: The Molecule.find_rotatable_bonds has been added which returns a list of rotatable
Bond instances for the molecule.

* Issue #491: We can now parse large molecules without hitting a match limit cap.
* Issue #474: We can now convert molecules to InChI and InChIKey and from InChl.

* Issue #523: The Molecule.to_file method can now correctly write to MOL files, in line with the
supported file type list.

* Issue #568: The Molecule.to_file can now correctly write multi-model PDB files when using the
RDKit backend toolkit.

Examples added

* PR #591 and PR #533: Adds an example notebook and utility to compute conformer energies. This
example is made to be reverse-compatible with the 0.6.0 OpenFF Toolkit release.

* PR #472: Adds an example notebook QCarchive interface.ipynb which shows users how to instance
the Molecule from a QCArchive entry level record and calculate the energy using RDKit through
QCEngine.

1.2.9 0.6.0 - Library Charges

This release adds support for a new SMIRKS-based charge assignment method, Library Charges. The addition
of more charge assignment methods opens the door for new types of experimentation, but also introduces
several complex behaviors and failure modes. Accordingly, we have made changes to the charge assignment
infrastructure to check for cases when partial charges do not sum to the formal charge of the molecule, or
when no charge assignment method is able to generate charges for a molecule. More detailed explanation of
the new errors that may be raised and keywords for overriding them are in the “Behavior Changed” section
below.

With this release, we update test_forcefields/tip3p.offxml to be a working example of assigning Li-
braryCharges. However, we do not provide any force field files to assign protein residue LibraryCharges. If
you are interested in translating an existing protein FF to SMIRNOFF format or developing a new one, please
feel free to contact us on the Issue tracker or open a Pull Request.

1.2. Release History 23


https://github.com/openforcefield/openforcefield/issues/412
https://github.com/openforcefield/openforcefield/issues/513
https://github.com/openforcefield/openforcefield/issues/500
https://github.com/openforcefield/openforcefield/issues/491
https://github.com/openforcefield/openforcefield/issues/474
https://github.com/openforcefield/openforcefield/issues/523
https://github.com/openforcefield/openforcefield/issues/568
https://github.com/openforcefield/openforcefield/pull/591
https://github.com/openforcefield/openforcefield/pull/533
https://github.com/openforcefield/openforcefield/blob/master/examples/conformer_energies
https://github.com/openforcefield/openforcefield/pull/472
https://github.com/openforcefield/openforcefield/blob/master/examples/QCArchive_interface/QCarchive_interface.ipynb
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#librarycharges-library-charges-for-polymeric-residues-and-special-solvent-models
https://github.com/openforcefield/openforcefield/issues
https://github.com/openforcefield/openforcefield/pulls

openforcefield Documentation, Release 0.8.4

New features

* PR #433: Closes Issue #25 by adding initial support for the LibraryCharges tag in the SMIRNOFF

specification using LibraryChargeHandler. For a molecule to have charges assigned using Library
Charges, all of its atoms must be covered by at least one LibraryCharge. If an atom is covered by
multiple LibraryCharge s, then the last LibraryCharge matched will be applied (per the hierarchy
rules in the SMIRNOFF format).

This functionality is thus able to apply per-residue charges similar to those in traditional protein force
fields. At this time, there is no concept of “residues” or “fragments” during parametrization, so it
is not possible to assign charges to some atoms in a molecule using LibraryCharge s, but calculate
charges for other atoms in the same molecule using a different method. To assign charges to a protein,
LibraryCharges SMARTS must be provided for the residues and protonation states in the molecule, as
well as for any capping groups and post-translational modifications that are present.

It is valid for LibraryCharge SMARTS to partially overlap one another. For example, a molecule con-
sisting of atoms A-B-C connected by single bonds could be matched by a SMIRNOFF LibraryCharges
section containing two LibraryCharge SMARTS: A-B and B-C. If listed in that order, the molecule would
be assigned the A charge from the A-B LibraryCharge element and the B and C charges from the B-C
element. In testing, these types of partial overlaps were found to frequently be sources of undesired
behavior, so it is recommended that users define whole-molecule LibraryCharge SMARTS whenever
possible.

PR #455: Addresses Issue #393 by adding ParameterHandler.attribute_is_cosmetic and
ParameterType.attribute_is_cosmetic, which return True if the provided attribute name is defined
for the queried object but does not correspond to an allowed value in the SMIRNOFF spec.

Behavior changed

* PR #433: If a molecule can not be assigned charges by any charge-assignment method, an

openforcefield.typing.engines.smirnoff.parameters.UnassignedMoleculeChargeException

will be raised. Previously, creating a system without either ToolkitAM1BCCHandler or the
charge_from_molecules keyword argument to ForceField.create_openmm_system would pro-
duce a system where the molecule has zero charge on all atoms. However, given that we will soon be
adding more options for charge assignment, it is important that failures not be silent. Molecules with
zero charge can still be produced by setting the Molecule.partial_charges array to be all zeroes, and
including the molecule in the charge_from_molecules keyword argument to create_openmm_system.

PR #433: Due to risks introduced by permitting charge assignment using partially-overlapping
LibraryCharge s, the toolkit will now raise a openforcefield. typing.engines.smirnoff.parameters.
NonIntegralMoleculeChargeException if the sum of partial charges on a molecule are found to be more
than 0.01 elementary charge units different than the molecule’s formal charge. This exception can
be overridden by providing the allow_nonintegral_charges=True keyword argument to ForceField.
create_openmm_system.

24

Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/433
https://github.com/openforcefield/openforcefield/issues/25
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#librarycharges-library-charges-for-polymeric-residues-and-special-solvent-models
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#librarycharges-library-charges-for-polymeric-residues-and-special-solvent-models
https://github.com/openforcefield/openforcefield/pull/455
https://github.com/openforcefield/openforcefield/issues/393
https://github.com/openforcefield/openforcefield/pull/433
https://github.com/openforcefield/openforcefield/pull/433

openforcefield Documentation, Release 0.8.4

Tests added

* PR #430: Added test for Wiberg Bond Order implemented in OpenEye Toolkits. Molecules taken from
DOI:10.5281/zenodo.3405489 . Added by Sukanya Sasmal.

* PR #569: Added round-trip tests for more serialization formats (dict, YAML, TOML, JSON, BSON,
messagepack, pickle). Note that some are unsupported, but the tests raise the appropriate error.

Bugfixes

* PR #431: Fixes an issue where ToolkitWrapper objects would improperly search for functionality in the
GLOBAL _TOOLKIT_REGISTRY, even though a specific ToolkitRegistry was requested for an operation.

* PR #439: Fixes Issue #438, by replacing call to NetworkX Graph.node with call to Graph.nodes, per
2.4 migration guide.

Files modified

* PR #433: Updates the previously-nonfunctional test_forcefields/tip3p.offxml to a functional
state by updating it to the SMIRNOFF 0.3 specification, and specifying atomic charges using the
LibraryCharges tag.

1.2.10 0.5.1 - Adding the parameter coverage example notebook

This release contains a new notebook example, check parameter coverage.ipynb, which loads sets of
molecules, checks whether they are parameterizable, and generates reports of chemical motifs that are not.
It also fixes several simple issues, improves warnings and docstring text, and removes unused files.

The parameter coverage example notebook goes hand-in-hand with the release candidate of our initial force
field, openff-1.0.0-RC1.offxml , which will be temporarily available until the official force field release is
made in October. Our goal in publishing this notebook alongside our first major refitting is to allow interested
users to check whether there is parameter coverage for their molecules of interest. If the force field is unable
to parameterize a molecule, this notebook will generate reports of the specific chemistry that is not covered.
We understand that many organizations in our field have restrictions about sharing specific molecules, and
the outputs from this notebook can easily be cropped to communicate unparameterizable chemistry without
revealing the full structure.

The force field release candidate is in our new refit force field package, openforcefields. This package is now
a part of the Open Force Field Toolkit conda recipe, along with the original smirnoff99Frosst line of force
fields.

Once the openforcefields conda package is installed, you can load the release candidate using:
ff = ForceField('openff-1.0.0-RC1.0offxml")

The release candidate will be removed when the official force field, openff-1.0.0.0offxml, is released in
early October.

Complete details about this release are below.

1.2. Release History 25


https://github.com/openforcefield/openforcefield/pull/430
https://github.com/openforcefield/openforcefield/pull/569
https://github.com/openforcefield/openforcefield/pull/431
https://github.com/openforcefield/openforcefield/pull/439
https://github.com/openforcefield/openforcefield/issues/438
https://networkx.github.io/documentation/stable/release/release_2.4.html
https://github.com/openforcefield/openforcefield/pull/433
https://github.com/openforcefield/openforcefield/blob/master/examples/check_dataset_parameter_coverage/check_parameter_coverage.ipynb
https://github.com/openforcefield/openforcefields
https://github.com/openforcefield/openforcefields
https://github.com/openforcefield/smirnoff99Frosst

openforcefield Documentation, Release 0.8.4

Example added

* PR #419: Adds an example notebook check parameter coverage.ipynb which shows how to use the
toolkit to check a molecule dataset for missing parameter coverage, and provides functionality to
output tagged SMILES and 2D drawings of the unparameterizable chemistry.

New features

* PR #419: Unassigned valence parameter exceptions now include a list of tuples of TopologyAtom which
were unable to be parameterized (exception.unassigned_topology_atom_tuples) and the class of the
ParameterHandler that raised the exception (exception.handler_class).

* PR #425: Implements Trevor Gokey’s suggestion from Issue #411, which enables pickling of
ForceFields and ParameterHandlers. Note that, while XML representations of * " ForceField ‘s are
stable and conform to the SMIRNOFF specification, the pickled " *ForceField" s that this functionality
enables are not guaranteed to be compatible with future toolkit versions.

Improved documentation and warnings

* PR #425: Addresses Issue #410, by explicitly having toolkit warnings print Warning: at the beginning
of each warning, and adding clearer language to the warning produced when the OpenEye Toolkits
can not be loaded.

* PR #425: Addresses Issue #421 by adding type/shape information to all Molecule partial charge and
conformer docstrings.

* PR #425: Addresses Issue #407 by providing a more extensive explanation of why we don’t use RDKit’s
mol2 parser for molecule input.

Bugfixes

* PR #419: Fixes Issue #417 and Issue #418, where RDKitToolkitWrapper.from_file would disregard
the allow_undefined_stereo kwarg and skip the first molecule when reading a SMILES file.

Files removed

* PR #425: Addresses Issue #424 by deleting the unused files openforcefield/typing/engines/
smirnoff/gbsaforces.py and openforcefield/tests/test_smirnoff.py. gbsaforces.py was only
used internally and test_smirnoff.py tested unsupported functionality from before the 0.2.0 release.

1.2.11 0.5.0 - GBSA support and quality-of-life improvements

This release adds support for the GBSA tag in the SMIRNOFF specification. Currently, the HCT, 0BC1, and
0BC2 models (corresponding to AMBER keywords igh=1, 2, and 5, respectively) are supported, with the OBC2
implementation being the most flexible. Unfortunately, systems produced using these keywords are not yet
transferable to other simulation packages via ParmEd, so users are restricted to using OpenMM to simulate
systems with GBSA.

OFFXML files containing GBSA parameter definitions are available, and can be loaded in addition to ex-
isting parameter sets (for example, with the command ForceField('test_forcefields/smirnoff99Frosst.
offxml', 'test_forcefields/GBSA_OBC1-1.0.o0ffxml")). A manifest of new SMIRNOFF-format GBSA files
is below.

26 Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/419
https://github.com/openforcefield/openforcefield/blob/master/examples/check_dataset_parameter_coverage/check_parameter_coverage.ipynb
https://github.com/openforcefield/openforcefield/pull/419
https://github.com/openforcefield/openforcefield/pull/425
https://github.com/openforcefield/openforcefield/issues/411
https://github.com/openforcefield/openforcefield/pull/425
https://github.com/openforcefield/openforcefield/issues/410
https://github.com/openforcefield/openforcefield/pull/425
https://github.com/openforcefield/openforcefield/issues/421
https://github.com/openforcefield/openforcefield/pull/425
https://github.com/openforcefield/openforcefield/issues/421
https://github.com/openforcefield/openforcefield/pull/419
https://github.com/openforcefield/openforcefield/issues/417
https://github.com/openforcefield/openforcefield/issues/418
https://github.com/openforcefield/openforcefield/pull/425
https://github.com/openforcefield/openforcefield/issues/424
https://open-forcefield-toolkit.readthedocs.io/en/0.5.0/smirnoff.html#gbsa

openforcefield Documentation, Release 0.8.4

Several other user-facing improvements have been added, including easier access to indexed attributes,
which are now accessible as torsion.k1, torsion.k2, etc. (the previous access method torsion.k still works
as well). More details of the new features and several bugfixes are listed below.

New features

* PR #363: Implements GBSAHandler, which supports the GBSA tag in the SMIRNOFF specifica-
tion. Currently, only GBSAHandlers with gb_model="0BC2" support setting non-default values for the
surface_area_penalty term (default 5.4xcalories/mole/angstroms**2), though users can zero the
SA term for OBC1 and HCT models by setting sa_model="None". No model currently supports setting
solvent_radius to any value other than 1.4*angstroms. Files containing experimental SMIRNOFF-
format implementations of HCT, 0BC1, and 0OBC2 are included with this release (see below). Additional
details of these models, including literature references, are available on the SMIRNOFF specification

page.

Warning: The current release of ParmEd can not transfer GBSA models produced by the
Open Force Field Toolkit to other simulation packages. These GBSA forces are currently
only computable using OpenMM.

PR #363: When using Topology.to_openmm(), periodic box vectors are now transferred from the Open
Force Field Toolkit Topology into the newly-created OpenMM Topology.

PR #377: Single indexed parameters in ParameterHandler and ParameterType can now be get/set
through normal attribute syntax in addition to the list syntax.

PR #394: Include element and atom name in error output when there are missing valence parameters
during molecule parameterization.

Bugfixes

* PR #385: Fixes Issue #346 by having OpenEyeToolkitWrapper.compute_partial_charges_amibcc fall
back to using standard AM1-BCC if AM1-BCC ELF10 charge generation raises an error about “trans
COOH conformers”

* PR #399: Fixes issue where ForceField constructor would ignore parameter_handler_classes kwarg.

* PR #400: Makes link-checking tests retry three times before failing.

Files added

* PR #363: Adds test_forcefields/GBSA_HCT-1.0.offxml, test_forcefields/GBSA_OBC1-1.@.offxml,
and test_forcefields/GBSA_OBC2-1.@.offxml, which are experimental implementations of GBSA
models. These are primarily used in validation tests against OpenMM’s models, and their version
numbers will increment if bugfixes are necessary.

1.2. Release History 27


https://github.com/openforcefield/openforcefield/pull/363
https://open-forcefield-toolkit.readthedocs.io/en/0.5.0/smirnoff.html#gbsa
https://open-forcefield-toolkit.readthedocs.io/en/0.5.0/smirnoff.html#gbsa
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#supported-generalized-born-gb-models
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#supported-generalized-born-gb-models
https://github.com/ParmEd/ParmEd/blob/3.2.0/parmed/openmm/topsystem.py#L148-L150
https://github.com/ParmEd/ParmEd/blob/3.2.0/parmed/openmm/topsystem.py#L148-L150
https://github.com/openforcefield/openforcefield/pull/363
https://github.com/openforcefield/openforcefield/pull/377
https://github.com/openforcefield/openforcefield/pull/394
https://github.com/openforcefield/openforcefield/pull/385
https://github.com/openforcefield/openforcefield/issues/346
https://github.com/openforcefield/openforcefield/pull/399
https://github.com/openforcefield/openforcefield/pull/400
https://github.com/openforcefield/openforcefield/pull/363

openforcefield Documentation, Release 0.8.4

1.2.12 0.4.1 - Bugfix Release

This update fixes several toolkit bugs that have been reported by the community. Details of these bugfixes
are provided below.

It also refactors how ParameterType and ParameterHandler store their attributes, by introducing
ParameterAttribute and IndexedParameterAttribute. These new attribute-handling classes provide a con-
sistent backend which should simplify manipulation of parameters and implementation of new handlers.

Bug fixes

PR #329: Fixed a bug where the two BondType parameter attributes k and length were treated as
indexed attributes. (k and length values that correspond to specific bond orders will be indexed under
k_bondorder1, k_bondorder2, etc when implemented in the future)

PR #329: Fixed a bug that allowed setting indexed attributes to single values instead of strictly lists.

PR #370: Fixed a bug in the API where BondHandler, ProperTorsionHandler , and
ImproperTorsionHandler exposed non-functional indexed parameters.

PR #351: Fixes Issue #344, in which the main FrozenMolecule constructor and several other Molecule-
construction functions ignored or did not expose the allow_undefined_stereo keyword argument.

PR #351: Fixes a bug where a molecule which previously generated a SMILES using one chemin-
formatics toolkit returns the same SMILES, even though a different toolkit (which would generate a
different SMILES for the molecule) is explicitly called.

PR #354: Fixes the error message that is printed if an unexpected parameter attribute is found while
loading data into a ForceField (now instructs users to specify allow_cosmetic_attributes instead of
permit_cosmetic_attributes)

PR #364: Fixes Issue #362 by modifying OpenEyeToolkitWrapper.from_smiles and
RDKitToolkitWrapper.from_smiles to make implicit hydrogens explicit before molecule creation.
These functions also now raise an error if the optional keyword hydrogens_are_explicit=True but
the SMILES are interpreted by the backend cheminformatic toolkit as having implicit hydrogens.

PR #371: Fixes error when reading early SMIRNOFF 0.1 spec files enclosed by a top-level SMIRFF tag.

Note: The enclosing SMIRFF tag is present only in legacy files. Since developing a formal specification, the
only acceptable top-level tag value in a SMIRNOFF data structure is SMIRNOFF.

Code enhancements

* PR #329: ParameterType was refactored to improve its extensibility. It is now possible to create new

parameter types by using the new descriptors ParameterAttribute and IndexedParameterAttribute.

* PR #357: Addresses Issue #356 by raising an informative error message if a user attempts to load an

OpenMM topology which is probably missing connectivity information.

28

Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/329
https://github.com/openforcefield/openforcefield/pull/329
https://github.com/openforcefield/openforcefield/pull/370
https://github.com/openforcefield/openforcefield/pull/351
https://github.com/openforcefield/openforcefield/issues/344
https://github.com/openforcefield/openforcefield/pull/351
https://github.com/openforcefield/openforcefield/pull/354
https://github.com/openforcefield/openforcefield/pull/364
https://github.com/openforcefield/openforcefield/issues/362
https://github.com/openforcefield/openforcefield/pull/371
https://github.com/openforcefield/openforcefield/pull/329
https://github.com/openforcefield/openforcefield/pull/357
https://github.com/openforcefield/openforcefield/issues/356

openforcefield Documentation, Release 0.8.4

Force fields added

* PR #368: Temporarily adds test_forcefields/smirnoff99frosst_experimental.offxml to address
hierarchy problems, redundancies, SMIRKS pattern typos etc., as documented in issue #367. Will
ultimately be propagated to an updated forcefield in the openforcefield/smirnoff99frosst repo.

e PR #371: Adds test_forcefields/smirff99Frosst_reference_0_1_spec.offxml, a SMIRNOFF 0.1

spec file enclosed by the legacy SMIRFF tag. This file is used in backwards-compatibility testing.

1.2.13 0.4.0 - Performance optimizations and support for SMIRNOFF 0.3 specification

This update contains performance enhancements that significantly reduce the time to create OpenMM sys-
tems for topologies containing many molecules via ForceField.create_openmm_system.

This update also introduces the SMIRNOFF 0.3 specification. The spec update is the result of discussions
about how to handle the evolution of data and parameter types as further functional forms are added to the
SMIRNOFF spec.

We provide methods to convert SMIRNOFF 0.1 and 0.2 forcefields written with the XML serialization (.
offxml) to the SMIRNOFF 0.3 specification. These methods are called automatically when loading a seri-
alized SMIRNOFF data representation written in the 0.1 or 0.2 specification. This functionality allows the
toolkit to continue to read files containing SMIRNOFF 0.2 spec force fields, and also implements backwards-
compatibility for SMIRNOFF 0.1 spec force fields.

Warning: The SMIRNOFF 0.1 spec did not contain fields for several energy-determining parameters that
are exposed in later SMIRNOFF specs. Thus, when reading SMIRNOFF 0.1 spec data, the toolkit must
make assumptions about the values that should be added for the newly-required fields. The values that
are added include 1-2, 1-3 and 1-5 scaling factors, cutoffs, and long-range treatments for nonbonded
interactions. Each assumption is printed as a warning during the conversion process. Please carefully
review the warning messages to ensure that the conversion is providing your desired behavior.

SMIRNOFF 0.3 specification updates

* The SMIRNOFF 0.3 spec introduces versioning for each individual parameter section, allowing asyn-
chronous updates to the features of each parameter class. The top-level SMIRNOFF tag, containing
information like aromaticity_model, Author, and Date, still has a version (currently 0.3). But, to allow
for independent development of individual parameter types, each section (such as Bonds, Angles, etc)
now has its own version as well (currently all 0.3).

* All units are now stored in expressions with their corresponding values. For example, distances are
now stored as 1.526xangstrom, instead of storing the unit separately in the section header.

* The current allowed value of the potential field for ProperTorsions and ImproperTorsions tags is
no longer charmm, but is rather k*(1+cos(periodicityxtheta-phase)). It was pointed out to us that
CHARMM-style torsions deviate from this formula when the periodicity of a torsion term is 0, and we
do not intend to reproduce that behavior.

* SMIRNOFF spec documentation has been updated with tables of keywords and their defaults for each
parameter section and parameter type. These tables will track the allowed keywords and default
behavior as updated versions of individual parameter sections are released.

1.2. Release History 29


https://github.com/openforcefield/openforcefield/pull/368
https://github.com/openforcefield/openforcefield/issues/367
https://github.com/openforcefield/openforcefield/pull/371
https://open-forcefield-toolkit.readthedocs.io/en/0.4.0/smirnoff.html

openforcefield Documentation, Release 0.8.4

Performance improvements and bugfixes

* PR #329: Performance improvements when creating systems for topologies with many atoms.

* PR #347: Fixes bug in charge assignment that occurs when charges are read from file, and reference

and charge molecules have different atom orderings.

New features

* PR #311: Several new experimental functions.

to 0.3. This function is called automatically when creating a ForceField from a SMIRNOFF 0.2
spec OFFXML file.

— Adds convert_0_1_smirnoff_to_0_2, which takes a SMIRNOFF 0.1-spec data dict, and updates it

— Adds convert_0_2_smirnoff_to_0_3, which takes a SMIRNOFF 0.2-spec data dict, and updates it

to 0.2. This function is called automatically when creating a ForceField from a SMIRNOFF 0.1
spec OFFXML file.

— NOTE: The format of the “SMIRNOFF data dict” above is likely to change significantly in the fu-
ture. Users that require a stable serialized ForceField object should use the output of ForceField.
to_string('XML') instead.

— Adds ParameterHandler and ParameterType add_cosmetic_attribute and
delete_cosmetic_attribute functions. Once created, cosmetic attributes can be accessed
and modified as attributes of the underlying object (eg. ParameterType.my_cosmetic_attrib =
'blue') These functions are experimental, and we are interested in feedback on how cosmetic
attribute handling could be improved. (See Issue #338) Note that if a new cosmetic attribute is
added to an object without using these functions, it will not be recognized by the toolkit and will
not be written out during serialization.

— Values for the top-level Author and Date tags are now kept during SMIRNOFF data I/0. If mul-
tiple data sources containing these fields are read, the values are concatenated using “AND” as a
separator.

API-breaking changes

ForceField.to_string and ForceField.to_file have had the default value of their
discard_cosmetic_attributes kwarg set to False.

ParameterHandler and ParameterType constructors now expect the version kwarg (per the SMIRNOFF
spec change above) This requirement can be skipped by providing the kwarg skip_version_check=True

ParameterHandler and ParameterType functions no longer handle X_unit attributes in SMIRNOFF data
(per the SMIRNOFF spec change above).

The scripts in utilities/convert_frosst are now deprecated. This functionality is important for
provenance and will be migrated to the openforcefield/smirnoff99Frosst repository in the coming
weeks.

ParameterType ._SMIRNOFF_ATTRIBS is now ParameterType ._REQUIRED_SPEC_ATTRIBS, to better paral-
lel the structure of the ParameterHandler class.

ParameterType ._OPTIONAL_ATTRIBS is now ParameterType ._OPTIONAL_SPEC_ATTRIBS, to better paral-
lel the structure of the ParameterHandler class.

Added class-level dictionaries ParameterHandler ._DEFAULT_SPEC_ATTRIBS and ParameterType
_DEFAULT_SPEC_ATTRIBS.

30

Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/329
https://github.com/openforcefield/openforcefield/pull/347
https://github.com/openforcefield/openforcefield/pull/311
https://github.com/openforcefield/openforcefield/issues/338

openforcefield Documentation, Release 0.8.4

1.2.14 0.3.0 - APl Improvements

Several improvements and changes to public API.

New features

* PR #292: Implement Topology.to_openmm and remove ToolkitRegistry.toolkit_is_available

* PR #322: |Install directories for the lookup of OFFXML files through the entry point group
openforcefield.smirnoff_forcefield_directory. The ForceField class doesn’t search in the data/
forcefield/ folder anymore (now renamed data/test_forcefields/), but only in data/.

API-breaking Changes

e PR #278: Standardize variable/method names

* PR #291: Remove ForceField.load/to_smirnoff_data, add ForceField.to_file/string and
ParameterHandler.add_parameters. Change behavior of ForceField.register_X_handler functions.

Bugfixes

* PR #327: Fix units in tip3p.offxml (note that this file is still not loadable by current toolkit)
* PR #325: Fix solvent box for provided test system to resolve periodic clashes.

* PR #325: Add informative message containing Hill formula when a molecule can’t be matched in
Topology. from_openmm.

* PR #325: Provide warning or error message as appropriate when a molecule is missing stereochemistry.
* PR #316: Fix formatting issues in GBSA section of SMIRNOFF spec

* PR #308: Cache molecule SMILES to improve system creation speed

* PR #306: Allow single-atom molecules with all zero coordinates to be converted to OE/RDK mols

* PR #313: Fix issue where constraints are applied twice to constrained bonds

1.2.15 0.2.2 - Bugfix release

This release modifies an example to show how to parameterize a solvated system, cleans up backend code,
and makes several improvements to the README.

Bugfixes

* PR #279: Cleanup of unused code/warnings in main package __init__
* PR #259: Update T4 Lysozyme + toluene example to show how to set up solvated systems
* PR #256 and PR #274: Add functionality to ensure that links in READMESs resolve successfully

1.2. Release History 31


https://github.com/openforcefield/openforcefield/pull/292
https://github.com/openforcefield/openforcefield/pull/322
https://github.com/openforcefield/openforcefield/pull/278
https://github.com/openforcefield/openforcefield/pull/291
https://github.com/openforcefield/openforcefield/pull/327
https://github.com/openforcefield/openforcefield/pull/325
https://github.com/openforcefield/openforcefield/pull/325
https://github.com/openforcefield/openforcefield/pull/325
https://github.com/openforcefield/openforcefield/pull/316
https://github.com/openforcefield/openforcefield/pull/308
https://github.com/openforcefield/openforcefield/pull/306
https://github.com/openforcefield/openforcefield/pull/313
https://github.com/openforcefield/openforcefield/pull/279
https://github.com/openforcefield/openforcefield/pull/259
https://github.com/openforcefield/openforcefield/pull/256
https://github.com/openforcefield/openforcefield/pull/274

openforcefield Documentation, Release 0.8.4

1.2.16 0.2.1 - Bugfix release

This release features various documentation fixes, minor bugfixes, and code cleanup.

Bugfixes

* PR #267: Add neglected <ToolkitAM1BCC> documentation to the SMIRNOFF 0.2 spec
* PR #258: General cleanup and removal of unused/inaccessible code.

* PR #244: Improvements and typo fixes for BRD4:inhibitor benchmark

1.2.17 0.2.0 - Initial RDKit support

This version of the toolkit introduces many new features on the way to a 1.0.0 release.

New features

Major overhaul, resulting in the creation of the SMIRNOFF 0.2 specification and its XML representation
Updated API and infrastructure for reference SMIRNOFF ForceField implementation

Implementation of modular ParameterHandler classes which process the topology to add all necessary
forces to the system.

Implementation of modular ParameterIOHandler classes for reading/writing different serialized
SMIRNOFF forcefield representations

Introduction of Molecule and Topology classes for representing molecules and biomolecular systems

New ToolkitWrapper interface to RDKit, OpenEye, and AmberTools toolkits, managed by
ToolkitRegistry

API improvements to more closely follow PEP8 guidelines

Improved documentation and examples

1.2.18 0.1.0

This is an early preview release of the toolkit that matches the functionality described in the preprint de-
scribing the SMIRNOFF v0.1 force field format: [DOI].

New features

This release features additional documentation, code comments, and support for automated testing.

32

Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/267
https://github.com/openforcefield/openforcefield/pull/258
https://github.com/openforcefield/openforcefield/pull/244
https://open-forcefield-toolkit.readthedocs.io/en/master/smirnoff.html
https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.1101/286542

openforcefield Documentation, Release 0.8.4

Bugfixes

Treatment of improper torsions

A significant (though currently unused) problem in handling of improper torsions was corrected. Previously,
non-planar impropers did not behave correctly, as six-fold impropers have two potential chiralities. To
remedy this, SMIRNOFF impropers are now implemented as three-fold impropers with consistent chirality.
However, current force fields in the SMIRNOFF format had no non-planar impropers, so this change is mainly
aimed at future work.

1.3 The SMIRks Native Open Force Field (SMIRNOFF) specification

SMIRNOFF is a specification for encoding molecular mechanics force fields from the Open Force Field Ini-
tiative based on direct chemical perception using the broadly-supported SMARTS language, utilizing atom
tagging extensions from SMIRKS.

1.3.1 Authors and acknowledgments

The SMIRNOFF specification was designed by the Open Force Field Initiative.
Primary contributors include:
* Caitlin C. Bannan (University of California, Irvine) <bannanc@uci.edu>
* Christopher I. Bayly (OpenEye Software) <bayly@eyesopen.com>
e John D. Chodera (Memorial Sloan Kettering Cancer Center) <john.chodera@choderalab.org>
* David L. Mobley (University of California, Irvine) <dmobley@uci .edu>

SMIRNOFF and its reference implementation in the openforcefield toolkit was heavily inspired by the
ForceField class from the OpenMM molecular simulation package, and its associated XML format, developed
by Peter K. Eastman (Stanford University).

1.3.2 Representations and encodings

A force field in the SMIRNOFF format can be encoded in multiple representations. Currently, only an XML
representation is supported by the reference implementation of the openforcefield toolkit.

XML representation

A SMIRNOFF force field can be described in an XML representation, which provides a human- and machine-
readable form for encoding the parameter set and its typing rules. This document focuses on describing the
XML representation of the force field.

* By convention, XML-encoded SMIRNOFF force fields use an .offxml extension if written to a file to
prevent confusion with other file formats.

* In XML, numeric quantities appear as strings, like "1" or "2.3".
* Integers should always be written without a decimal point, such as "1", "9".

* Non-integral numbers, such as parameter values, should be written with a decimal point, such as
H‘I '2311’ IIZ. ”.

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 33


https://openforcefield.org
https://openforcefield.org
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
https://openforcefield.org
https://docs.openmm.org/latest/api-python/generated/simtk.openmm.app.forcefield.ForceField.html#simtk.openmm.app.forcefield.ForceField
https://openmm.org
https://docs.openmm.org/latest/userguide/application.html#writing-the-xml-file
https://en.wikipedia.org/wiki/Peter_Eastman
https://en.wikipedia.org/wiki/XML
https://github.com/openforcefield/openforcefield
https://en.wikipedia.org/wiki/XML

openforcefield Documentation, Release 0.8.4

* In XML, certain special characters that occur in valid SMARTS/SMIRKS patterns (such as ampersand
symbols &) must be specially encoded. See this list of XML and HTML character entity references for
more details.

Future representations: JSON, MessagePack, YAML, and TOML

We are considering supporting JSON, MessagePack, YAML, and TOML representations as well.

1.3.3 Reference implementation

A reference implementation of the SMIRNOFF XML specification is provided in the openforcefield toolkit.

1.3.4 Support for molecular simulation packages

The reference implementation currently generates parameterized molecular mechanics systems for the GPU-
accelerated OpenMM molecular simulation toolkit. Parameterized systems can subsequently be converted
for use in other popular molecular dynamics simulation packages (including AMBER, CHARMM, NAMD,
Desmond, and LAMMPS) via ParmEd and InterMol. See the example on using SMIRNOFF in AMBER or
GROMACS for more details.

1.3.5 Basic structure

A reference implementation of a SMIRNOFF force field parser that can process XML representations (denoted
by .offxml file extensions) can be found in the ForceField class of the openforcefield. typing.engines.
smirnoff module.

Below, we describe the main structure of such an XML representation.
The enclosing <SMIRNOFF> tag
A SMIRNOFF forcefield XML specification always is enclosed in a <SMIRNOFF> tag, with certain required

attributes provided. The required and permitted attributes defined in the <SMIRNOFF> are recorded in the
version attribute, which describes the top-level attributes that are expected or permitted to be defined.

<SMIRNOFF version="0.3" aromaticity_model="OEAroModel_MDL">

</SMIRNOFF>

Versioning

The SMIRNOFF force field format supports versioning via the version attribute to the root <SMIRNOFF> tag,
e.g.

<SMIRNOFF version="0.3" aromaticity_model="OEAroModel_MDL">

</SMIRNOFF>

34 Chapter 1. User Guide



https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
https://www.json.org/
https://msgpack.org/index.html
https://yaml.org/
https://github.com/toml-lang/toml
https://github.com/openforcefield/openforcefield
https://openmm.org
https://ambermd.org/
https://www.charmm.org
https://www.ks.uiuc.edu/Research/namd/
https://www.deshawresearch.com/resources_desmond.html
https://lammps.sandia.gov/
https://parmed.github.io/ParmEd
https://github.com/shirtsgroup/InterMol
https://github.com/openforcefield/openforcefield/blob/master/examples/using_smirnoff_in_amber_or_gromacs/convert_to_amber_gromacs.ipynb
https://github.com/openforcefield/openforcefield/blob/master/examples/using_smirnoff_in_amber_or_gromacs/convert_to_amber_gromacs.ipynb

openforcefield Documentation, Release 0.8.4

The version format is x.y, where x denotes the major version and y denotes the minor version. SMIRNOFF
versions are guaranteed to be backward-compatible within the same major version number series, but it is
possible major version increments will break backwards-compatibility.

SMIRNOFF tag version | Required attributes | Optional attributes
0.1 aromaticity_model | Date, Author
0.2 aromaticity_model | Date, Author
0.3 aromaticity_model | Date, Author

The SMIRNOFF tag versions describe the required and allowed force field-wide settings. The list of keywords
is as follows:

Aromaticity model

The aromaticity_model specifies the aromaticity model used for chemical perception (here,
OEAroModel_MDL).

Currently, the only supported model is OEAroModel_MDL, which is implemented in both the RDKit and the
OpenEye Toolkit.

Note: Add link to complete open specification of OEAroModel MDL aromaticity model.

Metadata

Typically, date and author information is included:

<Date>2016-05-25</Date>
<Author>J. D. Chodera (MSKCC) charge increment tests</Author>

The <Date> tag should conform to ISO 8601 date formatting guidelines, such as 2018-07-14 or
2018-07-14T08:50:48+00:00 (UTC time).

Parameter generators

Within the <SMIRNOFF> tag, top-level tags encode parameters for a force field based on a SMARTS/SMIRKS-
based specification describing the chemical environment the parameters are to be applied to. The file has
tags corresponding to OpenMM force terms (Bonds, Angles, ProperTorsions, etc., as discussed in more detail
below); these specify functional form and other information for individual force terms.

<Angles version="0.3" potential="harmonic">

</Angles>

which introduces the following Angle child elements which will use a harmonic potential.

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 35



https://en.wikipedia.org/wiki/ISO_8601

openforcefield Documentation, Release 0.8.4

Specifying parameters

Under each of these force terms, there are tags for individual parameter lines such as these:

<Angles version="0.3" potential="harmonic">

<Angle smirks="[a,A:1]-[#6X4:2]-[a,A:3]" angle="109.50*degree"” k="100.0*kilocalorie_per_mole/
—radian*x2"/>

<Angle smirks="[#1:1]-[#6X4:2]-[#1:3]" angle="109.50*degree"” k="70.0*kilocalorie_per_mole/radianx*2"/
>
</Angles>

The first of these specifies the smirks attribute as [a,A: 1]-[#6X4:2]-[a,A: 3], specifying a SMIRKS pattern
that matches three connected atoms specifying an angle. This particular SMIRKS pattern matches a tetrava-
lent carbon at the center with single bonds to two atoms of any type. This pattern is essentially a SMARTS
string with numerical atom tags commonly used in SMIRKS to identify atoms in chemically unique environ-
ments—these can be thought of as tagged regular expressions for identifying chemical environments, and
atoms within those environments. Here, [a,A] denotes any atom—either aromatic (a) or aliphatic (A), while
[#6X4] denotes a carbon by element number (#6) that with four substituents (X4). The symbol - joining
these groups denotes a single bond. The strings :1, : 2, and : 2 label these atoms as indices 1, 2, and 3, with
2 being the central atom. Equilibrium angles are provided as the angle attribute, along with force constants
as the k attribute (with corresponding units included in the expression).

Note: The reference implementation of the SMIRNOFF specification implemented in the Open Force Field
toolkit will, by default, raise an exception if an unexpected attribute is encountered. The toolkit can be
configured to accept non-spec keywords, but these are considered “cosmetic” and will not be evaluated. For
example, providing an <Angle> tag that also specifies a second force constant k2 will result in an exception,
unless the user specifies that “cosmetic” attributes should be accepted by the parser.

SMIRNOFF parameter specification is hierarchical

Parameters that appear later in a SMIRNOFF specification override those which come earlier if they match
the same pattern. This can be seen in the example above, where the first line provides a generic angle
parameter for any tetravalent carbon (single bond) angle, and the second line overrides this for the specific
case of a hydrogen-(tetravalent carbon)-hydrogen angle. This hierarchical structure means that a typical
parameter file will tend to have generic parameters early in the section for each force type, with more
specialized parameters assigned later.

Multiple SMIRNOFF representations can be processed in sequence

Multiple SMIRNOFF data sources (e.g. multiple OFFXML files) can be loaded by the openforcefield
ForceField in sequence. If these files each contain unique top-level tags (such as <Bonds>, <Angles>, etc.),
the resulting forcefield will be independent of the order in which the files are loaded. If, however, the same
tag occurs in multiple files, the contents of the tags are merged, with the tags read later taking precedence
over the parameters read earlier, provided the top-level tags have compatible attributes. The resulting force
field will therefore depend on the order in which parameters are read.

This behavior is intended for limited use in appending very specific parameters, such as parameters specifying
solvent models, to override standard parameters.

36 Chapter 1. User Guide



https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smirks.html

openforcefield Documentation, Release 0.8.4

1.3.6 Units

To minimize the potential for unit conversion errors, SMIRNOFF forcefields explicitly specify units in a form
readable to both humans and computers for all unit-bearing quantities. Allowed values for units are given in
simtk.unit (though in the future this may change to the more widely-used Python pint library). For example,
for the angle (equilibrium angle) and k (force constant) parameters in the <Angle> example block above,
both attributes are specified as a mathematical expression

<Angle smirks="[#1:1]1-[#6X4:2]-[#1:3]" angle="109.50xdegree"” k="70.0*xkilocalorie_per_mole/radianx*2"/>

For more information, see the standard OpenMM unit system.

1.3.7 SMIRNOFF independently applies parameters to each class of potential energy
terms

The SMIRNOFF uses direct chemical perception to assign parameters for potential energy terms indepen-
dently for each term. Rather than first applying atom typing rules and then looking up combinations of the
resulting atom types for each force term, the rules for directly applying parameters to atoms is compartmen-
talized in separate sections. The file consists of multiple top-level tags defining individual components of the
potential energy (in addition to charge models or modifiers), with each section specifying the typing rules
used to assign parameters for that potential term:

<Bonds version="0.3" potential="harmonic">

<Bond smirks="[#6X4:1]-[#6X4:2]" length="1.526*angstrom” k="620.0xkilocalories_per_mole/angstromx*2"/
>

<Bond smirks="[#6X4:1]1-[#1:2]" length="1.090xangstrom” k="680.0xkilocalories_per_mole/angstrom*x2"/>

</Bonds>
<Angles version="0.3" potential="harmonic">

<Angle smirks="[a,A:1]-[#6X4:2]-[a,A:3]" angle="109.50*degree” k="100.0xkilocalories_per_mole/
—radianx*2"/>

<Angle smirks="[#1:1]-[#6X4:2]-[#1:3]" angle="109.50*degree"” k="70.0*kilocalories_per_mole/radian*x2
="/>

</Angles>

Each top-level tag specifying a class of potential energy terms has an attribute potential for specifying the
functional form for the interaction. Common defaults are defined, but the goal is to eventually allow these
to be overridden by alternative choices or even algebraic expressions in the future, once more molecular
simulation packages support general expressions. We distinguish between functional forms available in all
common molecular simulation packages (specified by keywords) and support for general functional forms
available in a few packages (especially OpenMM, which supports a flexible set of custom forces defined by
algebraic expressions) with an EXPERIMENTAL label.

Many of the specific forces are implemented as discussed in the OpenMM Documentation; see especially
Section 19 on Standard Forces for mathematical descriptions of these functional forms. Some top-level tags
provide attributes that modify the functional form used to be consistent with packages such as AMBER or
CHARMM.

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 37



https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
https://github.com/openmm/openmm/blob/master/wrappers/python/simtk/unit/unit_definitions.py
https://pint.readthedocs.io/en/latest/
https://docs.openmm.org/latest/userguide/theory.html#units
https://docs.openmm.org/latest/userguide/theory.html
https://docs.openmm.org/latest/userguide/theory.html#standard-forces

openforcefield Documentation, Release 0.8.4

1.3.8 Partial charge and electrostatics models

SMIRNOFF supports several approaches to specifying electrostatic models. Currently, only classical fixed
point charge models are supported, but future extensions to the specification will support point multipoles,
point polarizable dipoles, Drude oscillators, charge equilibration methods, and so on.

<LibraryCharges>: Library charges for polymeric residues and special solvent models

A mechanism is provided for specifying library charges that can be applied to molecules or residues that
match provided templates. Library charges are applied first, and atoms for which library charges are applied
will be excluded from alternative charging schemes listed below.

For example, to assign partial charges for a non-terminal ALA residue from the AMBER f{f14SB parameter
set:

<LibraryCharges version="0.3">

<!-- match a non-terminal alanine residue with AMBER ff14SB partial charges -->

<LibraryCharge name="ALA" smirks="[NX3:11([#1:2]1) ([#6]1)[#6H1:31([#1:41) ([#6:5]1([#1:61) ([#1:71)[#1:
—81)[#6:91(=[#8:10]1)[#7]" chargel="-0.4157xelementary_charge"” charge2="0.2719%elementary_charge”._.
—charge3="0.0337*elementary_charge” charge4="0.0823*elementary_charge"” charge5="-0.1825*elementary_
—charge” charge6="0.0603*elementary_charge"” charge7="0.0603*elementary_charge"” charge8="0.
—0603*elementary_charge” charge9="0.5973*elementary_charge"” chargel0="-0.5679%elementary_charge"/>

</LibraryCharges>

In this case, a SMIRKS string defining the residue tags each atom that should receive a partial charge, with
the charges specified by attributes charge1, charge2, etc. The name attribute is optional. Note that, for a given
template, chemically equivalent atoms should be assigned the same charge to avoid undefined behavior. If
the template matches multiple non-overlapping sets of atoms, all such matches will be assigned the provided
charges. If multiple templates match the same set of atoms, the last template specified will be used.

Solvent models or excipients can also have partial charges specified via the <LibraryCharges> tag. For
example, to ensure water molecules are assigned partial charges for TIP3P water, we can specify a library
charge entry:

<LibraryCharges version="0.3">

<!-- TIP3P water oxygen with charge override -->

<LibraryCharge name="TIP3P" smirks="[#1:1]-[#8X2H2+0:2]-[#1:3]" chargel1="0.417*xelementary_charge" ..
—charge2="-0.834*elementary_charge"” charge3="0.417xelementary_charge"/>
</LibraryCharges>

LibraryCharges  section | Tag attributes and de- | Required parameter | Optional parameter

tag version fault values attributes attributes

0.3 smirks, charge (in- | name, id, parent_id
dexed)

38 Chapter 1. User Guide



https://doi.org/10.1021/acs.jctc.5b00255
https://www.sklogwiki.org/SklogWiki/index.php/TIP3P_model_of_water

openforcefield Documentation, Release 0.8.4

<ChargeIncrementModel>: Small molecule and fragment charges

In keeping with the AMBER force field philosophy, especially as implemented in small molecule force fields
such as GAFF, GAFF2, and parm@Frosst, partial charges for small molecules are usually assigned using a
quantum chemical method (usually a semiempirical method such as AM1) and a partial charge determination
scheme (such as CM2 or RESP), then subsequently corrected via charge increment rules, as in the highly
successful AM1-BCC approach.

Here is an example:

<ChargeIncrementModel version="0.4" number_of_conformers="1" partial_charge_method="AM1-Mulliken">

<!-- A fractional charge can be moved along a single bond -->

<ChargeIncrement smirks="[#6X4:1]-[#6X3a:2]" charge_increment1="-0.0073*elementary_charge"” charge_
—increment2="0.0073*elementary_charge"/>

<ChargeIncrement smirks="[#6X4:1]-[#6X3a:2]-[#7]" charge_increment1="0.0943*elementary_charge" charge_
—increment2="-0.0943*elementary_charge"/>

<!--- Alternatively, fractional charges can be redistributed among any number of bonded atoms -->

<ChargeIncrement smirks="[N:11([H:2])([H:3])" charge_increment1="0.02xelementary_charge” charge_
—increment2="-0.01*elementary_charge"” charge_increment3="-0.01xelementary_charge"/>

<!-- As of version 0.4 of the ChargeIncrementModel tag, it is possible to define one less charge_
—increment attribute than there are tagged atoms -->
<!-- The final, undefined charge_increment will be calculated as to make the sum of the charge_

—increments equal @ -->
<ChargeIncrement smirks="[#6X4:1]-[#8:2]" charge_increment1="-0.0718*elementary_charge"/>
<ChargeIncrement smirks="[N]-[C:1]-[C:2]-[C1:3]" charge_increment1="-0.123" charge_increment2="0.456"_
o>
</ChargeIncrementModel>

The sum of formal charges for the molecule or fragment will be used to determine the total charge the
molecule or fragment will possess.

<ChargeIncrementModel> provides several optional attributes to control its behavior:

* The number_of_conformers attribute (default: "1") is used to specify how many conformers will be
generated for the molecule (or capped fragment) prior to charging.

* The partial_charge_method attribute (default: "AM1-Mulliken") is used to specify how uncorrected
partial charges are to be generated. Later additions will add restrained electrostatic potential fitting
(RESP) capabilities.

The <ChargeIncrement> tags specify how the quantum chemical derived charges are to be corrected to
produce the final charges. The charge_increment# attributes specify how much the charge on the associated
tagged atom index (replacing #) should be modified.

Starting in the 0.4 version of this section, a ChargeIncrement may be specified with one less
charge_increment value than it has tagged atoms. The missing charge_increment value must be that of
the highest tagged atom index. This missing charge_increment will be calculated to offset the sum of the
other charge_increments in the same ChargeIncrement parameter to achieve a net value of 0. This allows
ChargeIncrement parameters to be defined similar to bond charge corrections.

Note that atoms for which library charges have already been applied are excluded from charging via
<ChargelncrementModel>.

Future additions will provide options for intelligently fragmenting large molecules and biopolymers, as well
as a capping attribute to specify how fragments with dangling bonds are to be capped to allow these groups
to be charged.

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 39



https://ambermd.org/antechamber/gaff.html
https://mulan.pharmacy.pitt.edu/group/gaff.php
https://www.ccl.net/cca/data/parm_at_Frosst/
https://en.wikipedia.org/wiki/Austin_Model_1
https://en.wikipedia.org/wiki/Partial_charge
https://en.wikipedia.org/wiki/Partial_charge
https://doi.org/10.1021/jp972682r
https://doi.org/10.1021/ja00074a030
https://dx.doi.org/10.1002/jcc.10128

openforcefield Documentation, Release 0.8.4

Chargelncre- Tag attributes and default | Required parameter attributes Optional

mentModel values parameter

section tag attributes

version

0.3 number_of_conformers= smirks, charge_increment (indexed, | name, id,
", must be equal to number of tagged atoms | parent_id
partial_charge_method="'AM1iMgihirksn '

0.4 number_of_conformers= smirks, charge_increment (indexed, | name, id,
"y must be equal to- or one less than- | parent_id
partial_charge_method="'AM1aMumibékef tagged atoms in smirks)

<ToolkitAM1BCC>: Temporary support for toolkit-based AM1-BCC partial charges

Warning: This tag is not permanent and may be phased out in future versions of the spec.

This tag calculates partial charges using the default settings of the highest-priority cheminformatics toolkit
that can perform AM1-BCC charge assignment. Currently, if the OpenEye toolkit is licensed and available,
this will use QuacPac configured to generate charges using AM1-BCC ELF10 for each unique molecule in
the topology. Otherwise RDKit will be used for initial conformer generation and the AmberTools antecham-
ber/sqm software will be used for charge calculation.

If this tag is specified for a force field, conformer generation will be performed regardless of whether confor-
mations of the input molecule were provided. If RDKit/AmberTools are used as the toolkit backend for this
calculation, only the first conformer is used for AM1-BCC calculation.

The charges generated by this tag may differ depending on which toolkits are available.

Note that atoms for which prespecified or library charges have already been applied are excluded from
charging via <ToolkitAM1BCC>.

Prespecified charges (reference implementation only)

In our reference implementation of SMIRNOEFF in the openforcefield toolkit, we also provide a method
for specifying user-defined partial charges during system creation. This functionality is accessed by
using the charge_from_molecules optional argument during system creation, such as in ForceField.
create_openmm_system(topology, charge_from_molecules=molecule_list). When this optional keyword
is provided, all matching molecules will have their charges set by the entries in molecule_list. This method
is provided solely for convenience in developing and exploring alternative charging schemes; actual force
field releases for distribution will use one of the other mechanisms specified above.

1.3.9 Parameter sections

A SMIRNOFF force field consists of one or more force field term definition sections. For the most part, these
sections independently define how a specific component of the potential energy function for a molecular
system is supposed to be computed (such as bond stretch energies, or Lennard-Jones interactions), as well
as how parameters are to be assigned for this particular term. Each parameter section contains a version,
which encodes the behavior of the section, as well as the required and optional attributes the top-level tag
and SMIRKS-based parameters. This decoupling of how parameters are assigned for each term provides a
great deal of flexibility in composing new force fields while allowing a minimal number of parameters to be
used to achieve accurate modeling of intramolecular forces.

40 Chapter 1. User Guide


https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html#am1bcc-charges
https://docs.eyesopen.com/toolkits/python/quacpactk/OEProtonClasses/OEAM1BCCELF10Charges.html
https://rdkit.org/
https://ambermd.org/AmberTools.php
https://ambermd.org/AmberTools.php

openforcefield Documentation, Release 0.8.4

Below, we describe the specification for each force field term definition using the XML representation of a
SMIRNOFF force field.

As an example of a complete SMIRNOFF force field specification, see a recent force field in the “Parsley” line
(openff-1.2.0.offxml).

Note: Not all parameter sections must be specified in a SMIRNOFF force field. A wide variety of force field
terms are provided in the specification, but a particular force field only needs to define a subset of those
terms.

<vdw>

van der Waals force parameters, which include repulsive forces arising from Pauli exclusion and attractive
forces arising from dispersion, are specified via the <vdW> tag with sub-tags for individual Atom entries, such
as:

<vdW version="0.3" potential="Lennard-Jones-12-6" combining_rules="Lorentz-Berthelot” scale12="0.0"_
—scale13="0.0" scalel14="0.5" scale15="1.0" switch_width="8.0*angstrom” cutoff="9.0*angstrom” long_
—range_dispersion="isotropic">

<Atom smirks="[#1:1]1" sigma="1.4870xangstrom” epsilon="0.0157*kilocalories_per_mole"/>

<Atom smirks="[#1:1]-[#6]" sigma="1.4870*angstrom” epsilon="0.0157*kilocalories_per_mole"/>

</vdw>

For standard Lennard-Jones 12-6 potentials (specified via potential="Lennard-Jones-12-6"), the epsilon
parameter denotes the well depth, while the size property can be specified either via providing the sigma
attribute, such as sigma="1.3x*angstrom”, or via the r_o/2 (rmin/2) values used in AMBER force fields (here
denoted rmin_half as in the example above). The two are related by r@ = 2+ (1/6)*sigma and conversion is
done internally in ForceField into the sigma values used in OpenMM.

Attributes in the <vdw> tag specify the scaling terms applied to the energies of 1-2 (scale12, default: 0), 1-3
(scale13, default: 0), 1-4 (scalel4, default: 0.5), and 1-5 (scale15, default: 1.0) interactions, as well as
the distance at which a switching function is applied (switch_width, default: "1.0*angstrom"), the cutoff
(cutoff, default: "9.0xangstroms”), and long-range dispersion treatment scheme (long_range_dispersion,
default: "isotropic”).

The potential attribute (default: "none”) specifies the potential energy function to use. Currently, only
potential="Lennard-Jones-12-6" is supported:

U(r) = 4xepsilon*((sigma/r)*12 - (sigma/r)"6)

The combining_rules attribute (default: "none”) currently only supports "Lorentz-Berthelot”, which
specifies the geometric mean of epsilon and arithmetic mean of sigma. Support for other Lennard-
Jones mixing schemes will be added later: Waldman-Hagler, Fender-Halsey, Kong, Tang-Toennies, Pena,
Hudson-McCoubrey, Sikora.

Later revisions will add support for additional potential types (e.g., Buckingham-exp-6), as well as the ability
to support arbitrary algebraic functional forms using a scheme such as

<vdW version="0.3" potential="4*epsilonx((sigma/r)*12-(sigma/r)*6)" scalel12="0.0" scalel13="0.0" scalel4=
—"0.5" scale15="1" switch_width="8.0*angstrom” cutoff="9.0xangstrom” long_range_dispersion="isotropic">
<CombiningRules>
<CombiningRule parameter="sigma" function="(sigmal+sigma2)/2"/>
<CombiningRule parameter="epsilon” function="sqrt(epsiloni*epsilon2)"/>
</CombiningRules>

(continues on next page)

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 41



https://github.com/openforcefield/openforcefields/blob/1.2.0/openforcefields/offxml/openff-1.2.0.offxml
https://github.com/openforcefield/openforcefields/blob/1.2.0/openforcefields/offxml/openff-1.2.0.offxml
https://en.wikipedia.org/wiki/Combining_rules
https://en.wikipedia.org/wiki/Combining_rules

openforcefield Documentation, Release 0.8.4

(continued from previous page)

<Atom smirks="[#1:1]" sigma="1.4870xangstrom” epsilon="0.0157*kilocalories_per_mole"/>
<Atom smirks="[#1:1]-[#6]" sigma="1.4870*angstrom” epsilon="0.0157*kilocalories_per_mole"/>

</vdw>

If the <CombiningRules> tag is provided, it overrides the combining_rules attribute.

Later revisions will also provide support for special interactions using the <AtomPair> tag:

<vdW version="0.3" potential="Lennard-Jones-12-6" combining_rules="Lorentz-Berthelot” scalel12="0.0"_
—scalel3="0.0" scale14="0.5" scalel5="1">

<AtomPair smirks1="[#1:1]" smirks2="[#6:2]" sigma="1.4870*angstrom” epsilon="0.0157xkilocalories_per_
—mole" />

</vdw>

vdW Tag attributes and default values Required Optional
section parameter param-
tag attributes eter at-
version tributes
0.3 potential="Lennard-Jones-12-6, combining_rules= | smirks, id,
"Lorentz-Berthelot”, scale12="0", scale13="0", scale14="0.5", | epsilon, parent_id
scale15="1.0", cutoff="9.0*angstrom", switch_width="1. | (sigma OR
@*angstrom”, method="cutoff" rmin_half)
<Electrostatics>

Electrostatic interactions are specified via the <Electrostatics> tag.

<Electrostatics version="0.3" method="PME" scale12="0.0" scalel3="0.0" scalel14="0.833333" scalel15="1.0"/
>

The method attribute specifies the manner in which electrostatic interactions are to be computed:
* PME - particle mesh Ewald should be used (DEFAULT); can only apply to periodic systems
* reaction-field - reaction-field electrostatics should be used; can only apply to periodic systems
e Coulomb - direct Coulomb interactions (with no reaction-field attenuation) should be used
The interaction scaling parameters applied to atoms connected by a few bonds are
* scalel2 (default: 0) specifies the scaling applied to 1-2 bonds
* scale13 (default: 0) specifies the scaling applied to 1-3 bonds
* scalel4 (default: 0.833333) specifies the scaling applied to 1-4 bonds
* scalel5 (default: 1.0) specifies the scaling applied to 1-5 bonds

Currently, no child tags are used because the charge model is specified via different means (currently library
charges or BCCs).

For methods where the cutoff is not simply an implementation detail but determines the potential energy of
the system (reaction-field and Coulomb), the cutoff distance must also be specified, and a switch_width
if a switching function is to be used.

42 Chapter 1. User Guide



https://docs.openmm.org/latest/userguide/theory.html#coulomb-interaction-with-particle-mesh-ewald
https://docs.openmm.org/latest/userguide/theory.html#coulomb-interaction-with-cutoff

openforcefield Documentation, Release 0.8.4

Electrostatics | Tag attributes and default values Required Optional
section tag parameter parameter
version attributes attributes
0.3 scale12="0", scale13="0", scale14="0.833333", | N/A N/A
scalel5="1.0", cutoff="9.0xangstrom”, switch_width=
"@*angstrom”, method="PME"

<Bonds>

Bond parameters are specified via a <Bonds>. . .</Bonds> block, with individual <Bond> tags containing at-
tributes specifying the equilibrium bond length (length) and force constant (k) values for specific bonds. For
example:

<Bonds version="0.3" potential="harmonic">

<Bond smirks="[#6X4:1]-[#6X4:2]" length="1.526*angstrom” k="620.0*kilocalories_per_mole/angstromx*2"/
>

<Bond smirks="[#6X4:1]-[#1:2]" length="1.090*angstrom” k="680.0xkilocalories_per_mole/angstromxx2"/>

</Bonds>

Currently, only potential="harmonic" is supported, where we utilize the standard harmonic functional form:

u(r) = (k/2)x(r-length)*2

Later revisions will add support for additional potential types and the ability to support arbitrary algebraic
functional forms. If the potential attribute is omitted, it defaults to harmonic.

Note that AMBER and CHARMM define a modified functional form, such that U(r) = kx(r-length)*2,
so that force constants would need to be multiplied by two in order to be used in the SMIRNOFF format.

Constrained bonds are handled by a separate <Constraints> tag, which can either specify constraint dis-
tances or draw them from equilibrium distances specified in <Bonds>.

Fractional bond orders

Fractional bond orders can be used to allow interpolation of bond parameters. For example, these parame-
ters:

<Bonds version="0.3" potential="harmonic">

<Bond smirks="[#6X3:1]-[#6X3:2]" k="820.0*kilocalories_per_mole/angstrom**2" length="1.45%angstrom"/
>

<Bond smirks="[#6X3:1]:[#6X3:2]" k="938.0*kilocalories_per_mole/angstromx*x2" length="1.40*angstrom"/
>

<Bond smirks="[#6X3:1]=[#6X3:2]" k="1098.0xkilocalories_per_mole/angstrom*x2" length="1.35*angstrom
<4>“/>

can be replaced by a single parameter line by first invoking the fractional_bondorder_method attribute to
specify a method for computing the fractional bond order and fractional_bondorder_interpolation for
specifying the procedure for interpolating parameters between specified integral bond orders:

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 43




openforcefield Documentation, Release 0.8.4

<Bonds version="0.3" potential="harmonic” fractional_bondorder_method="AM1-Wiberg"” fractional_bondorder_

—interpolation="linear">

<Bond smirks="[#6X3:1]!#[#6X3:2]" k_bondorder1="820.0xkilocalories_per_mole/angstrom**2" k_
—bondorder2="1098*kilocalories_per_mole/angstrom**2" length_bondorder1="1.45%angstrom” length_
—bondorder2="1.35*angstrom"/>

This allows specification of force constants and lengths for bond orders 1 and 2, and then interpolation

between those based on the partial bond order.

* fractional_bondorder_method defaults to AM1-Wiberg.

* fractional_bondorder_interpolation defaults to linear, which is the only supported scheme for now.

Bonds Tag attributes and default values Required Optional

section tag parameter parameter

version attributes attributes

0.3 potential="harmonic"”, fractional_bondorder_method= | smirks, id,
"none"”, fractional_bondorder_interpolation="1linear"” length, k parent_id

0.4 potential="(k/2)*(r-length)*2", smirks, id,
fractional_bondorder_method="AM1-Wiberg", length, k parent_id
fractional_bondorder_interpolation="linear"

<Angles>

Angle parameters are specified via an <Angles>. . .</Angles> block, with individual <Angle> tags containing
attributes specifying the equilibrium angle (angle) and force constant (k), as in this example:

<Angles version="0.3" potential="harmonic">

<Angle smirks="[a,A:1]-[#6X4:2]-[a,A:3]" angle="109.50*degree"” k="100.0*kilocalories_per_mole/
—radianx*2"/>

<Angle smirks="[#1:1]-[#6X4:2]-[#1:3]" angle="109.50xdegree"” k="70.0xkilocalories_per_mole/radian*x2
>

</Angles>

Currently, only potential="harmonic” is supported, where we utilize the standard harmonic functional form:

U(r) = (k/2)*(theta-angle)"2

Later revisions will add support for additional potential types and the ability to support arbitrary algebraic
functional forms. If the potential attribute is omitted, it defaults to harmonic.

Note that AMBER and CHARMM define a modified functional form, such that U(r) = kx(theta-angle)*2,
so that force constants would need to be multiplied by two in order to be used in the SMIRNOFF format.

Angles section tag | Tag attributes and default
version values
0.3 potential="harmonic”

Optional parameter at-
tributes
id, parent_id

Required parameter at-
tributes
smirks, angle, k

44 Chapter 1. User Guide




openforcefield Documentation, Release 0.8.4

<ProperTorsions>

Proper torsions are specified via a <ProperTorsions>. ..</ProperTorsions> block, with individual <Proper>
tags containing attributes specifying the periodicity (periodicity#), phase (phase#), and barrier height (k#).

<ProperTorsions version="0.3" potential="kx(1+cos(periodicity*theta-phase))">

<Proper smirks="[a,A:1]-[#6X4:2]1-[#6X4:3]-[a,A:4]" idivf1="9" periodicity1="3" phasel="0.0xdegree"
—k1="1.40*kilocalories_per_mole"/>

<Proper smirks="[#6X4:1]-[#6X4:2]-[#8X2:3]-[#6X4:4]" idivf1="1" periodicity1="3" phasel1="0.0*degree"_.
—k1="0.383xkilocalories_per_mole"” idivf2="1" periodicity2="2" phase2="180.0*degree"” k2="0.
—1xkilocalories_per_mole"/>

</ProperTorsions>

Here, child Proper tags specify at least k1, phasel, and periodicity1 attributes for the corresponding pa-
rameters of the first force term applied to this torsion. However, additional values are allowed in the form
k#, phase#, and periodicity#, where all # values must be consecutive (e.g., it is impermissible to specify k1
and k3 values without a k2 value) but # can go as high as necessary.

For convenience, and optional attribute specifies a torsion multiplicity by which the barrier height should
be divided (idivf#). The default behavior of this attribute can be controlled by the top-level attribute
default_idivf (default: "auto”) for <ProperTorsions>, which can be an integer (such as "1") controlling
the value of idivf if not specified or "auto” if the barrier height should be divided by the number of torsions
impinging on the central bond. For example:

<ProperTorsions version="0.3" potential="kx(1+cos(periodicity*theta-phase))” default_idivf="auto">
<Proper smirks="[a,A:1]-[#6X4:2]1-[#6X4:3]-[a,A:4]" periodicityl1="3" phasel="0.0xdegree"” ki1="1.
—40xkilocalories_per_mole"/>

</ProperTorsions>

Currently, only potential="k*(1+cos(periodicityxtheta-phase))" is supported, where we utilize the func-
tional form:

U = \sum_{i=1}"N k_i * (1 + cos(periodicity_i * phi - phase_i))

Note: AMBER defines a modified functional form, such that U = sum {i=1}"N (k_i/2) * (1 +
cos(periodicity i * phi - phase_1)), so that barrier heights would need to be divided by two in order to be
used in the SMIRNOFF format.

If the potential attribute is omitted, it defaults to kx(1+cos(periodicity*theta-phase)).

Fractional torsion bond orders

Fractional torsion bond orders can be used to allow interpolation and extrapolation of torsion parameters.
This is similar to the functionality provided by fractional bond orders detailed above. For example, these
parameters:

<ProperTorsions version="0.3" potential="kx(1+cos(periodicity*theta-phase))"” default_idivf="auto">
<Proper smirks="[*:1]:[#6X4:2]-[#6X4:3]:[*:4]" periodicityl1="2" phasel="0.0 * degree” k1="1.
—00xkilocalories_per_mole” idivf1="1.0"/>
<Proper smirks="[*:1]:[#6X4:2]1=[#6X4:3]:[*:4]" periodicity1="2" phasel1="0.0 x degree” ki1="1.
—80*kilocalories_per_mole"” idivf1="1.0"/>

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 45




openforcefield Documentation, Release 0.8.4

can be replaced by a single parameter line by first defining the fractional_bondorder_method
header-level attribute to specify a method for computing the fractional bond order and
fractional_bondorder_interpolation for specifying the procedure for interpolating parameters be-
tween specified integer bond orders:

<ProperTorsions version="0.3" potential="kx(1+cos(periodicity*theta-phase))"” default_idivf="auto"_
—fractional_bondorder_method="AM1-Wiberg" fractional_bondorder_interpolation="1linear">

<Proper smirks="[*:1]:[#6X4:2]~[#6X4:3]:[*:4]" periodicityl1="2" phasel="0.0 * degree” kl1_bondorderi=
—"1.00xkilocalories_per_mole” k1_bondorder2="1.80*kilocalories_per_mole"” idivf1="1.0"/>

This allows specification of the barrier height for e.g. bond orders 1 and 2 (single and double bonds),
and then interpolation between those based on the partial/fractional bond order. Note that in actual usage
partial/fractional bond order may never be exactly 1 or 2, or perhaps even near 2; these values only serve to
define the slope of the line used for interpolation. In the example above, we replaced the two proper torsion
terms (one single central bond (-) and one double central bond (=) with a single term giving the barrier
heights for bond order 1 and 2. If there are cases where the fractional bond order is 1.5, this can correspond
to e.g. an aromatic bond. When barrier heights for more than two integer bond orders are specified, (say, 1,
2, and 3), the interpolation lines are drawn between successive points as a piecewiese linear function.

Cases in which the fractional bond order for the central bond is outside of the bond orders specified (e.g. 1
and 2 above), the barrier height k# is extrapolated using the same slope of the line used for interpolation.
This works even when barrier heights for more than two integer bond orders are specified (say, 1, 2, and 3),
in which case the piecewise linear extrapolation beyond the bounds uses the slope of the line defined by the
nearest two bond orders. In other words, a fractional bond order of 3.2 would yield an interpolated k# value
determined by the interpolation line between k#_bondorder2 and k#_bondorder3. A fractional bond order
of .9 would yield an interpolated k# value determined by the interpolation line between k#_bondorder1 and
k#_bondorder?2.

Some key usage points:
e fractional_bondorder_method defaults to AM1-Wiberg.

* fractional_bondorder_interpolation defaults to linear, which is the only supported scheme for now.

Proper- Tag attributes and default values Required pa- | Optional
Torsions rameter at- | param-
section tag tributes eter
version attributes
0.3 potential="kx(1+cos(periodicity*theta-phase))”, smirks, idivf, id,
default_idivf="auto” k, phase, | parent_id
periodicity
0.4 potential="kx(1+cos(periodicity*theta-phase))”, smirks, (k OR | idivf, id,
default_idivf="auto”, fractional_bondorder_method= | k_bondorder), parent_id
"AM1-Wiberg", fractional_bondorder_interpolation= | phase,
"linear"” periodicity

46 Chapter 1. User Guide




openforcefield Documentation, Release 0.8.4

<ImproperTorsions>

Improper torsions are specified via an <ImproperTorsions>...</ImproperTorsions> block, with individual
<Improper> tags containing attributes that specify the same properties as <ProperTorsions>:

<ImproperTorsions version="0.3" potential="k*(1+cos(periodicity*theta-phase))">
<Improper smirks="[*:1]1~[#6X3:2]1(=[#7X2,#7X3+1:3])~[#7:4]" k1="10.5*kilocalories_per_mole"
—periodicity1="2" phasel1="180.xdegree"/>

</ImproperTorsions>

Currently, only potential="charmm” is supported, where we utilize the functional form:

U = \sum_{i=1}"N k_i * (1 + cos(periodicity_i * phi - phase_i))

Note: AMBER defines a modified functional form, such that U = sum {i=1}"N (k_i/2) * (1 +
cos(periodicity i * phi - phase 1)), so that barrier heights would need to be divided by two in order to be
used in the SMIRNOFF format.

If the potential attribute is omitted, it defaults to charmm.

The improper torsion energy is computed as the average over all three impropers (all with the same hand-
edness) in a trefoil. This avoids the dependence on arbitrary atom orderings that occur in more traditional
typing engines such as those used in AMBER. The second atom in an improper (in the example above, the
trivalent carbon) is the central atom in the trefoil.

ImproperTorsions Tag attributes and default values Required param- | Optional param-
section tag version eter attributes eter attributes
0.3 potential="kx(1+cos(periodicity*theta-phasi)Xs, k, phase, | idivf, id,
" default_idivf="auto" periodicity parent_id
<GBSA>

Warning: The current release of ParmEd can not transfer GBSA models produced by the
Open Force Field Toolkit to other simulation packages. These GBSA forces are currently only
computable using OpenMM.

Generalized-Born surface area (GBSA) implicit solvent parameters are optionally specified via a <GBSA>. ..
</GBSA> using <Atom> tags with GBSA model specific attributes:

<GBSA version="0.3" gb_model="0BC1" solvent_dielectric="78.5" solute_dielectric="1" sa_model="ACE"_
—surface_area_penalty="5.4xcalories/mole/angstromsxx2" solvent_radius="1.4xangstroms">

<Atom smirks="[*:1]" radius="0.15*nanometer"” scale="0.8"/>

<Atom smirks="[#1:1]" radius="0.12*nanometer"” scale="0.85"/>

<Atom smirks="[#1:1]~[#7]" radius="@.13*nanometer” scale="0.85"/>

<Atom smirks="[#6:1]" radius="0.17*nanometer"” scale="0.72"/>

<Atom smirks="[#7:1]" radius="0.155*nanometer” scale="0.79"/>

<Atom smirks="[#8:1]" radius="0.15*nanometer"” scale="0.85"/>

<Atom smirks="[#9:1]" radius="0.15*nanometer"” scale="0.88"/>

<Atom smirks="[#14:1]" radius="0.21*nanometer” scale="0.8"/>

<Atom smirks="[#15:1]" radius="0.185*nanometer"” scale="0.86"/>

(continues on next page)

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 47



https://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Trefoil_knot_left.svg/2000px-Trefoil_knot_left.svg.png
https://github.com/ParmEd/ParmEd/blob/3.2.0/parmed/openmm/topsystem.py#L148-L150
https://github.com/ParmEd/ParmEd/blob/3.2.0/parmed/openmm/topsystem.py#L148-L150

openforcefield Documentation, Release 0.8.4

(continued from previous page)

<Atom smirks="[#16:1]" radius="@.18*nanometer” scale="0.96"/>
<Atom smirks="[#17:1]" radius="0.17*nanometer” scale="0.8"/>
</GBSA>

Supported Generalized Born (GB) models

In the <GBSA> tag, gb_model selects which GB model is used. Currently, this can be selected from a subset of
the GBSA models available in OpenMM:

* HCT : Hawkins-Cramer-Truhlar (corresponding to igh=1 in AMBER): requires parameters [radius,
scale]

* 0BC1 : Onufriev-Bashford-Case using the GB(OBC)I parameters (corresponding to igb=2 in AMBER):
requires parameters [radius, scalel

* 0BC2 : Onufriev-Bashford-Case using the GB(OBC)II parameters (corresponding to igh=5 in AMBER):
requires parameters [radius, scale]

If the gb_model attribute is omitted, it defaults to OBC1.

The attributes solvent_dielectric and solute_dielectric specify solvent and solute dielectric constants
used by the GB model. In this example, radius and scale are per-particle parameters of the 0BC1 GB model
supported by OpenMM.

Surface area (SA) penalty model

The sa_model attribute specifies the solvent-accessible surface area model (“SA” part of GBSA) if one should
be included; if omitted, no SA term is included.

Currently, only the analytical continuum electrostatics (ACE) model, designated ACE, can be specified, but
there are plans to add more models in the future, such as the Gaussian solvation energy component of EEF1.
If sa_model is not specified, it defaults to ACE.

The ACE model permits two additional parameters to be specified:

* The surface_area_penalty attribute specifies the surface area penalty for the ACE model. (Default:
5.4 calories/mole/angstroms*x2)

* The solvent_radius attribute specifies the solvent radius. (Default: 1.4 angstroms)

GBSA Tag attributes and default values Required Optional
sec- parameter | parameter
tion tag attributes | attributes
version
0.3 gb_model="0BC1", solvent_dielectric="78.5 | smirks, id,
" solute_dielectric="1", sa_model="ACE", | radius, parent_id
surface_area_penalty="5.4*calories/mole/angstromx*2", scale
solvent_radius="1.4*angstrom"
48 Chapter 1. User Guide


https://docs.openmm.org/latest/userguide/application.html#amber-implicit-solvent
https://docs.openmm.org/latest/userguide/zbibliography.html#hawkins1995
https://docs.openmm.org/latest/userguide/zbibliography.html#onufriev2004
https://docs.openmm.org/latest/userguide/zbibliography.html#onufriev2004
https://docs.openmm.org/latest/userguide/theory.html#surface-area-term
https://www.ncbi.nlm.nih.gov/pubmed/10223287

openforcefield Documentation, Release 0.8.4

<Constraints>

Bond length or angle constraints can be specified through a <Constraints> block, which can constrain bonds
to their equilibrium lengths or specify an interatomic constraint distance. Two atoms must be tagged in the
smirks attribute of each <Constraint> record.

To constrain the separation between two atoms to their equilibrium bond length, it is critical that a <Bonds>
record be specified for those atoms:

<Constraints version="0.3" >

<!-- constrain all bonds to hydrogen to their equilibrium bond length -->
<Constraint smirks="[#1:1]1-[*:2]" />
</Constraints>

Note that the two atoms must be bonded in the specified Topology for the equilibrium bond length to be
used.

To specify the constraint distance, or constrain two atoms that are not directly bonded (such as the hydro-
gens in rigid water models), specify the distance attribute (and optional distance_unit attribute for the
<Constraints> tag):

<Constraints version="0.3">

<!-- constrain water O-H bond to equilibrium bond length (overrides earlier constraint) -->
<Constraint smirks="[#1:1]-[#8X2H2:2]-[#1]" distance="0.9572*angstrom"/>
<!-- constrain water H...H, calculating equilibrium length from H-O-H equilibrium angle and H-0_

—equilibrium bond lengths -->
<Constraint smirks="[#1:1]-[#8X2H2]-[#1:2]" distance="1.8532*angstrom"/>
</Constraints>

Typical molecular simulation practice is to constrain all bonds to hydrogen to their equilibrium bond lengths
and enforce rigid TIP3P geometry on water molecules:

<Constraints version="0.3">
<!-- constrain all bonds to hydrogen to their equilibrium bond length -->
<Constraint smirks="[#1:1]-[*:2]" />
<!-- TIP3P rigid water -->
<Constraint smirks="[#1:1]-[#8X2H2:2]-[#1]" distance="0.9572*angstrom"/>
<Constraint smirks="[#1:1]-[#8X2H2]1-[#1:2]" distance="1.8532*angstrom"/>
</Constraints>

Constraint section tag | Required tag attributesand de- | Required parameter | Optional parameter
version fault values attributes attributes
0.3 smirks distance

1.3.10 Advanced features

Standard usage is expected to rely primarily on the features documented above and potentially new features.
However, some advanced features will also be supported.

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 49




openforcefield Documentation, Release 0.8.4

<VirtualSites>: Virtual sites for off-atom charges

We will implement experimental support for placement of off-atom (off-center) charges in a variety of con-
texts which may be chemically important in order to allow easy exploration of when these will be warranted.
We will support the following different types or geometries of off-center charges (as diagrammed below):

* BondCharge: This supports placement of a virtual site S along a vector between two specified atoms,
e.g. to allow for a sigma hole for halogens or similar contexts. With positive values of the distance, the
virtual site lies outside the first indexed atom (green in this image).

* MonovalentlLonePair: This is originally intended for situations like a carbonyl, and allows placement of
a virtual site S at a specified distance d, inPlaneAngle (theta 1 in the diagram), and outOfPlaneAngle
(theta 2 in the diagram) relative to a central atom and two connected atoms.

* DivalentLonePair: This is suitable for cases like four-point and five-point water models as well as
pyrimidine; a charge site S lies a specified distance d from the central atom among three atoms (blue)
along the bisector of the angle between the atoms (if outOfPlaneAngle is zero) or out of the plane by
the specified angle (if outOfPlaneAngle is nonzero) with its projection along the bisector. For positive
values fo the distance d the virtual site lies outside the 2-1-3 angle and for negative values it lies inside.

50 Chapter 1. User Guide


figures/vsite_bondcharge.jpg
figures/vsite_monovalent.jpg

openforcefield Documentation, Release 0.8.4

* TrivalentLonePair: This is suitable for planar or tetrahedral nitrogen lone pairs; a charge site S lies
above the central atom (e.g. nitrogen, blue) a distance d along the vector perpendicular to the plane of
the three connected atoms (2,3,4). With positive values of d the site lies above the nitrogen and with
negative values it lies below the nitrogen.

Each virtual site receives charge which is transferred from the desired atoms specified in the SMIRKS pattern
via a charge_increment# parameter, e.g., if charge_increment1=0.1xelementary_charge then the virtual site
will receive a charge of -0.1 and the atom labeled 1 will have its charge adjusted upwards by 0.1. N may
index any indexed atom. Additionally, each virtual site can bear Lennard-Jones parameters, specified by
sigma and epsilon or rmin_half and epsilon. If unspecified these default to zero.

In the SMIRNOFF format, these are encoded as:

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 51


figures/vsite_divalent.jpg
figures/vsite_trivalent.jpg

openforcefield Documentation, Release 0.8.4

<VirtualSites version="0.3" exclusion_policy="parents">

<!-- sigma hole for halogens: "distance” denotes distance along the 2->1 bond vector, measured from.
—atom 2 -->
<!-- Specify that 0.2 charge from atom 1 and 0.1 charge units from atom 2 are to be moved to the.

—virtual site, and a small Lennard-Jones site is to be added (sigma=0.1*angstroms, epsilon=0.05xkcal/
—mol) -->

<VirtualSite type="BondCharge" smirks="[Cl:1]-[C:2]" distance="0.30xangstrom” charge_increment1="-0.
—2*xelementary_charge” charge_increment2="-0.1xelementary_charge” sigma="0.71xangstrom” epsilon="0.
—05%kilocalories_per_mole"/>

<!-- Charge increments can extend out to as many atoms as are labeled, e.g. with a third atom: -->

<VirtualSite type="BondCharge" smirks="[Cl:1]-[C:2]~[*:3]" distance="0.30*angstrom” charge_incrementi=
—"-0.1xelementary_charge” charge_increment2="-0.1*xelementary_charge” charge_increment3="-0.
—05%elementary_charge” sigma="0.1*angstrom” epsilon="@.05xkilocalories_per_mole"/>

<!-- monovalent lone pairs: carbonyl -->

<!-- X denotes the charge site, and P denotes the projection of the charge site into the plane of 1_
—and 2. -->
<!-- inPlaneAngle is angle point P makes with 1 and 2, i.e. P-1-2 -->

<!-- outOfPlaneAngle is angle charge site (X) makes out of the plane of 2-1-3 (and P) measured from 1_
>

<!-- Since unspecified here, sigma and epsilon for the virtual site default to zero -->

<VirtualSite type="MonovalentLonePair"” smirks="[0:1]=[C:2]-[*:3]" distance="0.30*angstrom"
—outOfPlaneAngle="0xdegree"” inPlaneAngle="120*degree” charge_increment1="0.2*elementary_charge"” charge_
—increment2="0.2xelementary_charge” charge_increment3="0.2*elementary_charge"/>

<!-- divalent lone pair: pyrimidine, TIP4P, TIP5P -->

<!-- The atoms 2-1-3 define the X-Y plane, with Z perpendicular. If outOfPlaneAngle is @, the charge.
—site is a specified distance along the in-plane vector which bisects the angle left by taking 360.
—degrees minus angle(2,1,3). If outOfPlaneAngle is nonzero, the charge sites lie out of the plane by.
—the specified angle (at the specified distance) and their in-plane projection lines along the angle's.
—bisector. -->

<VirtualSite type="DivalentlLonePair” smirks="[*:2]~[#7X2:1]~[*:3]" distance="0.30*angstrom"_
—outOfPlaneAngle="0.0xdegree"” charge_increment1="0.1xelementary_charge”" charge_increment2="0.
—2*xelementary_charge” charge_increment3="0.2xelementary_charge"/>

<!-- trivalent nitrogen lone pair -->

<!-- charge sites lie above and below the nitrogen at specified distances from the nitrogen, along.
—the vector perpendicular to the plane of (2,3,4) that passes through the nitrogen. If the nitrogen is.
—co-planar with the connected atom, charge sites are simply above and below the plane -->

<!-- Positive and negative values refer to above or below the nitrogen as measured relative to the.
—plane of (2,3,4), i.e. below the nitrogen means nearer the 2,3,4 plane unless they are co-planar -->
<l-- To ensure that the second site does not overwrite the first, specify a unique name for each. -->

<VirtualSite type="TrivalentLonePair"” smirks="[*:2]~[#7X3:11(~[*:4]1)~[*:3]" name="A" distance="0.
—30*angstrom” charge_increment1="0.1%elementary_charge"” charge_increment2="0.2*elementary_charge”_
—charge_increment3="0.2*elementary_charge"” charge_increment4="0.2*elementary_charge"/>

<VirtualSite type="TrivalentLonePair"” smirks="[*:2]~[#7X3:1](~[*:4]1)~[*:3]" name="B" distance="-0.
—30*angstrom” charge_increment1="0.1%elementary_charge"” charge_increment2="0.2*elementary_charge”_
—charge_increment3="0.2*elementary_charge” charge_increment4="0.2xelementary_charge"/>
</VirtualSites>

52 Chapter 1. User Guide




openforcefield Documentation, Release 0.8.4

Vir- Tag Required parameter attributes and default values Op-
tual- at- tional
Sites | tributes pa-
sec- and ram-
tion de- eter
tag fault at-
ver- val- tribute
sion ues
0.3 exclusiosmpokscyype, distance, charge_increment (indexed), inPlaneAngle IF type= | N/A
"parents”MonovalentLonePair”, outOfPlaneAngle IF type="MonovalentLonePair
" OR type="DivalentLonePair", sigma=0.*angstrom, epsilon=0.
*kilocalories_per_mole, name="EP", match="all_permutations” IF
type=BondCharge OR type="MonovalentLonePair OR type="DivalentLonePair
" match="once" IF type="TrivalentLonePair

Aromaticity models
Before conducting SMIRKS substructure searches, molecules are prepared using one of the supported aro-

maticity models, which must be specified with the aromaticity_model attribute. The only aromaticity model
currently widely supported (by both the OpenEye toolkit and RDKit) is the OEAroModel_MDL model.

Additional plans for future development

See the openforcefield GitHub issue tracker to propose changes to this specification, or read through pro-
posed changes currently being discussed.

1.3.11 The openforcefield reference implementation
A Python reference implementation of a parameterization engine implementing the SMIRNOFF force field
specification can be found online. This implementation can use either the free-for-academics (but com-

mercially supported) OpenEye toolkit or the free and open source RDKit cheminformatics toolkit. See the
installation instructions for information on how to install this implementation and its dependencies.

Examples

A relatively extensive set of examples is made available on the reference implementation repository under
examples/.

Parameterizing a system

Consider parameterizing a simple system containing a the drug imatinib.

# Create a molecule from a mol2 file
from openforcefield.topology import Molecule
molecule = Molecule.from_file('imatinib.mol2")

# Create a Topology specifying the system to be parameterized containing just the molecule
topology = molecule.to_topology()

(continues on next page)

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 53



https://docs.eyesopen.com/toolkits/python/oechemtk/aromaticity.html
https://www.rdkit.org/docs/RDKit_Book.html
https://github.com/openforcefield/openforcefield/issues
https://github.com/openforcefield/openforcefield
https://docs.eyesopen.com/toolkits/python/index.html
https://www.rdkit.org/
https://open-forcefield-toolkit.readthedocs.io/en/latest/installation.html
https://github.com/openforcefield/openforcefield
https://github.com/openforcefield/openforcefield/tree/master/examples

openforcefield Documentation, Release 0.8.4

(continued from previous page)

# Load the first release of the "Parsley” forcefield
from openforcefield.typing.engines.smirnoff import ForceField
forcefield = ForceField('openff-1.0.0.offxml")

# Create an OpenMM System from the topology
system = forcefield.create_openmm_system(topology)

See examples/SMIRNOFF_simulation/ for an extension of this example illustrating how to simulate this
molecule in the gas phase.

The topology object provided to create_openmm_system() can contain any number of molecules of different
types, including biopolymers, ions, buffer molecules, or solvent molecules. The openforcefield toolkit pro-
vides a number of convenient methods for importing or constructing topologies given PDB files, Sybyl mol2
files, SDF files, SMILES strings, and IUPAC names; see the toolkit documentation for more information. No-
tably, this topology object differs from those found in OpenMM or MDTraj in that it contains information on
the chemical identity of the molecules constituting the system, rather than this atomic elements and covalent
connectivity; this additional chemical information is required for the direct chemical perception features of
SMIRNOFF typing.

Using SMIRNOFF small molecule forcefields with traditional biopolymer force fields

While SMIRNOFF format force fields can cover a wide range of biological systems, our initial focus is on gn-
eral small molecule force fields, meaning that users may have considerable interest in combining SMIRNOFF
small molecule parameters to systems in combination with traditional biopolymer parameters from conven-
tional force fields, such as the AMBER family of protein/nucleic acid force fields. Thus, we provide an exam-
ple of setting up a mixed protein-ligand system in examples/using smirnoff with amber protein_forcefield,
where an AMBER family force field is used for a protein and the original “Parsley” force field (openff-1.0.0)
for a small molecule.

The optional id and parent_id attributes and other XML attributes

In general, additional optional XML attributes can be specified and will be ignored by ForceField unless
they are specifically handled by the parser (and specified in this document).

One attribute we have found helpful in parameter file development is the id attribute for a specific parameter
line, and we recommend that SMIRNOFF force fields utilize this as effectively a parameter serial number, such
as in:

<Bond smirks="[#6X3:1]-[#6X3:2]" id="b5" k="820.0*kilocalorie_per_mole/angstrom*x2" length="1.
—45%angstrom”/>

Some functionality in ForceField, such as ForceField.label_molecules, looks for the id attribute. Without
this attribute, there is no way to uniquely identify a specific parameter line in the XML file without referring
to it by its smirks string, and since some smirks strings can become long and relatively unwieldy (especially
for torsions) this provides a more human- and search-friendly way of referring to specific sets of parameters.

The parent_id attribute is also frequently used to denote parameters from which the current parameter is
derived in some manner.

54 Chapter 1. User Guide



https://open-forcefield-toolkit.readthedocs.io/
https://docs.openmm.org/latest/api-python/generated/simtk.openmm.app.topology.Topology.html#simtk.openmm.app.topology.Topology
https://mdtraj.org/1.9.0/api/generated/mdtraj.Topology.html#mdtraj.Topology
https://doi.org/10.1101/286542
https://github.com/openforcefield/openforcefield/tree/master/examples/using_smirnoff_with_amber_protein_forcefield

openforcefield Documentation, Release 0.8.4

A remark about parameter availability

ForceField will currently raise an exception if any parameters are missing where expected for your sys-
tem—i.e. if a bond is assigned no parameters, an exception will be raised. However, use of generic param-
eters (i.e. [x:1]~[x:2] for a bond) in your .offxml will result in parameters being assigned everywhere,
bypassing this exception. We recommend generics be used sparingly unless it is your intention to provide
true universal generic parameters.

1.3.12 Version history

0.3

This is a backwards-incompatible update to the SMIRNOFF 0.2 draft specification. However, the Open Force
Field Toolkit version accompanying this update is capable of converting 0.1 spec SMIRNOFF data to 0.2 spec,
and subsequently 0.2 spec to 0.3 spec. The 0.1-to-0.2 spec conversion makes a number of assumptions about
settings such as long-range nonbonded handling. Warnings are printed about each assumption that is made
during this spec conversion. No mechanism to convert backwards in spec is provided.

Key changes in this version of the spec are:
* Section headers now contain individual versions, instead of relying on the <SMIRNOFF>-level tag.
* Section headers no longer contain X_unit attributes.
» All physical quantities are now written as expressions containing the appropriate units.

* The default potential for <ProperTorsions> and <ImproperTorsions> was changed from charmm to
kx(1+cos(periodicity*theta-phase)), as CHARMM interprets torsion terms with perioidicity O as
having a quadratic potential, while the Open Force Field Toolkit would interpret a zero periodicity
literally.

0.2
This is a backwards-incompatible overhaul of the SMIRNOFF 0.1 draft specification along with ForceField
implementation refactor:

* Aromaticity model now defaults to OEAroModel_MDL, and aromaticity model names drop OpenEye-
specific prefixes

* Top-level tags are now required to specify units for any unit-bearing quantities to avoid the potential
for mistakes from implied units.

* Potential energy component definitions were renamed to be more general:

<NonbondedForce> was renamed to <vdw>

<HarmonicBondForce> was renamed to <Bonds>

<HarmonicAngleForce> was renamed to <Angles>

<BondChargeCorrections> was renamed to <ChargeIncrementModel> and generalized to accom-
modate an arbitrary number of tagged atoms

— <GBSAForce> was renamed to <GBSA>
* <PeriodicTorsionForce>was split into <ProperTorsions> and <ImproperTorsions>

* <vdW> now specifies 1-2, 1-3, 1-4, and 1-5 scaling factors via scale12 (default: 0), scale13 (default:
0), scale14 (default: 0.5), and scale15 (default 1.0) attributes. It also specifies the long-range vdW

1.3. The SMIRks Native Open Force Field (SMIRNOFF) specification 55



openforcefield Documentation, Release 0.8.4

0.1

method to use, currently supporting cutoff (default) and PME. Coulomb scaling parameters have been
removed from StericsForce.

Added the <Electrostatics> tag to separately specify 1-2, 1-3, 1-4, and 1-5 scaling factors for electro-
statics, as well as the method used to compute electrostatics (PME, reaction-field, Coulomb) since this
has a huge effect on the energetics of the system.

Made it clear that <Constraint> entries do not have to be between bonded atoms.

<VirtualSites> has been added, and the specification of charge increments harmonized with
<ChargelIncrementModel>

The potential attribute was added to most forces to allow flexibility in extending forces to additional
functional forms (or algebraic expressions) in the future. potential defaults to the current recom-
mended scheme if omitted.

<GBSA> now has defaults specified for gb_method and sa_method

Changes to how fractional bond orders are handled:
- Use of fractional bond order is now are specified at the force tag level, rather than the root level
— The fractional bond order method is specified via the fractional_bondorder_method attribute

— The fractional bond order interpolation scheme is  specified via the
fractional_bondorder_interpolation

Section heading names were cleaned up.
Example was updated to reflect use of the new openforcefield. topology.Topology class

Eliminated “Requirements” section, since it specified requirements for the software, rather than de-
scribed an aspect of the SMIRNOFF specification

Fractional bond orders are described in <Bonds>, since they currently only apply to this term.

Initial draft specification.

1.4 Examples using SMIRNOFF with the toolkit

The following examples are available in the openforcefield toolkit repository. Each can be run interactively
in the browser with binder, without installing anyting on your computer.

1.4.1 Index of provided examples

conformer_energies - compute conformer energies of one or more small molecules using a SMIRNOFF
force field

SMIRNOFF_simulation - simulation of a molecule in the gas phase with the SMIRNOFF force field
format

forcefield modification - modify forcefield parameters and evaluate how system energy changes

using smirnoff in amber or gromacs - convert a System generated with the Open Force Field Toolkit,
which can be simulated natively with OpenMM, into AMBER prmtop/inpcrd and GROMACS top/gro
input files through the ParmEd library.

56

Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/tree/master/examples
https://mybinder.org/v2/gh/openforcefield/openforcefield/master?filepath=%2Fexamples%2F
https://github.com/openforcefield/openforcefield/tree/master/examples/conformer_energies
https://github.com/openforcefield/openforcefield/tree/master/examples/SMIRNOFF_simulation
https://github.com/openforcefield/openforcefield/tree/master/examples/forcefield_modification
https://github.com/openforcefield/openforcefield/tree/master/examples/using_smirnoff_in_amber_or_gromacs

openforcefield Documentation, Release 0.8.4

* swap_amber parameters - take a prepared AMBER protein-ligand system (prmtop and crd) along with
a structure file of the ligand, and replace ligand parameters with OpenFF parameters.

* inspect assigned parameters - check which parameters are used in which molecules and generate
parameter usage statistics.

* using smirnoff with amber protein forcefield - use SMIRNOFF parameters for small molecules in
combination with more conventional force fields for proteins and other components of your system
(using ParmEd to combine parameterized structures)

* check dataset parameter coverage - shows how to use the Open Force Field Toolkit to ingest a dataset
of molecules, and generate a report summarizing any chemistry that can not be parameterized.

* visualization - shows how rich representation of Molecule objects work in the context of Jupyter Note-
books.

1.5 Developing for the toolkit

1.5.1 Overview

Introduction

This guide is written with the understanding that our contributors are NOT professional software developers,
but are instead computational chemistry trainees and professionals. With this in mind, we aim to use a
minimum of bleeding-edge technology and alphabet soup, and we will define any potentially unfamiliar
processes or technologies the first time they are mentioned. We enforce use of certain practices (tests,
formatting, coverage analysis, documentation) primarily because they are worthwhile upfront investments
in the long-term sustainability of this project. The resources allocated to this project will come and go, but
we hope that following these practices will ensure that minimal developer time will maintain this software
far into the future.

The process of contributing to the OFF toolkit is more than just writing code. Before contributing, it is a very
good idea to start a discussion on the Issue tracker about the functionality you’d like to add. This Issue will
help us identify where in the codebase it should go, any overlapping efforts with other developers, and what
the user experience should be. Please note that the OFF toolkit is intended to be used primarily as one piece
of larger workflows, and that simplicity and reliability are two of our primary goals. Often, the cost/benefit
of new features must be discussed, as a complex codebase is harder to maintain. When new functionality is
added to the OFF Toolkit, it becomes our responsibility to maintain it, so it’s important that we understand
contributed code and are in a position to keep it up to date.

Philosophy
* The core functionality of the OFF Toolkit is to combine an Open Force Field ForceField and Topology
to create an OpenMM System.

* An OpenMM System contains everything needed to compute the potential energy of a system, except
the coordinates.

* The OFF toolkit employs a modular “plugin” architecture wherever possible, providing a standard
interface for contributed features.

1.5. Developing for the toolkit 57


https://github.com/openforcefield/openforcefield/tree/master/examples/swap_amber_parameters
https://github.com/openforcefield/openforcefield/tree/master/examples/inspect_assigned_parameters
https://github.com/openforcefield/openforcefield/tree/master/examples/using_smirnoff_with_amber_protein_forcefield
https://github.com/openforcefield/openforcefield/tree/master/examples/check_dataset_parameter_coverage
https://github.com/openforcefield/openforcefield/tree/master/examples/visualization

openforcefield Documentation, Release 0.8.4

Terminology

Open Force Field Toolkit Concepts

OFF Molecule A graph representation of a molecule containing enough information to unambiguously
parametrize it. Required data fields for an OFF Molecule are:

* atoms: element (integer), formal charge (integer), is_aromatic (boolean), stereochemistry
(R/S/None)

* bonds: order (integer), is_aromatic (boolean), stereochemistry (E/Z/None)

There are several other optional attributes such as conformers and partial_charges that may be pop-
ulated in the Molecule data structure. These are considered “optional” because they are not required
for system creation, however if those fields are populated, the user MAY use them to override values
that would otherwise be generated during system creation.

A dictionary, Molecule.properties is exposed, which is a Python dict that can be populated with arbi-
trary data. This data should be considered cosmetic and should not affect system creation. Whenever
possible, molecule serialization or format conversion should preserve this data.

OFF System An object that contains everything needed to calculate a molecular system’s energy, except the
atomic coordinates. Note that this does not exist yet, and that OpenMM System objects are being used
for this purpose right now.

OFF Topology An object that efficiently holds many OFF Molecule objects. The atom indexing in a Topology
may differ from those of the underlying * *Molecule s

OFF TopologyMolecule The efficient data structures that make up an OFF Topology. There is one Topology-
Molecule for each instance of a chemical species in a Topology. However, each unique chemical species
has a single OFF Molecule representing it, which may be shared by multiple TopologyMolecules. Topol-
ogyMolecules contain an atom index map, as several copies of the same chemical species in a Topology
may be present with different atom orderings. This data structure allows the OFF toolkit to only
parametrize each unique Molecule once, and then write a copy of the assigned parameters out for each
of the Molecule in the Topology (accounting for atom indexing differences in the process).

OFF ForceField An object generated from an OFFXML file (or other source of SMIRNOFF data). Most
information from the SMIRNOFF data source is stored in this object’s several ParameterHandler* ‘s,
however some top-level SMIRNOFF data is stored in the ‘‘ForceField object itself.

SMIRNOFF data A hierarchical data structure that complies with the SMIRNOFF specification. This can be
serialized in many formats, including XML (OFFXML). The subsections in a SMIRNOFF data source
generally correspond to one energy term in the functional form of a force field.

ParameterHandler An object that has the ability to produce one component of an OpenMM System, corre-
sponding to one subsection in a SMIRNOFF data source. Most ParameterHandler objects contain a list
of ParameterType objects.

ParameterType An object corresponding to a single SMARTS-based parameter.

Cosmetic attribute Datain a SMIRNOFF data source that does not correspond to a known attribute. These
have no functional effect, but several programs use the extensibility of the OFFXML format to define
additional attributes for their own use, and their workflows require the OFF toolkit to process the files
while retaining these keywords.

Development Infrastructure
CI “Continuous integration” testing.

Services that run frequently while the code is undergoing changes, ensuring that the codebase still
installs and has the intended behavior. Currently, we use a service called Travis CI for this. Every time

58 Chapter 1. User Guide


https://travis-ci.org

openforcefield Documentation, Release 0.8.4

we make commits to the master branch of the openforcefield Github repository, a set of virtual ma-
chines that mimic brand new Linux and Mac OSX computers are created, and follow build instructions
specified in the repo’s .travis.yml file to install the toolkit. After installing the OFF toolkit and its
dependencies, these virtual machines run our test suite. If the tests all pass, the build “passes” (returns
a green check mark on GitHub). If all the tests for a specific change to the master branch return green,
then we know that the change has not broken the toolkit’s existing functionality. When proposing code
changes, we ask that contributors open a Pull Request (PR) on GitHub to merge their changes into the
master branch. When a pull request is open, CI will run on the latest set of proposed changes and
indicate whether they are safe to merge through status checks, summarized as a green check mark or
red X.

CodeCov Code coverage.

An extension to our testing framework that reports the fraction of our source code lines that were
run during the tests. This functionality is actually the combination of several components — Travis CI
runs the tests using the pytest-cov package, and then uploads the results to the website codecov.io.
This analysis is re-run with each change to the master branch, and a badge showing our coverage
percentage is in the project README.

LGTM “Looks Good To Me”.

A service that analyzes the code in our repository for simple style and formatting issues. This service
assigns a letter grade to codebases, and a badge showing our LGTM report is in the project README.

RTD ReadTheDocs.

A service that compiles and renders the packages documentation (from the docs/ folder). The docu-
mentation itself can be accessed from the ReadTheDocs badge in the README.

Modular design features

There are a few areas where we’ve designed the toolkit with extensibility in mind. Adding functionality at
these interfaces should be considerably easier than in other parts of the toolkit, and we encourage experi-
mentation and contribution on these fronts.

ParameterHandler A generic base class for objects that perform parametrization for one section in a
SMIRNOFF data source.

Each ParameterHandler-derived class MUST implement:

* create_force(self, system, topology, **kwargs): takes an OpenMM System and a OpenFF
Topology as input, as well as optional keyword arguments, and modifies the System to contain
the appropriate parameters.

* Class-level ParameterAttributes and IndexedParameterAttributes: These correspond to the
header-level attributes in a SMIRNOFF data source. For example, the Bonds tag in the
SMIRNOFF spec has an optional fractional_bondorder_method field, which corresponds
to the line fractional_bondorder_method = ParameterAttribute(default=None) in the
BondHandler class definition. The ParameterAttribute and IndexedParameterAttribute
classes offer considerable flexibility for validating inputs. Defining these attributes at the
class level implements the corresponding behavior in the default __init__ function.

* Class-level definitions _MAX_SUPPORTED_SECTION_VERSION and
_MAX_SUPPORTED_SECTION_VERSION. ParameterHandler versions allow us to evolve Pa-
rameterHandler behavior in a controlled, recorded way. Force field development is
experimental by nature, and it is unlikely that the initial choice of header attributes is
suitable for all use cases. Recording the “versions” of a SMIRNOFF spec tag allows us to
encode the default behavior and API of a specific generation of ParameterHandlers, while
allowing the safe addition of new attributes and behaviors.

1.5. Developing for the toolkit 59



openforcefield Documentation, Release 0.8.4

* Each ParameterHandler-derived class MAY implement:

— known_kwargs: Keyword arguments passed to ForceField.create_openmm_system are val-
idated against the known_kwargs lists of each ParameterHandler that the ForceField owns.
If present, these kwargs and their values will be passed on to the ParameterHandler.

— to_dict: converts the ParameterHandler to a hierarchical dict compliant with the
SMIRNOFF specification. The default implementation of this function should suffice for
most developers.

— check_handler_compatibility: Checks whether this ParameterHandler is “compatible”
with another. This function is used when a ForceField is attempted to be constructed from
multiple SMIRNOFF data sources, and it is necessary to check that two sections with the
same tagname can be combined in a sane way. For example, if the user instructed two vdw
sections to be read, but the sections defined different vdW potentials, then this function
should raise an Exception indicating that there is no safe way to combine the parameters.
The default implementation of this function should suffice for most developers.

— postprocess_system: operates identically to create_force, but is run after each Param-
eterHandlers’ create_force has already been called. The default implementation of this
method simply does nothing, and should suffice for most developers.

ParameterType
ToolkitRegistry
ToolkitRegistry.from_object / ToolkitRegistry.from_smiles / OpenEyeToolkitWrapper.from_openeye / RDKi{

* These methods are a bit strange because they are effectively classmethods
for FrozenMolecule and Molecule subclasses. In PR #583, jaimergp raised
a concern that effectively boils down to “if I subclass Molecule into a new
class, MyMol, then I expect MyMol.from_rdkit to return an instance of MyMol,
not Molecule. However, before this PR, methods like ToolkitRegistry.
from_smiles didn’t have any way to know what type of object they should
return, and instead always returned Molecule objects. So as of PR #583,
ToolkitRegistry methods that produce a Molecule must take a private parame-
ter, _cls, indicating the type of object to return. This parameter should be of
type type and should subclass FrozenMolecule, or otherwise expose Molecule.
_add_atom, ._add_bond, .add_conformer, and .partial_charges.

Molecule.to X
Molecule.from X

Force field directories

User Experience

One important aspect of how we make design decisions is by asking “who do we envision using this software,
and what would they want it to do here?”. There is a wide range of possible users, from non-chemists,
to students/trainees, to expert computational medicinal chemists. We have decided to build functionality
intended for use by expert medicinal chemists, and whenever possible, add fatal errors if the toolkit risks
doing the wrong thing. So, for example, if a molecule is loaded with an odd ionization state, we assume that
the user has input it this way intentionally. This design philosophy invariably has tradeoffs — For example,
the OFF Toolkit will give the user a hard time if they try to load a “dirty” molecule dataset, where some
molecules have errors or are not described in enough detail for the toolkit to unambiguously parametrize
them. If there is risk of misinterpreting the molecule (for example, bond orders being undefined or chiral
centers without defined stereochemistry), the toolkit should raise an error that the user can override. In

60 Chapter 1. User Guide


https://github.com/openforcefield/openforcefield/pull/583
https://github.com/openforcefield/openforcefield/pull/583

openforcefield Documentation, Release 0.8.4

this regard we differ from RDKit, which is more permissive in the level of detail it requires when creating
molecules. This makes sense for RDKit’s use cases, as several of its analyses can operate with a lower level of
detail about the molecules. Often, the same design decision is the best for all types of users, and there is no
need for discussion. But when we do need to make tradeoffs, “assume the user is an expert” is our guiding
principle.

At the same time, we aim for “automagic” behavior whenever a decision will clearly go one way over another.
System parametrization is an inherently complex topic, and the OFF toolkit would be nearly unusable if we
required the user to explicitly approve every aspect of the process. For example, if a Topology has its
box_vectors attribute defined, we assume that the resulting System should be periodic.

1.5.2 Setting up a development environment

1. Install the conda package manager as part of the Anaconda Distribution from here

2. Set up conda environment

# Create a conda environment with the Open Force Field toolkit and its dependencies

conda create --name openff-dev -c conda-forge -c omnia -c openeye openforcefield openeye-toolkits
conda activate openff-dev

# Remove (only) the toolkit and replace it with a local install

conda remove --force openforcefield

git clone https://github.com/openforcefield/openforcefield

cd openforcefield

pip install -e .

B RS R - A A

3. Obtain and store Open Eye license somewhere like ~/.0e_license.txt. Optionally store the path in
environmental variable OE_LICENSE, i.e. using a command like echo "export OE_LICENSE=/Users/
yournamehere/.oe_license.txt"” >> ~/.bashrc

1.5.3 Development Process

Development of new toolkit features generally proceeds in the following stages:

* Begin a discussion on the GitHub issue tracker to determine big-picture “what should this feature do?” and “do

«

— “... typically, for existing water models, we want to assign library charges”
* Start identifying details of the implementation that will be clear from the outset

— “Create a new “special section” in the SMIRNOFF format (kind of analogous to the Bond-
ChargeCorrections section) which allows SMIRKS patterns to specify use of library charges
for specific groups

— “Following #86, here’s how library charges might work: ...”
* Create a branch or fork for development

— The OFF Toolkit has one unusual aspect of its CI build process, which is that certain function-
ality requires the OpenEye toolkits, so the builds must contain a valid OpenEye license file.
An encrypted OpenEye license is present in the OFF Toolkit GitHub repository, as oe_license.
txt.enc. Only Travis has the decryption key for this file. However, this setup poses the risk
that anyone who can run Travis builds could simply print the contents of the license after
decryption, which would put us in violation of our academic contract with OpenEye. For this
reason, the OpenEye-dependent tests will be skipped on forks.

— Note that creating a fork will prevent the OpenEye license from being decrypted on Travis

1.5. Developing for the toolkit 61


https://www.anaconda.com/distribution/
http://github.com/openforcefield/openforcefield/issues
https://github.com/openforcefield/openforcefield/issues/25
https://github.com/openforcefield/openforcefield/issues/25#issue-225173968
https://github.com/openforcefield/openforcefield/issues/25#issue-225173968
https://github.com/openforcefield/openforcefield/issues/25#issue-225173968
https://github.com/openforcefield/openforcefield/issues/25#issuecomment-354636391

openforcefield Documentation, Release 0.8.4

1.5.4 Contributing

We always welcome GitHub pull requests. For bug fixes, major feature additions, or refactoring, please raise
an issue on the GitHub issue tracker first to ensure the design will be amenable to current developer plans.

1.5.5 How can | become a developer?

If you would like to contribute, please post an issue on the GitHub issue tracker describing the contribution
you would like to make to start a discussion.

1.5.6 Style guide

Development for the openforcefield toolkit conforms to the recommendations given by the Software De-
velopment Best Practices for Computational Chemistry guide.

The naming conventions of classes, functions, and variables follows PEP8, consistently with the best practices
guide. The naming conventions used in this library not covered by PEP8 are: - Use file_path, file_name,
and file_stem to indicate path/to/stem.extension, stem.extension, and stem respectively, consistently
with the variables in the standard pathlib library. - Use n_x to abbreviate “number of X' (e.g. n_atoms,
n_molecules).

We place a high priority on code cleanliness and readability, even if code could be written more compactly.
For example, 15-character variable names are fine. Triply nested list comprehensions are not.

The openforcefield toolkit is in the process of adopting code formatting tools (“linters”) to maintain con-
sistent style and remove the burden of adhering to these standards by hand. Currently, two are employed:
1. Black, the uncompromising code formatter, automatically formats code with a consistent style. 1. isort,
sorts imports

There is a step in CI that uses these tools to check for a consistent style. These checks will use the most
recent versions of each linter. To ensure that changes follow these standards, you can install and run these
tools locally:

$ conda install black isort -c conda-forge
$ black openforcefield
$ isort openforcefield

Anything not covered above is currently up to personal preference, but may change as new linters are added.

1.6 Frequently asked questions (FAQ)

1.6.1 Input files for applying SMIRNOFF parameters

SMIRNOFF force fields use direct chemical perception meaning that, unlike many molecular mechanics
(MM) force fields, they apply parameters based on substructure searches acting directly on molecules. This
creates unique opportunities and allows them to encode a great deal of chemistry quite simply, but it also
means that the starting point for parameter assignment must be well-defined chemically, giving not just the
elements and connectivity for all of the atoms of all of the components of your system, but also providing
the formal charges and bond orders.

Specifically, to apply SMIRNOFF to a system, you must either:

1. Provide Open Force Field Toolkit Molecule objects corresponding to the components of your system, or

62 Chapter 1. User Guide



https://github.com/openforcefield/openforcefield/pulls
http://github.com/openforcefield/openforcefield/issues
http://github.com/openforcefield/openforcefield/issues
https://github.com/choderalab/software-development
https://github.com/choderalab/software-development
https://www.python.org/dev/peps/pep-0008/
https://black.readthedocs.io/
https://timothycrosley.github.io/isort/

openforcefield Documentation, Release 0.8.4

2. Provide an OpenMM Topology which includes bond orders and thus can be converted to molecules
corresponding to the components of your system

Without this information, our direct chemical perception cannot be applied to your molecule, as it requires
the chemical identity of the molecules in your system — that is, bond order and formal charge as well as atoms
and connectivity. Unless you provide the full chemical identity in this sense, we must attempt to guess or infer
the chemical identity of your molecules, which is a recipe for trouble. Different molecules can have the same
chemical graph but differ in bond order and formal charge, or different resonance structures may be treated
rather differently by some force fields (e.g. clcc(ccclc2ec[nH+]cc2)[0-] vs C1=CC(C=CC1=C2C=CNC=C2)=0,
where the central bond is rotatable in one resonance structure but not in the other) even though they have
identical formal charge and connectivity (chemical graph). A force field which uses the chemical identity of
molecules to assign parameters needs to know the exact chemical identity of the molecule you are intending
to parameterize.

1.6.2 Can | use an AMBER (or GROMACS) topology/coordinate file as a starting point for
applying a SMIRNOFF force field?

In a word, “no”.

Parameter files used by typical molecular dynamics simulation packages do not currently encode enough
information to identify the molecules chemically present, or at least not without drawing inferences. For
example, one could take a structure file and infer bond orders based on bond lengths, or attempt to infer
bond orders from force constants in a parameter file. Such inference work is outside the scope of SMIRNOFF.

If you have such an inference problem, we recommend that you use pre-existing cheminformatics tools avail-
able elsewhere (such as via the OpenEye toolkits, such as the OEPerceiveBondOrders functionality offered
there) to solve this problem and identify your molecules before beginning your work with SMIRNOFF.

1.6.3 What about starting from a PDB file?

PDB files do not in general provide the chemical identity of small molecules contained therein, and thus do
not provide suitable starting points for applying SMIROFF to small molecules. This is especially problematic
for PDB files from X-ray crystallography which typically do not include proteins, making the problem even
worse. For our purposes here, however, we assume you begin with the coordinates of all atoms present and
the full topology of your system.

Given a PDB file of a hypothetical biomolecular system of interest containing a small molecule, there are
several routes available to you for treating the small molecule present:

e Use a cheminformatics toolkit (see above) to infer bond orders

* Identify your ligand from a database; e.g. if it is in the Protein Data Bank (PDB), it will be present
in the Ligand Expo meaning that it has a database entry and code you can use to look up its putative
chemical identity

* Identify your ligand by name or SMILES string (or similar) from the literature or your collaborators

1.6. Frequently asked questions (FAQ) 63


http://ligand-expo.rcsb.org

openforcefield Documentation, Release 0.8.4

1.6.4 What do you recommend as a starting point?

For application of SMIRNOFF force fields, we recommend that you begin your work with formats which
provide the chemical identity of your small molecule (including formal charge and bond order). This means
we recommend one of the following or equivalent:

* A .mol2 file or files for the molecules comprising your system, with correct bond orders and formal
charges. (Note: Do NOT generate this from a simulation package or tool which does not have access
to bond order information; you may end up with a .mol2 file, but the bond orders will be incorrect)

* Isomeric SMILES strings for the components of your system

* InCHI strings for the components of your system

* Chemical Identity Registry numbers for the components of your system
* IUPAC names for the components of your system

Essentially, anything which provides the full identity of what you want to simulate (including stereochem-
istry) should work, though it may require more or less work to get it into an acceptable format.

1.6.5 My conda installation of the toolkit doesn’t appear to work. What should | try next?

We recommend that you install the toolkit in a fresh conda environment, explicitly passing the channels to
be used, in-order:

conda create -n <my_new_env> -c conda-forge -c omnia openforcefield
conda activate <my_new_env>

Installing into a new environment avoids forcing conda to satisfy the dependencies of both the toolkit and
all existing packages in that environment. Taking the approach that conda environments are generally
disposable, even ephemeral, minimizes the chances for hard-to-diagnose dependency issues.

64 Chapter 1. User Guide




CHAPTER
TWO

API DOCUMENTATION

2.1 Molecular topology representations

This module provides pure-Python classes for representing molecules and molecular systems. These classes
offer several advantages over corresponding Topology objects in OpenMM and MDTraj, including offering
serialization to a variety of standard formats (including XML, JSON, YAML, BSON, TOML, and MessagePack).

2.1.1 Primary objects

FrozenMolecule Immutable chemical representation of a molecule,
such as a small molecule or biopolymer.

Molecule Mutable chemical representation of a molecule,
such as a small molecule or biopolymer.

Topology A Topology is a chemical representation of a system

containing one or more molecules appearing in a
specified order.

TopologyMolecule TopologyMolecules are built to be an efficient way
to store large numbers of copies of the same
molecule for parameterization and system prepa-

ration.
openforcefield.topology.FrozenMolecule
class openforcefield.topology.FrozenMolecule(other=None, file_format=None,
toolkit_registry="ToolkitRegistry containing

The RDKit, AmberTools, Built-in Toolkit, al-
low_undefined_stereo=False)
Immutable chemical representation of a molecule, such as a small molecule or biopolymer.

65


http://docs.openmm.org/latest/api-python/generated/simtk.openmm.app.topology.Topology.html#simtk.openmm.app.topology.Topology
http://mdtraj.org/latest/api/generated/mdtraj.Topology.html#mdtraj.Topology
https://www.w3.org/XML/
https://www.json.org/
http://yaml.org/
http://bsonspec.org/
https://github.com/toml-lang/toml
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Examples

Create a molecule from a sdf file

>>> from openforcefield.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = FrozenMolecule.from_file(sdf_filepath)

Convert to OpenEye OEMol object

’>>> oemol = molecule.to_openeye()

Create a molecule from an OpenEye molecule

’>>> molecule = FrozenMolecule.from_openeye(oemol)

Convert to RDKit Mol object

’>>> rdmol = molecule.to_rdkit()

Create a molecule from an RDKit molecule

’>>> molecule = FrozenMolecule.from_rdkit(rdmol)

Create a molecule from IUPAC name (requires the OpenEye toolkit)

’>>> molecule = FrozenMolecule.from_iupac('imatinib")

Create a molecule from SMILES

’>>> molecule = FrozenMolecule.from_smiles('Cclcccccl")

Warning: This API is experimental and subject to change.

Attributes

amber_impropers Iterate over improper torsions in the molecule, but only those with
trivalent centers, reporting the central atom first in each improper.

angles Get an iterator over all i-j-k angles.

atoms Iterate over all Atom objects.

bonds Iterate over all Bond objects.

conformers Returns the list of conformers for this molecule.

has_unique_atom_names True if the molecule has unique atom names, False otherwise.
hill_formula Get the Hill formula of the molecule

impropers Iterate over all improper torsions in the molecule.

n_angles int: number of angles in the Molecule.

n_atoms The number of Atom objects.

n_bonds The number of Bond objects.

n_conformers Returns the number of conformers for this molecule.

66 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

n_impropers int: number of possible improper torsions in the Molecule.

n_particles The number of Particle objects, which corresponds to how many positions
must be used.

n_propers int: number of proper torsions in the Molecule.

n_rings Return the number of rings found in the Molecule
n_virtual_particles The number of VirtualParticle objects.
n_virtual_sites The number of VirtualSite objects.

name The name (or title) of the molecule

partial_charges Returns the partial charges (if present) on the molecule.
particles Iterate over all Particle objects.

propers Iterate over all proper torsions in the molecule

properties The properties dictionary of the molecule

rings Return the number of rings in this molecule.

smirnoff_impropers Iterate over improper torsions in the molecule, but only those with
trivalent centers, reporting the central atom second in each improper.

torsions Get an iterator over all i-j-k-1 torsions.
total_charge Return the total charge on the molecule

virtual_sites Iterate over all VirtualSite objects.

Methods

apply_elf_conformer_selection([percentage,  Applies the ELF method to select a set of di-
D verse conformers which have minimal electro-
statically strongly interacting functional groups
from a molecules conformers.
are_isomorphic(moll, mol2[, ...]) Determines whether the two molecules are iso-
morphic by comparing their graph representa-
tions and the chosen node/edge attributes.
assign_fractional_bond_orders([...]) Update and store list of bond orders this
molecule.
assign_partial_charges(partial charge method) Calculate partial atomic charges for this
molecule using an underlying toolkit, and assign
the new values to the partial charges attribute.

canonical_order_atoms([toolkit registry]) Canonical order the atoms in a copy of the
molecule using a toolkit, returns a new copy.

chemical_environment_matches(queryl, ...1) Retrieve all matches for a given chemical envi-
ronment query.

compute_partial_charges_amlbcc([...]) Calculate partial atomic charges for this

molecule using AM1-BCC run by an underlying
toolkit and assign them to this molecule’s par-
tial _charges attribute.
enumerate_protomers([max_states]) Enumerate the formal charges of a molecule to
generate different protomoers.
continues on next page

2.1. Molecular topology representations 67


https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html#elf-conformer-selection

openforcefield Documentation, Release 0.8.4

Table 2 - continued from previous page

enumerate_stereoisomers([undefined only,

1)

Enumerate the stereocenters and bonds of the
current molecule.

enumerate_tautomers([max_states, ...])

Enumerate the possible tautomers of the current
molecule

find_rotatable_bonds([...])

Find all bonds classed as rotatable ignoring any
matched to the ignore_functional_groups list.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(molecule_dict)

Create a new Molecule from a dictionary repre-
sentation

from_file(file_pathl, file format,...])

Create one or more molecules from a file

from_inchi(inchil, allow_undefined_stereo,

D)

Construct a Molecule from a InChl representa-
tion

from_iupac(iupac_namel, toolkit registry, ...])

Generate a molecule from IUPAC or common
name

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_mapped_smiles(mapped smiles], ...])

openforce-
from a

Create an
field.topology.molecule.Molecule
mapped SMILES made with cmiles.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_openeye(oemol[, al-

low_undefined_stereo])

Create a Molecule from an OpenEye molecule.

from_pdb_and_smiles(file_path, smiles[, ...])

Create a Molecule from a pdb file and a SMILES
string using RDKit.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_qgcschema(qca_record|, client, ...])

Create a Molecule from a QCArchive molecule
record or dataset entry based on attached cmiles
information.

from_rdkit(rdmoll[, allow undefined stereo])

Create a Molecule from an RDKit molecule.

from_smiles(smiles[, ...])

Construct a Molecule from a SMILES represen-
tation

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_topology(topology)

Return a Molecule representation of an OpenFF
Topology containing a single Molecule object.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

generate_conformers([toolkit registry, ... 1)

Generate conformers for this molecule using an
underlying toolkit.

generate_unique_atom_names()

Generate unique atom names using element
name and number of times that element has oc-
curred e.g.

get_bond_between(, j)

Returns the bond between two atoms

continues on next page

68

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 2 - continued from previous page

is_isomorphic_with(other, **kwargs)

Check if the molecule is isomorphic with the
other molecule which can be an openforce-
field.topology.Molecule, or TopologyMolecule or
nx.Graph().

remap(mapping_dict[, current_to_new])

Remap all of the indexes in the molecule to
match the given mapping dict

strip_atom_stereochemistry(smarts[, ...])

Delete stereochemistry information for certain
atoms, if it is present.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dictionary representation of the
molecule.

to_file(file_path, file format[,...])

Write the current molecule to a file or file-like
object

to_hill_formula(molecule)

Generate the Hill formula from either a Frozen-
Molecule, TopologyMolecule or nx.Graph() of
the molecule

to_inchi([fixed_hydrogens, toolkit registry])

Create an InChlI string for the molecule using the
requested toolkit backend.

to_inchikey([fixed hydrogens,
toolkit_registry])

Create an InChIKey for the molecule using the
requested toolkit backend.

to_iupac([toolkit_registry])

Generate IUPAC name from Molecule

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_networkx()

Generate a NetworkX undirected graph from the
Molecule.

to_openeye([aromaticity_model])

Create an OpenEye molecule

to_pickle()

Return a pickle serialized representation.

to_gcschema([multiplicity, conformer, extras])

Create a QCElemental Molecule.

to_rdkit([aromaticity model])

Create an RDKit molecule

to_smiles([isomeric, explicit_hydrogens, ...])

Return a canonical isomeric SMILES representa-
tion of the current molecule.

to_toml()

Return a TOML serialized representation.

to_topology()

Return an OpenFF Topology representation con-
taining one copy of this molecule

to_xml([indent])

Return an XML representation.

to_yaml()

Return a YAML serialized representation.

__init__(other=None, file_format=None, toolkit registry="ToolkitRegistry containing The RDKit,
AmberTools, Built-in Toolkit, allow_undefined_stereo=False)

Create a new FrozenMolecule object

Parameters

other [optional, default=None] If specified, attempt to construct a copy of the
Molecule from the specified object. This can be any one of the following:

* aMolecule object

* afile that can be used to construct a Molecule object

* an openeye.oechem.0EMol

e an rdkit.Chem.rdchem.Mol

* aserialized Molecule object

. Molecular topology representations

69



openforcefield Documentation, Release 0.8.4

file format [str, optional, default=None] If providing a file-like object, you must
specify the format of the data. If providing a file, the file format will attempt to be
guessed from the suffix.

toolkit_registry [a ToolkitRegistry or] ToolkitWrapper object, optional, de-
fault=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or ToolkitWrapper to use
for I/0 operations

allow_undefined_stereo [bool, default=False] If loaded from a file and False,
raises an exception if undefined stereochemistry is detected during the molecule’s
construction.

Examples

Create an empty molecule:

>>> empty_molecule = FrozenMolecule()

Create a molecule from a file that can be used to construct a molecule, using either a filename or
file-like object:

>>> from openforcefield.utils import get_data_file_path

>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")

>>> molecule = FrozenMolecule(sdf_filepath)

>>> molecule = FrozenMolecule(open(sdf_filepath, 'r'), file_format='sdf")

>>> import gzip
>>> mol2_gz_filepath = get_data_file_path('molecules/toluene.mol2.gz")
>>> molecule = FrozenMolecule(gzip.GzipFile(mol2_gz_filepath, 'r'), file_format='mol2')

Create a molecule from another molecule:

’>>> molecule_copy = FrozenMolecule(molecule)

Convert to OpenEye OEMol object

’>>> oemol = molecule.to_openeye()

Create a molecule from an OpenEye molecule:

’>>> molecule = FrozenMolecule(oemol)

Convert to RDKit Mol object

’>>> rdmol = molecule.to_rdkit()

Create a molecule from an RDKit molecule:

’>>> molecule = FrozenMolecule(rdmol)

Create a molecule from a serialized molecule object:

>>> serialized_molecule = molecule.__getstate__()
>>> molecule_copy = Molecule(serialized_molecule)

70 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods

__init__([other, file format,...])

Create a new FrozenMolecule object

apply_elf_conformer_selection([percentage,

D

Applies the ELF method to select a set of di-
verse conformers which have minimal electro-
statically strongly interacting functional groups
from a molecules conformers.

are_isomorphic(moll, mol2[, ...])

Determines whether the two molecules are iso-
morphic by comparing their graph representa-
tions and the chosen node/edge attributes.

assign_fractional_bond_orders([...])

Update and store list of bond orders this
molecule.

assign_partial_charges(partial charge method) Calculate partial atomic charges

for this
molecule using an underlying toolkit, and assign
the new values to the partial charges attribute.

canonical_order_atoms([toolkit registry])

Canonical order the atoms in a copy of the
molecule using a toolkit, returns a new copy.

chemical_environment_matches(queryl[,...])

Retrieve all matches for a given chemical envi-
ronment query.

compute_partial_charges_amlbcc([...])

Calculate partial atomic charges for this
molecule using AM1-BCC run by an underlying
toolkit and assign them to this molecule’s par-
tial charges attribute.

enumerate_protomers([max_states])

Enumerate the formal charges of a molecule to
generate different protomoers.

enumerate_stereoisomers([undefined only,

)]

Enumerate the stereocenters and bonds of the
current molecule.

enumerate_tautomers([max_states, ...])

Enumerate the possible tautomers of the current
molecule

find_rotatable_bonds([...])

Find all bonds classed as rotatable ignoring any
matched to the ignore_functional_groups list.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(molecule_dict)

Create a new Molecule from a dictionary repre-
sentation

from_file(file_pathl, file format,...])

Create one or more molecules from a file

from_inchi(inchil, allow_undefined_stereo,

)]

Construct a Molecule from a InChl representa-
tion

from_iupac(iupac_namel, toolkit_registry, ...])

Generate a molecule from IUPAC or common
name

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_mapped_smiles(mapped smiles[, ...])

Create an
field.topology.molecule.Molecule
mapped SMILES made with cmiles.

openforce-
from a

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_openeye(oemol[, al-

low_undefined_stereo])

Create a Molecule from an OpenEye molecule.

continues on next page

2.1. Molecular topology representations

71


https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html#elf-conformer-selection

openforcefield Documentation, Release 0.8.4

Table 3 - continued from previous page

from_pdb_and_smiles(file_path, smiles[, ...])

Create a Molecule from a pdb file and a SMILES
string using RDKit.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_qgcschema(qca_record[, client, ...])

Create a Molecule from a QCArchive molecule
record or dataset entry based on attached cmiles
information.

from_rdkit(rdmol[, allow_undefined_stereo])

Create a Molecule from an RDKit molecule.

from_smiles(smiles[, ...])

Construct a Molecule from a SMILES represen-
tation

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_topology(topology)

Return a Molecule representation of an OpenFF
Topology containing a single Molecule object.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

generate_conformers([toolkit registry, ...])

Generate conformers for this molecule using an
underlying toolKkit.

generate_unique_atom_names()

Generate unique atom names using element
name and number of times that element has oc-
curred e.g.

get_bond_between(i, j)

Returns the bond between two atoms

is_isomorphic_with(other, **kwargs)

Check if the molecule is isomorphic with the
other molecule which can be an openforce-
field.topology.Molecule, or TopologyMolecule or
nx.Graph().

remap(mapping_dict[, current_to_new])

Remap all of the indexes in the molecule to
match the given mapping dict

strip_atom_stereochemistry(smarts[, ...])

Delete stereochemistry information for certain
atoms, if it is present.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dictionary representation of the
molecule.

to_file(file_path, file formatl[,...])

Write the current molecule to a file or file-like
object

to_hill_formula(molecule)

Generate the Hill formula from either a Frozen-
Molecule, TopologyMolecule or nx.Graph() of
the molecule

to_inchi([fixed_hydrogens, toolkit registry])

Create an InChlI string for the molecule using the
requested toolkit backend.

to_inchikey([fixed hydrogens,
toolkit_registry])

Create an InChlKey for the molecule using the
requested toolkit backend.

to_iupac([toolkit_registry])

Generate IUPAC name from Molecule

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_networkx()

Generate a NetworkX undirected graph from the
Molecule.

to_openeye([aromaticity model])

Create an OpenEye molecule

to_pickle()

Return a pickle serialized representation.

continues on next page

72

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 3 - continued from previous page

to_qgcschema([multiplicity, conformer, extras])

Create a QCElemental Molecule.

to_rdkit([aromaticity model])

Create an RDKit molecule

to_smiles([isomeric, explicit_hydrogens, ...])

Return a canonical isomeric SMILES representa-
tion of the current molecule.

to_toml()

Return a TOML serialized representation.

to_topology()

Return an OpenFF Topology representation con-
taining one copy of this molecule

to_xml([indent])

Return an XML representation.

to_yaml()

Return a YAML serialized representation.

Attributes

amber_impropers

Iterate over improper torsions in the molecule,
but only those with trivalent centers, reporting
the central atom first in each improper.

angles Get an iterator over all i-j-k angles.

atoms Iterate over all Atom objects.

bonds Iterate over all Bond objects.

conformers Returns the list of conformers for this molecule.

has_unique_atom_names

True if the molecule has unique atom names,
False otherwise.

hill_formula

Get the Hill formula of the molecule

impropers Iterate over all improper torsions in the
molecule.

n_angles int: number of angles in the Molecule.

n_atoms The number of Atom objects.

n_bonds The number of Bond objects.

n_conformers

Returns the number of conformers for this
molecule.

n_impropers

int: number of possible improper torsions in the
Molecule.

n_particles

The number of Particle objects, which corre-
sponds to how many positions must be used.

n_propers

int: number of proper torsions in the Molecule.

n_rings

Return the number of rings found in the
Molecule

n_virtual_particles

The number of VirtualParticle objects.

n_virtual_sites

The number of VirtualSite objects.

name

The name (or title) of the molecule

partial_charges

Returns the partial charges (if present) on the
molecule.

particles Iterate over all Particle objects.

propers Iterate over all proper torsions in the molecule
properties The properties dictionary of the molecule
rings Return the number of rings in this molecule.

smirnoff_impropers

Iterate over improper torsions in the molecule,
but only those with trivalent centers, reporting
the central atom second in each improper.

torsions

Get an iterator over all i-j-k-1 torsions.

continues on next page

2.1. Molecular topology representations

73



openforcefield Documentation, Release 0.8.4

Table 4 - continued from previous page
total_charge Return the total charge on the molecule
virtual_sites Iterate over all VirtualSite objects.

property has_unique_atom_names
True if the molecule has unique atom names, False otherwise.

generate_unique_atom_names ()
Generate unique atom names using element name and number of times that element has occurred
e.g. ‘C1’, ‘HY1’, ‘01, ‘C2, ...

strip_atom_stereochemistry(smarts, toolkit_registry="ToolkitRegistry containing The RDKit, Am-

berTools, Built-in Toolkit)
Delete stereochemistry information for certain atoms, if it is present. This method can be used

to “normalize” molecules imported from different cheminformatics toolkits, which differ in which
atom centers are considered stereogenic.

Parameters

smarts: str or ChemicalEnvironment Tagged SMARTS with a single atom with in-
dex 1. Any matches for this atom will have any assigned stereocheistry information
removed.

toolkit_registry [a ToolkitRegistry or ToolkitWrapper object, optional, de-
fault=GLOBAL _TOOLKIT REGISTRY] ToolkitRegistry or ToolkitWrapper to use
for 1I/0 operations

to_dict()
Return a dictionary representation of the molecule.

Returns
molecule_dict [OrderedDict] A dictionary representation of the molecule.

classmethod from_dict(molecule dict)
Create a new Molecule from a dictionary representation

Parameters

molecule_dict [OrderedDict] A dictionary representation of the molecule.
Returns

molecule [Molecule] A Molecule created from the dictionary representation

to_smiles(isomeric="True, explicit_hydrogens=True, mapped=False,
toolkit_registry="ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit)
Return a canonical isomeric SMILES representation of the current molecule. A partially mapped
smiles can also be generated for atoms of interest by supplying an atom_map to the properties
dictionary.

Note: RDKit and OpenEye versions will not necessarily return the same representation.

Parameters
isomeric: bool optional, default= True return an isomeric smiles

explicit_hydrogens: bool optional, default=True return a smiles string containing
all hydrogens explicitly

74 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

mapped: bool optional, default=False return a explicit hydrogen mapped smiles,
the atoms to be mapped can be controlled by supplying an atom map into the
properties dictionary. If no mapping is passed all atoms will be mapped in order,
else an atom map dictionary from the current atom index to the map id should be
supplied with no duplicates. The map ids (values) should start from O or 1.

toolkit_registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES conversion

Returns

smiles [str] Canonical isomeric explicit-hydrogen SMILES

Examples

>>> from openforcefield.utils import get_data_file_path

>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = Molecule(sdf_filepath)

>>> smiles = molecule.to_smiles()

classmethod from_inchi(inchi, allow undefined stereo=False, toolkit registry="ToolkitRegistry
containing The RDKit, AmberTools, Built-in Toolkit)
Construct a Molecule from a InChl representation

Parameters
inchi [str] The InChl representation of the molecule.

allow_undefined_stereo [bool, default=False] Whether to accept InChI with unde-
fined stereochemistry. If False, an exception will be raised if a InChI with undefined
stereochemistry is passed into this function.

toolkit_registry [openforcefield.utils.toolkits.ToolRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for InChl-to-molecule conversion

Returns

molecule [openforcefield.topology.Molecule]

Examples

make cis-1,2-Dichloroethene >>> molecule = Molecule.from_inchi(‘InChI=1S/C2H2Cl2/c3-1-
2-4/h1-2H/b2-1-9

to_inchi(fixed_hydrogens=False, toolkit registry=ToolkitRegistry containing The RDKit, Amber-
Tools, Built-in Toolkit)
Create an InChl string for the molecule using the requested toolkit backend. InChl is a standard-

ised representation that does not capture tautomers unless specified using the fixed hydrogen
layer.

For information on InChi see here https://iupac.org/who-we-are/divisions/division-details/
inchi/

Parameters

2.1. Molecular topology representations 75


https://iupac.org/who-we-are/divisions/division-details/inchi/
https://iupac.org/who-we-are/divisions/division-details/inchi/

openforcefield Documentation, Release 0.8.4

fixed_hydrogens: bool, default=False If a fixed hydrogen layer should be added
to the InChl, if True this will produce a non standard specific InChI string of the
molecule.

toolkit_registry [openforcefield.utils.toolkits.ToolRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for molecule-to-InChI conversion

Returns
inchi: str The InChlI string of the molecule.
Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit_registry pa-
rameter

to_inchikey (fixed_hydrogens=False, toolkit_registry="ToolkitRegistry containing The RDKit, Am-
berTools, Built-in Toolkit)
Create an InChIKey for the molecule using the requested toolkit backend. InChiIKey is a standard-
ised representation that does not capture tautomers unless specified using the fixed hydrogen

layer.
For information on InChi see here https://iupac.org/who-we-are/divisions/division-details/
inchi/
Parameters
fixed_hydrogens: bool, default=False If a fixed hydrogen layer should be added
to the InChl, if True this will produce a non standard specific InChI string of the
molecule.
toolkit_registry [openforcefield.utils.toolkits.ToolRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for molecule-to-InChIKey conversion
Returns
inchi_key: str The InChlIKey representation of the molecule.
Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit_registry pa-
rameter

classmethod from_smiles(smiles, hydrogens are_explicit=False, toolkit registry="ToolkitRegistry
containing The RDKit, AmberTools, Built-in Toolkit, al-

low_undefined_stereo=False)
Construct a Molecule from a SMILES representation

Parameters
smiles [str] The SMILES representation of the molecule.

hydrogens_are_explicit [bool, default = False] If False, the cheminformatics toolkit
will perform hydrogen addition

toolkit_registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

allow_undefined_stereo [bool, default=False] Whether to accept SMILES with un-
defined stereochemistry. If False, an exception will be raised if a SMILES with
undefined stereochemistry is passed into this function.

76 Chapter 2. API documentation


https://iupac.org/who-we-are/divisions/division-details/inchi/
https://iupac.org/who-we-are/divisions/division-details/inchi/

openforcefield Documentation, Release 0.8.4

Returns

molecule [openforcefield.topology.Molecule]

Examples

>>> molecule = Molecule.from_smiles('Cclcccccl')

static are_isomorphic(moll, mol2, return_atom_map=False, aro-
matic_matching=True, formal _charge matching=True,
bond_order_matching=True, atom_stereochemistry _matching=True,

bond_stereochemistry matching="True, strip_pyrimidal n_atom_stereo="True,
toolkit_registry="ToolkitRegistry containing The RDKit, AmberTools, Built-

in Toolkit)
Determines whether the two molecules are isomorphic by comparing their graph representations

and the chosen node/edge attributes. Minimally connections and atomic_number are checked.

If nx.Graphs() are given they must at least have atomic_number attributes on nodes. other op-
tional attributes for nodes are: is aromatic, formal charge and stereochemistry. optional at-
tributes for edges are: is_aromatic, bond_order and stereochemistry.

Warning: This API is experimental and subject to change.

Parameters

moll [an openforcefield.topology.molecule.FrozenMolecule or TopologyMolecule or
nx.Graph()]

mol2 [an openforcefield.topology.molecule.FrozenMolecule or TopologyMolecule or
nx.Graph()] The molecule to test for isomorphism.

return_atom_map: bool, default=False, optional will return an optional dict con-
taining the atomic mapping.

aromatic_matching: bool, default=True, optional compare the aromatic at-
tributes of bonds and atoms.

formal charge matching: bool, default=True, optional compare the formal
charges attributes of the atoms.

bond_order_matching: bool, deafult=True, optional compare the bond order on
attributes of the bonds.

atom_stereochemistry_matching [bool, default=True, optional] If False, atoms’
stereochemistry is ignored for the purpose of determining equality.

bond_stereochemistry_matching [bool, default=True, optional] If False, bonds’
stereochemistry is ignored for the purpose of determining equality.

strip_pyrimidal_n_atom_stereo: bool, default=True, optional If True, any stere-
ochemistry defined around pyrimidal nitrogen stereocenters will be disregarded in
the isomorphism check.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for removing stereochemistry from pyrimidal nitrogens.

Returns

2.1. Molecular topology representations 77



openforcefield Documentation, Release 0.8.4

molecules_are _isomorphic [bool]

atom_map [default=None, Optional,] [Dict[int,int]] ordered by moll indexing
{moll_index: mol2_index} If molecules are not isomorphic given input arguments,
will return None instead of dict.

is_isomorphic_with(other, **kwargs)
Check if the molecule is isomorphic with the other molecule which can be an openforce-
field.topology.Molecule, or TopologyMolecule or nx.Graph(). Full matching is done using the
options described bellow.

Warning: This API is experimental and subject to change.

Parameters
other: openforcefield.topology.Molecule or TopologyMolecule or nx.Graph()

return_atom_map: bool, default=False, optional will return an optional dict con-
taining the atomic mapping.

aromatic_matching: bool, default=True, optional
compare the aromatic attributes of bonds and atoms.
formal_charge_matching: bool, default=True, optional
compare the formal charges attributes of the atoms.
bond_order_matching: bool, deafult=True, optional
compare the bond order on attributes of the bonds.

atom_stereochemistry_matching [bool, default=True, optional] If False, atoms’
stereochemistry is ignored for the purpose of determining equality.

bond_stereochemistry_matching [bool, default=True, optional] If False, bonds’
stereochemistry is ignored for the purpose of determining equality.

strip_pyrimidal n_atom_stereo: bool, default=True, optional If True, any stere-
ochemistry defined around pyrimidal nitrogen stereocenters will be disregarded in
the isomorphism check.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for removing stereochemistry from pyrimidal nitrogens.

Returns

isomorphic [bool]

generate_conformers(toolkit registry="ToolkitRegistry containing The RDKit, AmberTools, Built-in
Toolkit, n_conformers=10, rms_cutoff=None, clear_existing=True)
Generate conformers for this molecule using an underlying toolkit. If n_conformers=0, no toolkit
wrapper will be called. If n_conformers=0 and clear existing=True, molecule.conformers will be
set to None.

Parameters

toolkit_registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

78 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

n_conformers [int, default=1] The maximum number of conformers to produce

rms_cutoff [simtk.Quantity-wrapped float, in units of distance, optional, de-
fault=None] The minimum RMS value at which two conformers are considered
redundant and one is deleted. Precise implementation of this cutoff may be toolkit-
dependent. If None, the cutoff is set to be the default value for each ToolkitWrapper
(generally 1 Angstrom).

clear_existing [bool, default=True] Whether to overwrite existing conformers for
the molecule

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit registry pa-
rameter

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.generate_conformers()

apply_elf_conformer_selection(percentage: float = 2.0, limit: int = 10, toolkit registry: Op-
tional[Union[openforcefield.utils.toolkits. ToolkitRegistry, open-
forcefield.utils.toolkits. ToolkitWrapper]] = ToolkitRegistry con-
taining The RDKit, AmberTools, Built-in Toolkit, **kwargs)
Applies the ELF method to select a set of diverse conformers which have minimal electrostatically
strongly interacting functional groups from a molecules conformers.

Parameters
toolkit_registry The underlying toolkit to use to select the ELF conformers.

percentage The percentage of conformers with the lowest electrostatic interaction
energies to greedily select from.

limit The maximum number of conformers to select.

See also:

OpenEyeToolkitWrapper.apply_elf_conformer_selection

RDKitToolkitWrapper.apply_elf_conformer_selection

Notes

* The input molecule should have a large set of conformers already generated to select the ELF
conformers from.

* The selected conformers will be retained in the conformers list while unselected conformers
will be discarded.

compute_partial_charges_amlbcc(use conformers=None, strict n_conformers=False,
toolkit registry=ToolkitRegistry containing The RDKit, Amber-
Tools, Built-in Toolkit)
Calculate partial atomic charges for this molecule using AM1-BCC run by an underlying toolkit
and assign them to this molecule’s partial _charges attribute.

Parameters

2.1. Molecular topology representations 79


https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html#elf-conformer-selection

openforcefield Documentation, Release 0.8.4

strict n_conformers [bool, default=False] Whether to raise an exception if an in-
valid number of conformers is provided for the given charge method. If this is False
and an invalid number of conformers is found, a warning will be raised.

use_conformers [iterable of simtk.unit.Quantity-wrapped numpy arrays, each with
shape (n_atoms, 3) and dimension of distance. Optional, default=None] Coor-
dinates to use for partial charge calculation. If None, an appropriate number of
conformers for the given charge method will be generated.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for the calculation

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit registry pa-
rameter

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.generate_conformers()
>>> molecule.compute_partial_charges_amlbcc()

assign_partial_charges(partial_charge _method, strict_n_conformers=False,
use_conformers=None,  toolkit registry=ToolkitRegistry = containing
The RDKit, AmberTools, Built-in Toolkit)
Calculate partial atomic charges for this molecule using an underlying toolkit, and assign the new
values to the partial charges attribute.

Parameters

partial_charge _method [string] The partial charge calculation method to use for
partial charge calculation.

strict_n_conformers [bool, default=False] Whether to raise an exception if an in-
valid number of conformers is provided for the given charge method. If this is False
and an invalid number of conformers is found, a warning will be raised.

use_conformers [iterable of simtk.unit.Quantity-wrapped numpy arrays, each with
shape (n_atoms, 3) and dimension of distance. Optional, default=None] Coor-
dinates to use for partial charge calculation. If None, an appropriate number of
conformers will be generated.

toolkit_registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for the calculation.

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit registry pa-
rameter

80 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.assign_partial_charges('ami-mulliken")

assign_fractional_bond_orders(bond order_model=None, toolkit_registry="ToolkitRegistry
containing The RDKit, AmberTools, Built-in Toolkit,

use_conformers=None)
Update and store list of bond orders this molecule. Bond orders are stored on each bond, in the

bond.fractional_bond_order attribute.

Warning: This API is experimental and subject to change.

Parameters

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

bond_order model [string, optional. Default=None] The bond order model to use
for fractional bond order calculation. If None, “am1-wiberg” will be used.

use_conformers [iterable of simtk.unit.Quantity(np.array) with shape (n_atoms, 3)
and dimension of distance, optional, default=None] The conformers to use for
fractional bond order calculation. If None, an appropriate number of conformers
will be generated by an available ToolkitWrapper.

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit_registry pa-
rameter

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.assign_fractional_bond_orders()

to_networkx()
Generate a NetworkX undirected graph from the Molecule.

Nodes are Atoms labeled with particle indices and atomic elements (via the element node atr-
ribute). Edges denote chemical bonds between Atoms. Virtual sites are not included, since they
lack a concept of chemical connectivity.

Returns

graph [networkx.Graph] The resulting graph, with nodes (atoms) labeled with atom
indices, elements, stereochemistry and aromaticity flags and bonds with two atom
indices, bond order, stereochemistry, and aromaticity flags

2.1. Molecular topology representations 81



openforcefield Documentation, Release 0.8.4

Examples

Retrieve the bond graph for imatinib (OpenEye toolkit required)

>>> molecule = Molecule.from_iupac('imatinib")
>>> nxgraph = molecule.to_networkx()

find_rotatable_bonds (ignore_functional groups=None, toolkit registry=ToolkitRegistry contain-
ing The RDKit, AmberTools, Built-in Toolkit)
Find all bonds classed as rotatable ignoring any matched to the ignore_functional_groups list.

Parameters

ignore functional groups: optional, List[str], default=None, A list of bond
SMARTS patterns to be ignored when finding rotatable bonds.

toolkit_registry: openforcefield.utils.toolkits.ToolkitRegistry or openforcefield.utils.toolkits.Toolkit\
ToolkitRegistry or ToolkitWrapper to use for SMARTS matching

Returns

bonds: List[openforcefield.topology.molecule.Bond] The list of openforce-
field.topology.molecule.Bond instances which are rotatable.

property partial_charges
Returns the partial charges (if present) on the molecule.

Returns

partial_charges [a simtk.unit.Quantity - wrapped numpy array [1 x n_atoms] or
None] The partial charges on this Molecule’s atoms. Returns None if no charges
have been specified.

property n_particles
The number of Particle objects, which corresponds to how many positions must be used.

property n_atoms
The number of Atom objects.

property n_virtual_sites
The number of VirtualSite objects.

property n_virtual_particles
The number of VirtualParticle objects.

property n_bonds
The number of Bond objects.

property n_angles
int: number of angles in the Molecule.

property n_propers
int: number of proper torsions in the Molecule.

property n_impropers
int: number of possible improper torsions in the Molecule.

property n_rings
Return the number of rings found in the Molecule

Requires the RDKit to be installed.

82 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Note: For systems containing some special cases of connected rings, this function may not be
well-behaved and may report a different number rings than expected. Some problematic cases
include networks of many (5+) rings or bicyclic moieties (i.e. norbornane).

property particles
Iterate over all Particle objects.

property atoms
Iterate over all Atom objects.

property conformers
Returns the list of conformers for this molecule. This returns a list of simtk.unit.Quantity-wrapped
numpy arrays, of shape (3 x n_atoms) and with dimensions of distance. The return value is the
actual list of conformers, and changes to the contents affect the original FrozenMolecule.

property n_conformers
Returns the number of conformers for this molecule.

property virtual_sites
Iterate over all VirtualSite objects.

property bonds
Iterate over all Bond objects.

property angles
Get an iterator over all i-j-k angles.

property torsions
Get an iterator over all i-j-k-1 torsions. Note that i-j-k-i torsions (cycles) are excluded.

Returns
torsions [iterable of 4-Atom tuples]

property propers
Iterate over all proper torsions in the molecule

property impropers
Iterate over all improper torsions in the molecule.

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion.

See also:
smirnoff_impropers, amber_impropers

property smirnoff_impropers
Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the
central atom second in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend
on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current
SMIRNOFF parameterization, three of these six orderings will be used for the actual assignment
of the improper term and measurement of the angles. These three orderings capture the three

2.1. Molecular topology representations 83



openforcefield Documentation, Release 0.8.4

unique angles that could be calculated around the improper center, therefore the sum of these
three terms will always return a consistent energy.

The exact three orderings that will be applied during parameterization can not be determined in
this method, since it requires sorting the particle indices, and those indices may change when this
molecule is added to a Topology.

For more details on the use of three-fold (‘trefoil’) impropers, see https://open-forcefield-toolkit.
readthedocs.io/en/latest/smirnoff.html#impropertorsions

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed second in each
tuple.

See also:

impropers, amber_impropers

property amber_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the
central atom first in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend
on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current
AMBER parameterization, one of these six orderings will be used for the actual assignment of
the improper term and measurement of the angle. This method does not encode the logic to
determine which of the six orderings AMBER would use.

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed first in each
tuple.

See also:

impropers, smirnoff_impropers

property total_charge

Return the total charge on the molecule

property name

The name (or title) of the molecule

property properties

The properties dictionary of the molecule

property hill_formula

Get the Hill formula of the molecule

static to_hill_formula(molecule)

Generate the Hill formula from either a FrozenMolecule, TopologyMolecule or nx.Graph() of the
molecule

Parameters

molecule [FrozenMolecule, TopologyMolecule or nx.Graph()]

84

Chapter 2. API documentation


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions

openforcefield Documentation, Release 0.8.4

Returns
formula [the Hill formula of the molecule]
Raises
NotImplementedError [if the molecule is not of one of the specified types.]

chemical_environment_matches(query, toolkit registry="ToolkitRegistry containing The RDKit, Am-
berTools, Built-in Toolkit)
Retrieve all matches for a given chemical environment query.

Parameters

query [str or ChemicalEnvironment] SMARTS string (with one or more tagged
atoms) or ChemicalEnvironment query Query will internally be resolved to SMIRKS
using query.asSMIRKS() if it has an .asSMIRKS method.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or
openforcefield.utils.toolkits. ToolkitWrapper, optional, de-
fault=GLOBAL _TOOLKIT REGISTRY] ToolkitRegistry or ToolkitWrapper
to use for chemical environment matches

Returns

matches [list of atom index tuples] A list of tuples, containing the indices of the
matching atoms.

Examples

Retrieve all the carbon-carbon bond matches in a molecule

>>> molecule = Molecule.from_iupac('imatinib")
>>> matches = molecule.chemical_environment_matches('[#6X3:1]~[#6X3:2]1")

classmethod from_iupac(iupac_name, toolkit registry=ToolkitRegistry containing The RDKit, Am-
berTools, Built-in Toolkit, allow _undefined_stereo=False, **kwargs)
Generate a molecule from IUPAC or common name

Parameters
iupac_name [str] IUPAC name of molecule to be generated

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or
openforcefield.utils.toolkits. ToolkitWrapper, optional, de-
fault=GLOBAL_TOOLKIT REGISTRY] ToolkitRegistry or ToolkitWrapper
to use for chemical environment matches

allow_undefined_stereo [bool, default=False] If false, raises an exception if
molecule contains undefined stereochemistry.

Returns

molecule [Molecule] The resulting molecule with position

Note: This method requires the OpenEye toolkit to be installed. ..

2.1. Molecular topology representations 85




openforcefield Documentation, Release 0.8.4

Examples

Create a molecule from an IUPAC name

>>> molecule = Molecule.from_iupac('4-[(4-methylpiperazin-T1-yl)methyl]-N-(4-methyl-3-{[4-
— (pyridin-3-yl)pyrimidin-2-yl]amino}phenyl)benzamide')

Create a molecule from a common name

>>> molecule = Molecule.from_iupac('imatinib")

to_iupac(toolkit registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit)
Generate IUPAC name from Molecule

Returns

iupac_name [str] IUPAC name of the molecule

Note: This method requires the OpenEye toolkit to be installed. ..

Examples

>>> from openforcefield.utils import get_data_file_path

>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = Molecule(sdf_filepath)

>>> iupac_name = molecule.to_iupac()

classmethod from_topology (topology)
Return a Molecule representation of an OpenFF Topology containing a single Molecule object.

Parameters

topology [openforcefield.topology.Topology] The Topology object containing a sin-
gle Molecule object. Note that OpenMM and MDTraj Topology objects are not
supported.

Returns
molecule [openforcefield.topology.Molecule] The Molecule object in the topology
Raises

ValueError If the topology does not contain exactly one molecule.

Examples

Create a molecule from a Topology object that contains exactly one molecule

>>> molecule = Molecule.from_topology(topology)

to_topology()
Return an OpenFF Topology representation containing one copy of this molecule

Returns

topology [openforcefield.topology.Topology] A Topology representation of this
molecule

86 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Examples

>>> molecule = Molecule.from_iupac('imatinib")
>>> topology = molecule.to_topology()

classmethod from_file(file path, file format=None, toolkit registry="ToolkitRegistry containing
The RDKit, AmberTools, Built-in Toolkit, allow _undefined_stereo=False)
Create one or more molecules from a file

Parameters

file_path [str or file-like object] The path to the file or file-like object to stream one
or more molecules from.

file_format [str, optional, default=None] Format specifier, usually file suffix (eg.
‘MOL2’, ‘SMI') Note that not all toolkits support all formats. Check ToolkitWrap-
per.toolkit file read formats for your loaded toolkits for details.

toolkit _registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, ]

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use for file loading. If a Toolkit is passed, only the highest-
precedence toolkit is used

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns

molecules [Molecule or list of Molecules] If there is a single molecule in the file, a
Molecule is returned; otherwise, a list of Molecule objects is returned.

Examples

>>> from openforcefield.tests.utils import get_monomer_mol2_file_path
>>> mol2_file_path = get_monomer_mol2_file_path('cyclohexane")
>>> molecule = Molecule.from_file(mol2_file_path)

to_file(file path, file format, toolkit registry=ToolkitRegistry containing The RDKit, AmberTools,
Built-in Toolkit)
Write the current molecule to a file or file-like object

Parameters
file_path [str or file-like object] A file-like object or the path to the file to be written.

file format [str] Format specifier, one of ['MOL2’, ‘MOL2H’, ‘SDF’, ‘PDB’, ‘SMI’,
‘CAN’, ‘TDT’] Note that not all toolkits support all formats

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, ]

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use for file writing. If a Toolkit is passed, only the highest-
precedence toolkit is used

Raises

ValueError If the requested file format is not supported by one of the installed chem-
informatics toolkits

2.1. Molecular topology representations 87



openforcefield Documentation, Release 0.8.4

Examples

>>> molecule = Molecule.from_iupac('imatinib")

>>> molecule.to_file('imatinib.mol2', file_format='mol2")
>>> molecule.to_file('imatinib.sdf', file_format='sdf")
>>> molecule.to_file('imatinib.pdb', file_format="'pdb")

enumerate_tautomers(max_states=20, toolkit registry="ToolkitRegistry containing The RDKit, Am-
berTools, Built-in Toolkit)
Enumerate the possible tautomers of the current molecule

Parameters

max_states: int optional, default=20 The maximum amount of molecules that
should be returned

toolkit_registry: openforcefield.utils.toolkits.ToolkitRegistry or openforcefield.utils.toolkits.Toolkit\

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use to enumerate the tautomers.

Returns

molecules: List[openforcefield.topology.Molecule] A  list of  openforce-
field.topology.Molecule instances not including the input molecule.

enumerate_stereoisomers(undefined only=False, max_isomers=20, rationalise=True,
toolkit registry=ToolkitRegistry containing The RDKit, AmberTools,
Built-in Toolkit)
Enumerate the stereocenters and bonds of the current molecule.

Parameters

undefined_only: bool optional, default=False If we should enumerate all stereo-
centers and bonds or only those with undefined stereochemistry

max_isomers: int optional, default=20 The maximum amount of molecules that
should be returned

rationalise: bool optional, default=True If we should try to build and rationalise
the molecule to ensure it can exist

toolkit_registry: openforcefield.utils.toolkits.ToolkitRegistry or openforcefield.utils.toolkits.Toolkit\

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use to enumerate the stereoisomers.

Returns

molecules: List[openforcefield.topology.Molecule] A  list of  openforce-
field.topology.Molecule instances not including the input molecule.

enumerate_protomers(max_states=10)
Enumerate the formal charges of a molecule to generate different protomoers.

Parameters

max_states: int optional, default=10, The maximum number of protomer states
to be returned.

Returns

88 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

molecules: List[openforcefield.topology.Molecule], A list of the protomers of the
input molecules not including the input.

classmethod from_rdkit(rdmol, allow_undefined_stereo=False)
Create a Molecule from an RDKit molecule.

Requires the RDKit to be installed.
Parameters
rdmol [rkit.RDMol] An RDKit molecule

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns
molecule [openforcefield.topology.Molecule] An OpenFF molecule
Examples

Create a molecule from an RDKit molecule

>>> from rdkit import Chem

>>> from openforcefield.tests.utils import get_data_file_path

>>> rdmol = Chem.MolFromMolFile(get_data_file_path('systems/monomers/ethanol.sdf"))
>>> molecule = Molecule.from_rdkit(rdmol)

to_rdkit (aromaticity_model='OEAroModel MDL")
Create an RDKit molecule

Requires the RDKit to be installed.
Parameters

aromaticity_model [str, optional, default=DEFAULT AROMATICITY MODEL] The
aromaticity model to use

Returns
rdmol [rkit.RDMol] An RDKit molecule

Examples

Convert a molecule to RDKit

>>> from openforcefield.utils import get_data_file_path

>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = Molecule(sdf_filepath)

>>> rdmol = molecule.to_rdkit()

classmethod from_openeye(oemol, allow undefined_stereo=False)
Create a Molecule from an OpenEye molecule.

Requires the OpenEye toolkit to be installed.
Parameters
oemol [openeye.oechem.OEMol] An OpenEye molecule

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

2.1. Molecular topology representations

89




openforcefield Documentation, Release 0.8.4

Returns

molecule [openforcefield.topology.Molecule] An OpenFF molecule

Examples

Create a Molecule from an OpenEye OEMol

>>> from openeye import oechem

>>> from openforcefield.tests.utils import get_data_file_path

>>> ifs = oechem.oemolistream(get_data_file_path('systems/monomers/ethanol.mol2"))
>>> oemols = list(ifs.GetOEGraphMols())

>>> molecule = Molecule.from_openeye(oemols[0])

to_qgcschema(multiplicity=1, conformer=0, extras=None)
Create a QCElemental Molecule.

Warning: This API is experimental and subject to change.

Parameters

multiplicity [int, default=1,] The multiplicity of the molecule; sets molecu-
lar_multiplicity field for QCElemental Molecule.

conformer [int, default=0,] The index of the conformer to use for the QCElemental
Molecule geometry.

extras [dict, default=None] A dictionary that should be included in the extras field
on the QCElemental Molecule. This can be used to include extra information, such
as a smiles representation.

Returns
gcelemental.models.Molecule A validated QCElemental Molecule.
Raises

MissingDependencyError [qcelemental is not installed, the qcschema can not be
validated.]

InvalidConformerError [no conformer found at the given index.]

Examples

Create a QCElemental Molecule:

>>> import qcelemental as qcel

>>> mol = Molecule.from_smiles('CC")

>>> mol.generate_conformers(n_conformers=1)
>>> qcemol = mol.to_qgcschema()

classmethod from_mapped_smiles(mapped_smiles, toolkit_registry=ToolkitRegistry con-
taining The RDKit, AmberTools, Built-in Toolkit, al-

low_undefined_stereo=False)
Create an openforcefield.topology.molecule.Molecule from a mapped SMILES made with cmiles.

The molecule will be in the order of the indexing in the mapped smiles string.

90 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Warning: This API is experimental and subject to change.

Parameters
mapped_smiles: str, A CMILES-style mapped smiles string with explicit hydrogens.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns
offmol [openforcefield.topology.molecule.Molecule] An OpenFF molecule instance.
Raises
SmilesParsingError [if the given SMILES had no indexing picked up by the toolkits.]
classmethod from_qcschema(qgca record, client=None, toolkit registry=ToolkitRegistry
containing The RDKit, AmberTools, Built-in Toolkit, al-
low_undefined_stereo=False)

Create a Molecule from a QCArchive molecule record or dataset entry based on attached cmiles
information.

For a molecule record, a conformer will be set from its geometry.

For a dataset entry, if a corresponding client instance is provided, the starting geometry for that
entry will be used as a conformer.

A QCElemental Molecule produced from Molecule.to_gcschema can be round-tripped through this
method to produce a new, valid Molecule.

Parameters
qca_record [dict] A QCArchive molecule record or dataset entry.

client [optional, default=None,] A qcportal.FractalClient instance to use for fetching
an initial geometry. Only used if gca_record is a dataset entry.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns
molecule [openforcefield.topology.Molecule] An OpenFF molecule instance.
Raises

AttributeError [if the record dict can not be made from a record instance.] if a client
is passed, because the client could not retrive the initial molecule.

KeyError [if the dict does not contain the canoni-
cal _isomeric_explicit hydrogen mapped smiles.]

InvalidConformerError [silent error, if the conformer could not be attached.]

2.1. Molecular topology representations 91



openforcefield Documentation, Release 0.8.4

classmethod from_pdb_and_smiles(file path, smiles, allow_undefined_stereo=False)

Create a Molecule from a pdb file and a SMILES string using RDKit.
Requires RDKit to be installed.

Warning: This API is experimental and subject to change.

The molecule is created and sanitised based on the SMILES string, we then find a mapping be-
tween this molecule and one from the PDB based only on atomic number and connections. The
SMILES molecule is then reindex to match the PDB, the conformer is attached and the molecule
returned.

Parameters
file path: str PDB file path

smiles [str] a valid smiles string for the pdb, used for seterochemistry and bond
order

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns

molecule [openforcefield.Molecule] An OFFMol instance with ordering the same as
used in the PDB file.

Raises

InvalidConformerError [if the SMILES and PDB molecules are not isomorphic.]

canonical_order_atoms (toolkit_registry="ToolkitRegistry containing The RDKit, AmberTools, Built-

in Toolkit)
Canonical order the atoms in a copy of the molecule using a toolkit, returns a new copy.

Warning: This API is experimental and subject to change.

Parameters

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

Returns

molecule [openforcefield.topology.Molecule] An new OpenFF style molecule with
atoms in the canonical order.

remap (mapping_dict, current_to_new=True)

Remap all of the indexes in the molecule to match the given mapping dict

Warning: This API is experimental and subject to change.

Parameters

mapping_dict [dict,] A dictionary of the mapping between in the indexes, this
should start from 0.

92

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

current_to_new [bool, default=True] The dict is {current index: new index} if
True else {new_index: current_index}

Returns

new_molecule [openforcefield.topology.molecule.Molecule] An openforce-
field.Molecule instance with all attributes transferred, in the PDB order.

to_openeye (aromaticity model='OEAroModel MDL')
Create an OpenEye molecule
Requires the OpenEye toolkit to be installed.

Parameters

aromaticity_model [str, optional, default=DEFAULT AROMATICITY MODEL] The
aromaticity model to use

Returns

oemol [openeye.oechem.OEMol] An OpenEye molecule

Examples

Create an OpenEye molecule from a Molecule

>>> molecule = Molecule.from_smiles('CC')
>>> oemol = molecule.to_openeye()

get_bond_between(i, j)
Returns the bond between two atoms

Parameters

i, j [int or Atom] Atoms or atom indices to check
Returns

bond [Bond] The bond between i and j.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters

serialized [str] A JSON serialized representation of the object

Returns

instance [cls] An instantiated object

2.1. Molecular topology representations 93


http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle(serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns

instance [cls] Instantiated object

94 Chapter 2. API documentation


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

property rings
Return the number of rings in this molecule.

Requires the RDKit to be installed.

Note: For systems containing some special cases of connected rings, this function may not be
well-behaved and may report a different number rings than expected. Some problematic cases
include networks of many (5+) rings or bicyclic moieties (i.e. norbornane).

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns

serialized [str] A TOML serialized representation of the object

2.1. Molecular topology representations 95


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml

openforcefield Documentation, Release 0.8.4

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns

serialized [str] A YAML serialized representation of the object

openforcefield.topology.Molecule

class openforcefield.topology.Molecule(*args, **kwargs)
Mutable chemical representation of a molecule, such as a small molecule or biopolymer.

Examples

Create a molecule from an sdf file

>>> from openforcefield.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = Molecule(sdf_filepath)

Convert to OpenEye OEMol object

’>>> oemol = molecule.to_openeye()

Create a molecule from an OpenEye molecule

’>>> molecule = Molecule.from_openeye(oemol)

Convert to RDKit Mol object

’>>> rdmol = molecule.to_rdkit()

Create a molecule from an RDKit molecule

’>>> molecule = Molecule.from_rdkit(rdmol)

Create a molecule from IUPAC name (requires the OpenEye toolkit)

’>>> molecule = Molecule.from_iupac('imatinib")

Create a molecule from SMILES

96 Chapter 2. API documentation


https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

>>> molecule = Molecule.from_smiles('Cclcccccl')

Warning: This API is experimental and subject to change.

Attributes

amber_impropers Iterate over improper torsions in the molecule, but only those with
trivalent centers, reporting the central atom first in each improper.

angles Get an iterator over all i-j-k angles.

atoms Iterate over all Atom objects.

bonds Iterate over all Bond objects.

conformers Returns the list of conformers for this molecule.
has_unique_atom_names True if the molecule has unique atom names, False otherwise.
hill_formula Get the Hill formula of the molecule

impropers Iterate over all improper torsions in the molecule.

n_angles int: number of angles in the Molecule.

n_atoms The number of Atom objects.

n_bonds The number of Bond objects.

n_conformers Returns the number of conformers for this molecule.
n_impropers int: number of possible improper torsions in the Molecule.

n_particles The number of Particle objects, which corresponds to how many positions
must be used.

n_propers int: number of proper torsions in the Molecule.

n_rings Return the number of rings found in the Molecule
n_virtual_particles The number of VirtualParticle objects.
n_virtual_sites The number of VirtualSite objects.

name The name (or title) of the molecule

partial_charges Returns the partial charges (if present) on the molecule.
particles Iterate over all Particle objects.

propers Iterate over all proper torsions in the molecule

properties The properties dictionary of the molecule

rings Return the number of rings in this molecule.

smirnoff_impropers Iterate over improper torsions in the molecule, but only those with
trivalent centers, reporting the central atom second in each improper.

torsions Get an iterator over all i-j-k-1 torsions.
total_charge Return the total charge on the molecule

virtual_sites Iterate over all VirtualSite objects.

2.1. Molecular topology representations

97



openforcefield Documentation, Release 0.8.4

Methods

add_atom(atomic_number, formal charge, ...)

Add an atom

add_bond(atom1, atom2, bond_order,
is_aromatic)

Add a bond between two specified atom indices

add_bond_charge_virtual_site(atoms,...)

Add a virtual site representing the charge on a
bond.

add_conformer(coordinates)

Add a conformation of the molecule

add_divalent_lone_pair_virtual_site(atoms,

.

Create a divalent lone pair-type virtual site, in
which the location of the charge is specified by
the position of three atoms.

add_monovalent_lone_pair_virtual_site(atoms,

.

Create a bond charge-type virtual site, in which
the location of the charge is specified by the po-
sition of three atoms.

add_trivalent_lone_pair_virtual_site(atoms,

)

Create a trivalent lone pair-type virtual site, in
which the location of the charge is specified by
the position of four atoms.

apply_elf_conformer_selection([percentage,

)

Applies the ELF method to select a set of di-
verse conformers which have minimal electro-
statically strongly interacting functional groups
from a molecules conformers.

are_isomorphic(moll, mol2[,...])

Determines whether the two molecules are iso-
morphic by comparing their graph representa-
tions and the chosen node/edge attributes.

assign_fractional_bond_orders([...])

Update and store list of bond orders this
molecule.

assign_partial_charges(partial charge method) Calculate partial atomic charges

for this
molecule using an underlying toolkit, and assign
the new values to the partial charges attribute.

canonical_order_atoms([toolkit registry])

Canonical order the atoms in a copy of the
molecule using a toolkit, returns a new copy.

chemical_environment_matches(queryl[, ...])

Retrieve all matches for a given chemical envi-
ronment query.

compute_partial_charges_amlbcc([...])

Calculate partial atomic charges for this
molecule using AM1-BCC run by an underlying
toolkit and assign them to this molecule’s par-
tial charges attribute.

enumerate_protomers([max_states])

Enumerate the formal charges of a molecule to
generate different protomoers.

enumerate_stereoisomers([undefined only,

)]

Enumerate the stereocenters and bonds of the
current molecule.

enumerate_tautomers([max_states, ...])

Enumerate the possible tautomers of the current
molecule

find_rotatable_bonds([...])

Find all bonds classed as rotatable ignoring any
matched to the ignore_functional_groups list.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(molecule dict)

Create a new Molecule from a dictionary repre-
sentation

from_file(file_pathl, file format,...])

Create one or more molecules from a file

continues on next page

98

Chapter 2. API documentation


https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html#elf-conformer-selection

openforcefield Documentation, Release 0.8.4

Table 5 - continued from previous page

from_inchi(inchil,

1)

allow_undefined_stereo,

Construct a Molecule from a InChl representa-
tion

from_iupac(iupac_namel, toolkit registry,...]) Generate a molecule from IUPAC or common
name

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_mapped_smiles(mapped smiles|, ...]) Create an openforce-
field.topology.molecule.Molecule from a
mapped SMILES made with cmiles.

from_messagepack(serialized) Instantiate an object from a MessagePack serial-
ized representation.

from_openeye(oemol[, al- Create a Molecule from an OpenEye molecule.

low_undefined_stereo])

from_pdb_and_smiles(file_path, smiles[, ...])

Create a Molecule from a pdb file and a SMILES
string using RDKit.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_qgcschema(qca_record|, client, ...])

Create a Molecule from a QCArchive molecule
record or dataset entry based on attached cmiles
information.

from_rdkit(rdmol[, allow undefined stereo])

Create a Molecule from an RDKit molecule.

from_smiles(smiles[, ...])

Construct a Molecule from a SMILES represen-
tation

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_topology(topology)

Return a Molecule representation of an OpenFF
Topology containing a single Molecule object.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

generate_conformers([toolkit registry, ... 1)

Generate conformers for this molecule using an
underlying toolkit.

generate_unique_atom_names()

Generate unique atom names using element
name and number of times that element has oc-
curred e.g.

get_bond_between(, j)

Returns the bond between two atoms

is_isomorphic_with(other, **kwargs)

Check if the molecule is isomorphic with the
other molecule which can be an openforce-
field.topology.Molecule, or TopologyMolecule or
nx.Graph().

remap(mapping_dict[, current_to_new])

Remap all of the indexes in the molecule to
match the given mapping dict

strip_atom_stereochemistry(smarts[, ...])

Delete stereochemistry information for certain
atoms, if it is present.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dictionary representation of the
molecule.

to_file(file_path, file format[,...])

Write the current molecule to a file or file-like
object

continues on next page

2.1. Molecular topology representations

99



openforcefield Documentation, Release 0.8.4

Table 5 - continued from previous page

to_hill_formula(molecule)

Generate the Hill formula from either a Frozen-
Molecule, TopologyMolecule or nx.Graph() of
the molecule

to_inchi([fixed hydrogens, toolkit registry])

Create an InChl string for the molecule using the
requested toolkit backend.

to_inchikey([fixed hydrogens,
toolkit_registry])

Create an InChIKey for the molecule using the
requested toolkit backend.

to_iupac([toolkit_registry])

Generate IUPAC name from Molecule

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_networkx()

Generate a NetworkX undirected graph from the
Molecule.

to_openeye([aromaticity model])

Create an OpenEye molecule

to_pickle()

Return a pickle serialized representation.

to_gcschema([multiplicity, conformer, extras])

Create a QCElemental Molecule.

to_rdkit([aromaticity model])

Create an RDKit molecule

to_smiles([isomeric, explicit_hydrogens, ...])

Return a canonical isomeric SMILES representa-
tion of the current molecule.

to_toml()

Return a TOML serialized representation.

to_topology()

Return an OpenFF Topology representation con-
taining one copy of this molecule

to_xml([indent])

Return an XML representation.

to_yaml()

Return a YAML serialized representation.

visualize([backend, width, height])

Render a visualization of the molecule in Jupyter

__init__(*args, **kwargs)
Create a new Molecule object

Parameters

other [optional, default=None] If specified, attempt to construct a copy of the
Molecule from the specified object. This can be any one of the following:

* aMolecule object

* afile that can be used to construct a Molecule object

* an openeye.oechem.0EMol

e an rdkit.Chem.rdchem.Mol

* aserialized Molecule object

Examples

Create an empty molecule:

>>> empty_molecule = Molecule()

Create a molecule from a file that can be used to construct a molecule, using either a filename or

file-like object:

>>> molecule = Molecule(sdf_filepath)

>>> molecule = Molecule(open(sdf_filepath,

>>> from openforcefield.utils import get_data_file_path
>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")

'r'), file_format='sdf")

100

Chapter 2. API documentation




openforcefield Documentation, Release 0.8.4

>>> import gzip
>>> mol2_gz_filepath = get_data_file_path('molecules/toluene.mol2.gz")
>>> molecule = Molecule(gzip.GzipFile(mol2_gz_filepath, 'r'), file_format='mol2')

Create a molecule from another molecule:

’>>> molecule_copy = Molecule(molecule)

Convert to OpenEye OEMol object

’>>> oemol = molecule.to_openeye()

Create a molecule from an OpenEye molecule:

’>>> molecule = Molecule(oemol)

Convert to RDKit Mol object

’>>> rdmol = molecule.to_rdkit()

Create a molecule from an RDKit molecule:

’>>> molecule = Molecule(rdmol)

Create a molecule from a serialized molecule object:

>>> serialized_molecule = molecule.__getstate__()
>>> molecule_copy = Molecule(serialized_molecule)

Methods
__init__(*args, **kwargs) Create a new Molecule object
add_atom(atomic_number, formal charge, ...) Add an atom
add_bond(atom1, atom2, bond order, Add a bond between two specified atom indices
is_aromatic)
add_bond_charge_virtual_site(atoms, ...) Add a virtual site representing the charge on a
bond.
add_conformer(coordinates) Add a conformation of the molecule
add_divalent_lone_pair_virtual_site(atoms, Create a divalent lone pair-type virtual site, in
) which the location of the charge is specified by

the position of three atoms.
add_monovalent_lone_pair_virtual_site(atoms, Create a bond charge-type virtual site, in which
.2 the location of the charge is specified by the po-
sition of three atoms.
add_trivalent_lone_pair_virtual_site(atoms, Create a trivalent lone pair-type virtual site, in
.2 which the location of the charge is specified by
the position of four atoms.

apply_elf_conformer_selection([percentage,

oD Applies the ELF method to select a set of di-
verse conformers which have minimal electro-
statically strongly interacting functional groups
from a molecules conformers.

continues on next page

2.1. Molecular topology representations 101


https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html#elf-conformer-selection

openforcefield Documentation, Release 0.8.4

Table 6 - continued from previous page

are_isomorphic(moll, mol2[,...]) Determines whether the two molecules are iso-
morphic by comparing their graph representa-
tions and the chosen node/edge attributes.

assign_fractional_bond_orders([...]) Update and store list of bond orders this
molecule.

assign_partial_charges(partial charge method) Calculate partial atomic charges for this
molecule using an underlying toolkit, and assign
the new values to the partial charges attribute.

canonical_order_atoms([toolkit registry]) Canonical order the atoms in a copy of the
molecule using a toolkit, returns a new copy.

chemical_environment_matches(queryl[, ...]) Retrieve all matches for a given chemical envi-
ronment query.

compute_partial_charges_amlbcc([...]) Calculate partial atomic charges for this

molecule using AM1-BCC run by an underlying
toolkit and assign them to this molecule’s par-
tial charges attribute.

enumerate_protomers([max_states]) Enumerate the formal charges of a molecule to
generate different protomoers.

enumerate_stereoisomers([undefined_only, Enumerate the stereocenters and bonds of the

... D current molecule.

enumerate_tautomers([max_states, ...]) Enumerate the possible tautomers of the current
molecule

find_rotatable_bonds([...]) Find all bonds classed as rotatable ignoring any
matched to the ignore_functional_groups list.

from_bson(serialized) Instantiate an object from a BSON serialized rep-
resentation.

from_dict(molecule_dict) Create a new Molecule from a dictionary repre-
sentation

from_file(file_pathl, file format,...]) Create one or more molecules from a file

from_inchi(inchil, allow_undefined_stereo, Construct a Molecule from a InChl representa-

oD tion

from_iupac(iupac_namel, toolkit registry,...]) Generate a molecule from IUPAC or common
name

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_mapped_smiles(mapped smiles[, ...]) Create an openforce-

field.topology.molecule.Molecule from a
mapped SMILES made with cmiles.

from_messagepack(serialized) Instantiate an object from a MessagePack serial-
ized representation.
from_openeye(oemol[, al- Create a Molecule from an OpenEye molecule.

low_undefined_stereo])

from_pdb_and_smiles(file_path, smiles[, ...]) Create a Molecule from a pdb file and a SMILES
string using RDKit.

from_pickle(serialized) Instantiate an object from a pickle serialized rep-
resentation.

from_qgcschema(qca_record], client, ...]) Create a Molecule from a QCArchive molecule
record or dataset entry based on attached cmiles
information.

from_rdkit(rdmol[, allow undefined_stereo]) Create a Molecule from an RDKit molecule.

continues on next page

102

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 6 - continued from previous page

from_smiles(smiles[, ...]) Construct a Molecule from a SMILES represen-
tation

from_toml(serialized) Instantiate an object from a TOML serialized
representation.

from_topology(topology) Return a Molecule representation of an OpenFF
Topology containing a single Molecule object.

from_xml(serialized) Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized) Instantiate from a YAML serialized representa-
tion.

generate_conformers([toolkit registry, ...]) Generate conformers for this molecule using an
underlying toolKkit.

generate_unique_atom_names() Generate unique atom names using element
name and number of times that element has oc-
curred e.g.

get_bond_between(i, j) Returns the bond between two atoms

is_isomorphic_with(other, **kwargs) Check if the molecule is isomorphic with the

other molecule which can be an openforce-
field.topology.Molecule, or TopologyMolecule or

nx.Graph().

remap(mapping_dict[, current_to_new]) Remap all of the indexes in the molecule to
match the given mapping dict

strip_atom_stereochemistry(smarts[, ...]) Delete stereochemistry information for certain
atoms, if it is present.

to_bson() Return a BSON serialized representation.

to_dict() Return a dictionary representation of the
molecule.

to_file(file_path, file formatl[,...]) Write the current molecule to a file or file-like
object

to_hill_formula(molecule) Generate the Hill formula from either a Frozen-

Molecule, TopologyMolecule or nx.Graph() of
the molecule

to_inchi([fixed_hydrogens, toolkit_registry]) Create an InChl string for the molecule using the
requested toolkit backend.

to_inchikey([fixed hydrogens, Create an InChIKey for the molecule using the

toolkit_registry]) requested toolkit backend.

to_iupac([toolkit registry]) Generate IUPAC name from Molecule

to_json([indent]) Return a JSON serialized representation.

to_messagepack() Return a MessagePack representation.

to_networkx() Generate a NetworkX undirected graph from the
Molecule.

to_openeye([aromaticity model]) Create an OpenEye molecule

to_pickle() Return a pickle serialized representation.

to_gcschema([multiplicity, conformer, extras]) Create a QCElemental Molecule.

to_rdkit([aromaticity model]) Create an RDKit molecule

to_smiles([isomeric, explicit hydrogens, ...])  Return a canonical isomeric SMILES representa-
tion of the current molecule.

to_toml() Return a TOML serialized representation.

to_topology() Return an OpenFF Topology representation con-
taining one copy of this molecule

to_xml([indent]) Return an XML representation.

continues on next page

2.1. Molecular topology representations 103



openforcefield Documentation, Release 0.8.4

Table 6 - continued from previous page

to_yaml()

Return a YAML serialized representation.

visualize([backend, width, height])

Render a visualization of the molecule in Jupyter

Attributes

amber_impropers

Iterate over improper torsions in the molecule,
but only those with trivalent centers, reporting
the central atom first in each improper.

angles Get an iterator over all i-j-k angles.

atoms Iterate over all Atom objects.

bonds Iterate over all Bond objects.

conformers Returns the list of conformers for this molecule.

has_unique_atom_names

True if the molecule has unique atom names,
False otherwise.

hill_formula

Get the Hill formula of the molecule

impropers Iterate over all improper torsions in the
molecule.

n_angles int: number of angles in the Molecule.

n_atoms The number of Atom objects.

n_bonds The number of Bond objects.

n_conformers

Returns the number of conformers for this
molecule.

n_impropers

int: number of possible improper torsions in the
Molecule.

n_particles

The number of Particle objects, which corre-
sponds to how many positions must be used.

n_propers

int: number of proper torsions in the Molecule.

n_rings

Return the number of rings found in the
Molecule

n_virtual_particles

The number of VirtualParticle objects.

n_virtual_sites

The number of VirtualSite objects.

name

The name (or title) of the molecule

partial_charges

Returns the partial charges (if present) on the
molecule.

particles Iterate over all Particle objects.

propers Iterate over all proper torsions in the molecule
properties The properties dictionary of the molecule
rings Return the number of rings in this molecule.

smirnoff_impropers

Iterate over improper torsions in the molecule,
but only those with trivalent centers, reporting
the central atom second in each improper.

torsions

Get an iterator over all i-j-k-1 torsions.

total_charge

Return the total charge on the molecule

virtual_sites

Iterate over all VirtualSite objects.

property amber_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the

central atom first in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend

on the force field that is used.

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Also note that this will return 6 possible atom orderings around each improper center. In current
AMBER parameterization, one of these six orderings will be used for the actual assignment of
the improper term and measurement of the angle. This method does not encode the logic to
determine which of the six orderings AMBER would use.

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed first in each
tuple.

See also:

impropers, smirnoff_impropers
property angles

Get an iterator over all i-j-k angles.

apply_elf_conformer_selection(percentage: float = 2.0, limit: int = 10, toolkit registry: Op-
tional[Union[openforcefield.utils.toolkits. ToolkitRegistry, open-
forcefield.utils.toolkits. ToolkitWrapper]] = ToolkitRegistry con-
taining The RDKit, AmberTools, Built-in Toolkit, **kwargs)
Applies the ELF method to select a set of diverse conformers which have minimal electrostatically
strongly interacting functional groups from a molecules conformers.

Parameters
toolkit_registry The underlying toolkit to use to select the ELF conformers.

percentage The percentage of conformers with the lowest electrostatic interaction
energies to greedily select from.

limit The maximum number of conformers to select.

See also:
OpenEyeToolkitWrapper.apply_elf_conformer_selection
RDKitToolkitWrapper.apply_elf_conformer_selection
Notes

* The input molecule should have a large set of conformers already generated to select the ELF
conformers from.

* The selected conformers will be retained in the conformers list while unselected conformers

will be discarded.
static are_isomorphic(moll, mol2, return_atom_map=False, aro-
matic_matching=True, formal charge matching=True,
bond_order_matching=True, atom_stereochemistry _matching=True,

bond_stereochemistry_matching=True, strip_pyrimidal n_atom_stereo=True,
toolkit_registry="ToolkitRegistry containing The RDKit, AmberTools, Built-
in Toolkit)

Determines whether the two molecules are isomorphic by comparing their graph representations

and the chosen node/edge attributes. Minimally connections and atomic_number are checked.

If nx.Graphs() are given they must at least have atomic_number attributes on nodes. other op-
tional attributes for nodes are: is aromatic, formal charge and stereochemistry. optional at-
tributes for edges are: is_aromatic, bond order and stereochemistry.

2.1. Molecular topology representations 105


https://docs.eyesopen.com/toolkits/python/quacpactk/molchargetheory.html#elf-conformer-selection

openforcefield Documentation, Release 0.8.4

Warning: This API is experimental and subject to change.

Parameters

moll [an openforcefield.topology.molecule.FrozenMolecule or TopologyMolecule or
nx.Graph()]

mol2 [an openforcefield.topology.molecule.FrozenMolecule or TopologyMolecule or
nx.Graph()] The molecule to test for isomorphism.

return_atom_map: bool, default=False, optional will return an optional dict con-
taining the atomic mapping.

aromatic_matching: bool, default=True, optional compare the aromatic at-
tributes of bonds and atoms.

formal_charge matching: bool, default=True, optional compare the formal
charges attributes of the atoms.

bond_order_matching: bool, deafult=True, optional compare the bond order on
attributes of the bonds.

atom_stereochemistry matching [bool, default=True, optional] If False, atoms’
stereochemistry is ignored for the purpose of determining equality.

bond_stereochemistry_matching [bool, default=True, optional] If False, bonds’
stereochemistry is ignored for the purpose of determining equality.

strip_pyrimidal n_atom_stereo: bool, default=True, optional If True, any stere-
ochemistry defined around pyrimidal nitrogen stereocenters will be disregarded in
the isomorphism check.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for removing stereochemistry from pyrimidal nitrogens.

Returns
molecules_are_isomorphic [bool]

atom_map [default=None, Optional,] [Dict[int,int]] ordered by moll indexing
{moll_index: mol2_index} If molecules are not isomorphic given input arguments,
will return None instead of dict.

assign_fractional_bond_orders(bond _order_model=None, toolkit_registry="ToolkitRegistry
containing The RDKit, AmberTools, Built-in Toolkit,

use_conformers=None)
Update and store list of bond orders this molecule. Bond orders are stored on each bond, in the

bond.fractional_bond_order attribute.

Warning: This API is experimental and subject to change.

Parameters

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

106 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

bond_order model [string, optional. Default=None] The bond order model to use
for fractional bond order calculation. If None, “am1-wiberg” will be used.

use_conformers [iterable of simtk.unit.Quantity(np.array) with shape (n_atoms, 3)
and dimension of distance, optional, default=None] The conformers to use for
fractional bond order calculation. If None, an appropriate number of conformers
will be generated by an available ToolkitWrapper.

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit registry pa-
rameter

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.assign_fractional_bond_orders()

assign_partial_charges(partial_charge _method, strict_n_conformers=False,
use_conformers=None,  toolkit registry=ToolkitRegistry  containing
The RDKit, AmberTools, Built-in Toolkit)
Calculate partial atomic charges for this molecule using an underlying toolkit, and assign the new
values to the partial _charges attribute.

Parameters

partial_charge _method [string] The partial charge calculation method to use for
partial charge calculation.

strict n_conformers [bool, default=False] Whether to raise an exception if an in-
valid number of conformers is provided for the given charge method. If this is False
and an invalid number of conformers is found, a warning will be raised.

use_conformers [iterable of simtk.unit.Quantity-wrapped numpy arrays, each with
shape (n_atoms, 3) and dimension of distance. Optional, default=None] Coor-
dinates to use for partial charge calculation. If None, an appropriate number of
conformers will be generated.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for the calculation.

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit registry pa-
rameter

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.assign_partial_charges('ami-mulliken")

property atoms
Iterate over all Atom objects.

property bonds
Iterate over all Bond objects.

2.1. Molecular topology representations 107



openforcefield Documentation, Release 0.8.4

canonical_order_atoms (toolkit registry="ToolkitRegistry containing The RDKit, AmberTools, Built-

in Toolkit)
Canonical order the atoms in a copy of the molecule using a toolkit, returns a new copy.

Warning: This API is experimental and subject to change.

Parameters

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

Returns
molecule [openforcefield.topology.Molecule] An new OpenFF style molecule with

atoms in the canonical order.

chemical_environment_matches(query, toolkit registry="ToolkitRegistry containing The RDKit, Am-

berTools, Built-in Toolkit)
Retrieve all matches for a given chemical environment query.

Parameters

query [str or ChemicalEnvironment] SMARTS string (with one or more tagged
atoms) or ChemicalEnvironment query Query will internally be resolved to SMIRKS
using query.asSMIRKS() if it has an .asSMIRKS method.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or
openforcefield.utils.toolkits. ToolkitWrapper, optional, de-
fault=GLOBAL TOOLKIT REGISTRY] ToolkitRegistry or ToolkitWrapper
to use for chemical environment matches

Returns

matches [list of atom index tuples] A list of tuples, containing the indices of the
matching atoms.

Examples

Retrieve all the carbon-carbon bond matches in a molecule

>>> molecule = Molecule.from_iupac('imatinib")
>>> matches = molecule.chemical_environment_matches('[#6X3:1]~[#6X3:2]1")

compute_partial_charges_amlbcc(use conformers=None, strict n_conformers=False,
toolkit registry=ToolkitRegistry containing The RDKit, Amber-
Tools, Built-in Toolkit)
Calculate partial atomic charges for this molecule using AM1-BCC run by an underlying toolkit
and assign them to this molecule’s partial charges attribute.

Parameters

strict_n_conformers [bool, default=False] Whether to raise an exception if an in-
valid number of conformers is provided for the given charge method. If this is False
and an invalid number of conformers is found, a warning will be raised.

108 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

use_conformers [iterable of simtk.unit.Quantity-wrapped numpy arrays, each with
shape (n_atoms, 3) and dimension of distance. Optional, default=None] Coor-
dinates to use for partial charge calculation. If None, an appropriate number of
conformers for the given charge method will be generated.

toolkit_registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for the calculation

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit registry pa-
rameter

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.generate_conformers()
>>> molecule.compute_partial_charges_amlbcc()

property conformers
Returns the list of conformers for this molecule. This returns a list of simtk.unit.Quantity-wrapped
numpy arrays, of shape (3 x n_atoms) and with dimensions of distance. The return value is the
actual list of conformers, and changes to the contents affect the original FrozenMolecule.

enumerate_protomers(max_states=10)
Enumerate the formal charges of a molecule to generate different protomoers.

Parameters

max_states: int optional, default=10, The maximum number of protomer states
to be returned.

Returns

molecules: List[openforcefield.topology.Molecule], A list of the protomers of the
input molecules not including the input.

enumerate_stereoisomers (undefined only=False, max_isomers=20, rationalise=True,
toolkit registry=ToolkitRegistry containing The RDKit, AmberTools,

Built-in Toolkit)
Enumerate the stereocenters and bonds of the current molecule.

Parameters

undefined_only: bool optional, default=False If we should enumerate all stereo-
centers and bonds or only those with undefined stereochemistry

max_isomers: int optional, default=20 The maximum amount of molecules that
should be returned

rationalise: bool optional, default=True If we should try to build and rationalise
the molecule to ensure it can exist

toolkit_registry: openforcefield.utils.toolkits.ToolkitRegistry or openforcefield.utils.toolkits.Toolkit\

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use to enumerate the stereoisomers.

Returns

2.1. Molecular topology representations 109



openforcefield Documentation, Release 0.8.4

molecules: List[openforcefield.topology.Molecule] A  list of  openforce-
field.topology.Molecule instances not including the input molecule.

enumerate_tautomers(max_states=20, toolkit registry=ToolkitRegistry containing The RDKit, Am-

berTools, Built-in Toolkit)
Enumerate the possible tautomers of the current molecule

Parameters

max_states: int optional, default=20 The maximum amount of molecules that
should be returned

toolkit_registry: openforcefield.utils.toolkits.ToolkitRegistry or openforcefield.utils.toolkits.Toolkit\

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use to enumerate the tautomers.

Returns

molecules: List[openforcefield.topology.Molecule] A  list of  openforce-
field.topology.Molecule instances not including the input molecule.

find_rotatable_bonds(ignore_functional groups=None, toolkit registry=ToolkitRegistry contain-
ing The RDKit, AmberTools, Built-in Toolkit)
Find all bonds classed as rotatable ignoring any matched to the ignore_functional_groups list.

Parameters

ignore_functional_groups: optional, List[str], default=None, A list of bond
SMARTS patterns to be ignored when finding rotatable bonds.

toolkit_registry: openforcefield.utils.toolkits.ToolkitRegistry or openforcefield.utils.toolkits.Toolkit\
ToolkitRegistry or ToolkitWrapper to use for SMARTS matching

Returns

bonds: List[openforcefield.topology.molecule.Bond] The list of openforce-
field.topology.molecule.Bond instances which are rotatable.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_dict(molecule dict)
Create a new Molecule from a dictionary representation

Parameters

molecule_dict [OrderedDict] A dictionary representation of the molecule.
Returns

molecule [Molecule] A Molecule created from the dictionary representation

classmethod from_file(file path, file_ format=None, toolkit registry="ToolkitRegistry containing
The RDKit, AmberTools, Built-in Toolkit, allow _undefined_stereo=False)
Create one or more molecules from a file

110 Chapter 2. API documentation


http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

Parameters

file_path [str or file-like object] The path to the file or file-like object to stream one
or more molecules from.

file_format [str, optional, default=None] Format specifier, usually file suffix (eg.
‘MOL2’, ‘SMI') Note that not all toolkits support all formats. Check ToolkitWrap-
per.toolkit file read formats for your loaded toolkits for details.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, ]

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use for file loading. If a Toolkit is passed, only the highest-
precedence toolkit is used

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns

molecules [Molecule or list of Molecules] If there is a single molecule in the file, a
Molecule is returned; otherwise, a list of Molecule objects is returned.

Examples

>>> from openforcefield.tests.utils import get_monomer_mol2_file_path
>>> mol2_file_path = get_monomer_mol2_file_path('cyclohexane")
>>> molecule = Molecule.from_file(mol2_file_path)

classmethod from_inchi(inchi, allow_undefined stereo=False, toolkit registry="ToolkitRegistry

containing The RDKit, AmberTools, Built-in Toolkit)
Construct a Molecule from a InChl representation

Parameters
inchi [str] The InChlI representation of the molecule.

allow_undefined_stereo [bool, default=False] Whether to accept InChI with unde-
fined stereochemistry. If False, an exception will be raised if a InChI with undefined
stereochemistry is passed into this function.

toolkit_registry [openforcefield.utils.toolkits.ToolRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for InChl-to-molecule conversion

Returns

molecule [openforcefield.topology.Molecule]

2.1. Molecular topology representations 111



openforcefield Documentation, Release 0.8.4

Examples

make cis-1,2-Dichloroethene >>> molecule = Molecule.from_inchi(‘InChI=1S/C2H2Cl2/c3-1-
2-4/h1-2H/b2-1-9)

classmethod from_iupac(iupac_name, toolkit registry=ToolkitRegistry containing The RDKit, Am-
berTools, Built-in Toolkit, allow _undefined_stereo=False, **kwargs)
Generate a molecule from IUPAC or common name

Parameters
iupac_name [str] IUPAC name of molecule to be generated

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or
openforcefield.utils.toolkits. ToolkitWrapper, optional, de-
fault=GLOBAL _TOOLKIT REGISTRY] ToolkitRegistry or ToolkitWrapper
to use for chemical environment matches

allow_undefined_stereo [bool, default=False] If false, raises an exception if
molecule contains undefined stereochemistry.

Returns

molecule [Molecule] The resulting molecule with position

Note: This method requires the OpenEye toolkit to be installed. ..

Examples

Create a molecule from an IUPAC name

>>> molecule = Molecule.from_iupac('4-[(4-methylpiperazin-T1-yl)methyl]-N-(4-methyl-3-{[4-
— (pyridin-3-yl)pyrimidin-2-ylJamino}phenyl)benzamide")

Create a molecule from a common name

>>> molecule = Molecule.from_iupac('imatinib")

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters

serialized [str] A JSON serialized representation of the object

Returns
instance [cls] An instantiated object

classmethod from_mapped_smiles(mapped_smiles, toolkit_registry="ToolkitRegistry con-
taining The RDKit, AmberTools, Built-in Toolkit, al-
low_undefined_stereo=False)
Create an openforcefield.topology.molecule.Molecule from a mapped SMILES made with cmiles.
The molecule will be in the order of the indexing in the mapped smiles string.

112 Chapter 2. API documentation


https://www.json.org/

openforcefield Documentation, Release 0.8.4

Warning: This API is experimental and subject to change.

Parameters
mapped_smiles: str, A CMILES-style mapped smiles string with explicit hydrogens.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns
offmol [openforcefield.topology.molecule.Molecule] An OpenFF molecule instance.
Raises
SmilesParsingError [if the given SMILES had no indexing picked up by the toolkits.]
classmethod from_messagepack (serialized)
Instantiate an object from a MessagePack serialized representation.
Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_openeye(oemol, allow undefined stereo="False)
Create a Molecule from an OpenEye molecule.

Requires the OpenEye toolkit to be installed.
Parameters
oemol [openeye.oechem.OEMol] An OpenEye molecule

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns
molecule [openforcefield.topology.Molecule] An OpenFF molecule

Examples

Create a Molecule from an OpenEye OEMol

>>> from openeye import oechem

>>> from openforcefield.tests.utils import get_data_file_path

>>> ifs = oechem.oemolistream(get_data_file_path('systems/monomers/ethanol.mol2"))
>>> oemols = list(ifs.GetOEGraphMols())

>>> molecule = Molecule.from_openeye(oemols[0])

2.1. Molecular topology representations 113


https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

classmethod from_pdb_and_smiles(file path, smiles, allow_undefined_stereo=False)
Create a Molecule from a pdb file and a SMILES string using RDKit.

Requires RDKit to be installed.

Warning: This API is experimental and subject to change.

The molecule is created and sanitised based on the SMILES string, we then find a mapping be-
tween this molecule and one from the PDB based only on atomic number and connections. The
SMILES molecule is then reindex to match the PDB, the conformer is attached and the molecule
returned.

Parameters
file path: str PDB file path

smiles [str] a valid smiles string for the pdb, used for seterochemistry and bond
order

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns

molecule [openforcefield.Molecule] An OFFMol instance with ordering the same as
used in the PDB file.

Raises
InvalidConformerError [if the SMILES and PDB molecules are not isomorphic.]

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_qcschema(qgca_record, client=None, toolkit_registry="ToolkitRegistry

containing The RDKit, AmberTools, Built-in Toolkit, al-

low_undefined_stereo=False)
Create a Molecule from a QCArchive molecule record or dataset entry based on attached cmiles

information.
For a molecule record, a conformer will be set from its geometry.

For a dataset entry, if a corresponding client instance is provided, the starting geometry for that
entry will be used as a conformer.

A QCElemental Molecule produced from Molecule.to_qcschema can be round-tripped through this
method to produce a new, valid Molecule.

Parameters

114 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

qca_record [dict] A QCArchive molecule record or dataset entry.

client [optional, default=None,] A qcportal.FractalClient instance to use for fetching
an initial geometry. Only used if gca_record is a dataset entry.

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns
molecule [openforcefield.topology.Molecule] An OpenFF molecule instance.
Raises

AttributeError [if the record dict can not be made from a record instance.] if a client
is passed, because the client could not retrive the initial molecule.

KeyError [if the dict does not contain the canoni-
cal_isomeric_explicit hydrogen_mapped smiles.]

InvalidConformerError [silent error, if the conformer could not be attached.]

classmethod from_rdkit(rdmol, allow undefined_ stereo=False)
Create a Molecule from an RDKit molecule.

Requires the RDKit to be installed.
Parameters
rdmol [rkit.RDMol] An RDKit molecule

allow_undefined_stereo [bool, default=False] If false, raises an exception if oemol
contains undefined stereochemistry.

Returns

molecule [openforcefield.topology.Molecule] An OpenFF molecule

Examples

Create a molecule from an RDKit molecule

>>> from rdkit import Chem

>>> from openforcefield.tests.utils import get_data_file_path

>>> rdmol = Chem.MolFromMolFile(get_data_file_path('systems/monomers/ethanol.sdf"))
>>> molecule = Molecule.from_rdkit(rdmol)

classmethod from_smiles(smiles, hydrogens are_explicit=False, toolkit registry="ToolkitRegistry
containing The RDKit, AmberTools, Built-in Toolkit, al-
low_undefined_stereo=False)
Construct a Molecule from a SMILES representation

Parameters
smiles [str] The SMILES representation of the molecule.

hydrogens_are_explicit [bool, default = False] If False, the cheminformatics toolkit
will perform hydrogen addition

2.1. Molecular topology representations 115



openforcefield Documentation, Release 0.8.4

toolkit registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

allow_undefined_stereo [bool, default=False] Whether to accept SMILES with un-
defined stereochemistry. If False, an exception will be raised if a SMILES with
undefined stereochemistry is passed into this function.

Returns

molecule [openforcefield.topology.Molecule]

Examples

>>> molecule = Molecule.from_smiles('Cclcccccl')

classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.

Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_topology (topology)
Return a Molecule representation of an OpenFF Topology containing a single Molecule object.

Parameters

topology [openforcefield.topology.Topology] The Topology object containing a sin-
gle Molecule object. Note that OpenMM and MDTraj Topology objects are not
supported.

Returns

molecule [openforcefield.topology.Molecule] The Molecule object in the topology

Raises

ValueError If the topology does not contain exactly one molecule.

Examples

Create a molecule from a Topology object that contains exactly one molecule

>>> molecule = Molecule.from_topology(topology)

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation

Returns

116 Chapter 2. API documentation


https://github.com/toml-lang/toml
https://www.w3.org/XML/

openforcefield Documentation, Release 0.8.4

instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

generate_conformers(toolkit registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in

Toolkit, n_conformers=10, rms_cutoff=None, clear_existing=True)
Generate conformers for this molecule using an underlying toolkit. If n_conformers=0, no toolkit

wrapper will be called. If n_conformers=0 and clear_existing=True, molecule.conformers will be
set to None.

Parameters

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES-to-molecule conversion

n_conformers [int, default=1] The maximum number of conformers to produce

rms_cutoff [simtk.Quantity-wrapped float, in units of distance, optional, de-
fault=None] The minimum RMS value at which two conformers are considered
redundant and one is deleted. Precise implementation of this cutoff may be toolkit-
dependent. If None, the cutoff is set to be the default value for each ToolkitWrapper
(generally 1 Angstrom).

clear_existing [bool, default=True] Whether to overwrite existing conformers for
the molecule

Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit_registry pa-
rameter

Examples

>>> molecule = Molecule.from_smiles('CCCCCC")
>>> molecule.generate_conformers()

generate_unique_atom_names ()

Generate unique atom names using element name and number of times that element has occurred
e.g. ‘C1’, ‘HY’, ‘01, ‘C2), ...

get_bond_between(i, j)
Returns the bond between two atoms

Parameters
i, j [int or Atom] Atoms or atom indices to check
Returns

bond [Bond] The bond between i and j.

2.1. Molecular topology representations 117



http://yaml.org/

openforcefield Documentation, Release 0.8.4

property has_unique_atom_names
True if the molecule has unique atom names, False otherwise.

property hill_formula
Get the Hill formula of the molecule

property impropers
Iterate over all improper torsions in the molecule.

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion.

See also:
smirnoff_impropers, amber_impropers

is_isomorphic_with(other, **kwargs)
Check if the molecule is isomorphic with the other molecule which can be an openforce-
field.topology.Molecule, or TopologyMolecule or nx.Graph(). Full matching is done using the
options described bellow.

Warning: This API is experimental and subject to change.

Parameters
other: openforcefield.topology.Molecule or TopologyMolecule or nx.Graph()

return_atom_map: bool, default=False, optional will return an optional dict con-
taining the atomic mapping.

aromatic_matching: bool, default=True, optional
compare the aromatic attributes of bonds and atoms.
formal_charge matching: bool, default=True, optional
compare the formal charges attributes of the atoms.
bond_order_matching: bool, deafult=True, optional
compare the bond order on attributes of the bonds.

atom_stereochemistry_matching [bool, default=True, optional] If False, atoms’
stereochemistry is ignored for the purpose of determining equality.

bond_stereochemistry matching [bool, default=True, optional] If False, bonds’
stereochemistry is ignored for the purpose of determining equality.

strip_pyrimidal n_atom_stereo: bool, default=True, optional If True, any stere-
ochemistry defined around pyrimidal nitrogen stereocenters will be disregarded in
the isomorphism check.

toolkit_registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for removing stereochemistry from pyrimidal nitrogens.

Returns

isomorphic [bool]

118 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

property n_angles
int: number of angles in the Molecule.

property n_atoms
The number of Atom objects.

property n_bonds
The number of Bond objects.

property n_conformers
Returns the number of conformers for this molecule.

property n_impropers
int: number of possible improper torsions in the Molecule.

property n_particles
The number of Particle objects, which corresponds to how many positions must be used.

property n_propers
int: number of proper torsions in the Molecule.

property n_rings
Return the number of rings found in the Molecule

Requires the RDKit to be installed.

Note: For systems containing some special cases of connected rings, this function may not be
well-behaved and may report a different number rings than expected. Some problematic cases
include networks of many (5+) rings or bicyclic moieties (i.e. norbornane).

property n_virtual_particles
The number of VirtualParticle objects.

property n_virtual_sites
The number of VirtualSite objects.

property name
The name (or title) of the molecule

property partial_charges
Returns the partial charges (if present) on the molecule.

Returns

partial _charges [a simtk.unit.Quantity - wrapped numpy array [1 x n_atoms] or
None] The partial charges on this Molecule’s atoms. Returns None if no charges
have been specified.

property particles
Iterate over all Particle objects.

property propers
Iterate over all proper torsions in the molecule

property properties
The properties dictionary of the molecule

remap(mapping_dict, current_to_new=True)
Remap all of the indexes in the molecule to match the given mapping dict

2.1. Molecular topology representations 119



openforcefield Documentation, Release 0.8.4

Warning: This API is experimental and subject to change.

Parameters

mapping_dict [dict,] A dictionary of the mapping between in the indexes, this
should start from O.

current_to_new [bool, default=True] The dict is {current index: new index} if
True else {new_index: current_index}

Returns

new_molecule [openforcefield.topology.molecule.Molecule] An openforce-
field.Molecule instance with all attributes transferred, in the PDB order.

property rings

Return the number of rings in this molecule.

Requires the RDKit to be installed.

Note: For systems containing some special cases of connected rings, this function may not be
well-behaved and may report a different number rings than expected. Some problematic cases
include networks of many (5+) rings or bicyclic moieties (i.e. norbornane).

property smirnoff_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the
central atom second in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend
on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current
SMIRNOFF parameterization, three of these six orderings will be used for the actual assignment
of the improper term and measurement of the angles. These three orderings capture the three
unique angles that could be calculated around the improper center, therefore the sum of these
three terms will always return a consistent energy.

The exact three orderings that will be applied during parameterization can not be determined in
this method, since it requires sorting the particle indices, and those indices may change when this
molecule is added to a Topology.

For more details on the use of three-fold (‘trefoil’) impropers, see https://open-forcefield-toolkit.
readthedocs.io/en/latest/smirnoff.html#impropertorsions

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed second in each
tuple.

See also:

impropers, amber_impropers

strip_atom_stereochemistry(smarts, toolkit_registry="ToolkitRegistry containing The RDKit, Am-

berTools, Built-in Toolkit)
Delete stereochemistry information for certain atoms, if it is present. This method can be used

120

Chapter 2. API documentation


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions

openforcefield Documentation, Release 0.8.4

to “normalize” molecules imported from different cheminformatics toolkits, which differ in which
atom centers are considered stereogenic.

Parameters

smarts: str or ChemicalEnvironment Tagged SMARTS with a single atom with in-
dex 1. Any matches for this atom will have any assigned stereocheistry information
removed.

toolkit_registry [a ToolkitRegistry or ToolkitWrapper object, optional, de-
fault=GLOBAL _TOOLKIT REGISTRY] ToolkitRegistry or ToolkitWrapper to use
for I/0 operations

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_dict()
Return a dictionary representation of the molecule.

Returns
molecule_dict [OrderedDict] A dictionary representation of the molecule.

to_file(file_path, file_format, toolkit_registry="ToolkitRegistry containing The RDKit, AmberTools,

Built-in Toolkit)
Write the current molecule to a file or file-like object

Parameters
file path [str or file-like object] A file-like object or the path to the file to be written.

file_format [str] Format specifier, one of ['MOL2’, ‘MOL2H’, ‘SDF’, ‘PDB’, ‘SMT’,
‘CAN’, ‘TDT’] Note that not all toolkits support all formats

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, ]

optional, default=GLOBAL_TOOLKIT REGISTRY ToolkitRegistry or
ToolkitWrapper to use for file writing. If a Toolkit is passed, only the highest-
precedence toolkit is used

Raises

ValueError If the requested file_format is not supported by one of the installed chem-
informatics toolkits

Examples

>>> molecule = Molecule.from_iupac('imatinib")

>>> molecule.to_file('imatinib.mol2', file_format='mol2")
>>> molecule.to_file('imatinib.sdf', file_format='sdf")
>>> molecule.to_file('imatinib.pdb', file_format="pdb")

static to_hill_formula(molecule)
Generate the Hill formula from either a FrozenMolecule, TopologyMolecule or nx.Graph() of the
molecule

2.1. Molecular topology representations 121


http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

Parameters
molecule [FrozenMolecule, TopologyMolecule or nx.Graph()]
Returns
formula [the Hill formula of the molecule]
Raises
NotImplementedError [if the molecule is not of one of the specified types.]

to_inchi(fixed_hydrogens=False, toolkit registry=ToolkitRegistry containing The RDKit, Amber-
Tools, Built-in Toolkit)
Create an InChl string for the molecule using the requested toolkit backend. InChl is a standard-
ised representation that does not capture tautomers unless specified using the fixed hydrogen

layer.
For information on InChi see here https://iupac.org/who-we-are/divisions/division-details/
inchi/
Parameters
fixed_hydrogens: bool, default=False If a fixed hydrogen layer should be added
to the InChl, if True this will produce a non standard specific InChI string of the
molecule.
toolkit_registry [openforcefield.utils.toolkits.ToolRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for molecule-to-InChl conversion
Returns
inchi: str The InChlI string of the molecule.
Raises

InvalidToolkitRegistryError If an invalid object is passed as the toolkit_registry pa-
rameter

to_inchikey (fixed_hydrogens=False, toolkit_ registry="ToolkitRegistry containing The RDKit, Am-
berTools, Built-in Toolkit)
Create an InChIKey for the molecule using the requested toolkit backend. InChlIKey is a standard-
ised representation that does not capture tautomers unless specified using the fixed hydrogen

layer.
For information on InChi see here https://iupac.org/who-we-are/divisions/division-details/
inchi/
Parameters
fixed_hydrogens: bool, default=False If a fixed hydrogen layer should be added
to the InChl, if True this will produce a non standard specific InChl string of the
molecule.
toolkit_registry [openforcefield.utils.toolkits.ToolRegistry or openforce-
field.utils.toolkits.ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for molecule-to-InChIKey conversion
Returns
inchi_key: str The InChlIKey representation of the molecule.
Raises

122 Chapter 2. API documentation


https://iupac.org/who-we-are/divisions/division-details/inchi/
https://iupac.org/who-we-are/divisions/division-details/inchi/
https://iupac.org/who-we-are/divisions/division-details/inchi/
https://iupac.org/who-we-are/divisions/division-details/inchi/

openforcefield Documentation, Release 0.8.4

InvalidToolkitRegistryError If an invalid object is passed as the toolkit_registry pa-
rameter

to_iupac(toolkit registry=ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit)
Generate IUPAC name from Molecule

Returns

iupac_name [str] IUPAC name of the molecule

Note: This method requires the OpenEye toolkit to be installed. ..

Examples

>>> from openforcefield.utils import get_data_file_path

>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = Molecule(sdf_filepath)

>>> iupac_name = molecule.to_iupac()

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns

serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject
to_networkx()

Generate a NetworkX undirected graph from the Molecule.

Nodes are Atoms labeled with particle indices and atomic elements (via the element node atr-
ribute). Edges denote chemical bonds between Atoms. Virtual sites are not included, since they
lack a concept of chemical connectivity.

Returns

graph [networkx.Graph] The resulting graph, with nodes (atoms) labeled with atom
indices, elements, stereochemistry and aromaticity flags and bonds with two atom
indices, bond order, stereochemistry, and aromaticity flags

2.1. Molecular topology representations 123


https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Examples

Retrieve the bond graph for imatinib (OpenEye toolkit required)

>>> molecule = Molecule.from_iupac('imatinib")
>>> nxgraph = molecule.to_networkx()

to_openeye (aromaticity_model='OEAroModel MDL")
Create an OpenEye molecule

Requires the OpenEye toolkit to be installed.
Parameters

aromaticity model [str, optional, default=DEFAULT AROMATICITY MODEL] The
aromaticity model to use

Returns

oemol [openeye.oechem.OEMol] An OpenEye molecule

Examples

Create an OpenEye molecule from a Molecule

>>> molecule = Molecule.from_smiles('CC")
>>> oemol = molecule.to_openeye()

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns

serialized [str] A pickled representation of the object

to_qcschema (multiplicity=1, conformer=0, extras=None)
Create a QCElemental Molecule.

Warning: This API is experimental and subject to change.

Parameters

multiplicity [int, default=1,] The multiplicity of the molecule; sets molecu-
lar_multiplicity field for QCElemental Molecule.

conformer [int, default=0,] The index of the conformer to use for the QCElemental
Molecule geometry.

extras [dict, default=None] A dictionary that should be included in the extras field
on the QCElemental Molecule. This can be used to include extra information, such
as a smiles representation.

Returns

124 Chapter 2. API documentation




openforcefield Documentation, Release 0.8.4

gqcelemental.models.Molecule A validated QCElemental Molecule.
Raises

MissingDependencyError [qcelemental is not installed, the qcschema can not be
validated.]

InvalidConformerError [no conformer found at the given index.]

Examples

Create a QCElemental Molecule:

>>> import qcelemental as qcel

>>> mol = Molecule.from_smiles('CC")

>>> mol.generate_conformers(n_conformers=1)
>>> qcemol = mol.to_qgcschema()

to_rdkit (aromaticity model='OEAroModel MDL")
Create an RDKit molecule

Requires the RDKit to be installed.
Parameters

aromaticity_model [str, optional, default=DEFAULT AROMATICITY MODEL] The
aromaticity model to use

Returns
rdmol [rkit.RDMol] An RDKit molecule

Examples

Convert a molecule to RDKit

>>> from openforcefield.utils import get_data_file_path

>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = Molecule(sdf_filepath)

>>> rdmol = molecule.to_rdkit()

to_smiles(isomeric=True, explicit_hydrogens="True, mapped=False,
toolkit_registry="ToolkitRegistry containing The RDKit, AmberTools, Built-in Toolkit)
Return a canonical isomeric SMILES representation of the current molecule. A partially mapped
smiles can also be generated for atoms of interest by supplying an atom_map to the properties
dictionary.

Note: RDKit and OpenEye versions will not necessarily return the same representation.

Parameters
isomeric: bool optional, default= True return an isomeric smiles

explicit_hydrogens: bool optional, default=True return a smiles string containing
all hydrogens explicitly

2.1. Molecular topology representations 125



openforcefield Documentation, Release 0.8.4

mapped: bool optional, default=False return a explicit hydrogen mapped smiles,
the atoms to be mapped can be controlled by supplying an atom map into the
properties dictionary. If no mapping is passed all atoms will be mapped in order,
else an atom map dictionary from the current atom index to the map id should be
supplied with no duplicates. The map ids (values) should start from O or 1.

toolkit_registry [openforcefield.utils.toolkits.ToolkitRegistry or openforce-
field.utils.toolkits. ToolkitWrapper, optional, default=None] ToolkitRegistry
or ToolkitWrapper to use for SMILES conversion

Returns

smiles [str] Canonical isomeric explicit-hydrogen SMILES

Examples

>>> from openforcefield.utils import get_data_file_path

>>> sdf_filepath = get_data_file_path('molecules/ethanol.sdf")
>>> molecule = Molecule(sdf_filepath)

>>> smiles = molecule.to_smiles()

to_toml()
Return a TOML serialized representation.

Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_topology()
Return an OpenFF Topology representation containing one copy of this molecule

Returns

topology [openforcefield.topology.Topology] A Topology representation of this
molecule

Examples

>>> molecule = Molecule.from_iupac('imatinib")
>>> topology = molecule.to_topology()

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/

126 Chapter 2. API documentation


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

Returns

serialized [str] A YAML serialized representation of the object

property torsions

Get an iterator over all i-j-k-1 torsions. Note that i-j-k-i torsions (cycles) are excluded.

Returns

torsions [iterable of 4-Atom tuples]

property total_charge
Return the total charge on the molecule

property virtual_sites
Iterate over all VirtualSite objects.

add_atom(atomic_number, formal_charge, is_aromatic, stereochemistry=None, name=None)
Add an atom

Parameters

Returns

atomic_number [int] Atomic number of the atom
formal_charge [int] Formal charge of the atom
is_aromatic [bool] If True, atom is aromatic; if False, not aromatic

stereochemistry [str, optional, default=None] Either ‘R’ or ‘S’ for specified stereo-
chemistry, or None if stereochemistry is irrelevant

name [str, optional, default=None] An optional name for the atom

index [int] The index of the atom in the molecule

Examples

Define a methane molecule

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

mole

H1 =
H2 =
H3 =
H4 =

bond_

bond
bond
bond

cule

molecule.add_atom(1, 0,
molecule.add_atom(1, 0,
molecule.add_atom(1, 0,
molecule.add_atom(1, 0,

idx
_idx
_idx
_idx

Molecule()
molecule.name = 'methane’
C = molecule.add_atom(6, 0, False)

molecule
molecule
molecule
molecule

.add_bond(C,
.add_bond(C,
.add_bond(C,
.add_bond(C,

False)
False)
False)
False)

H1, False,
H2, False,
H3, False,
H4, False,

D)
D)
D)
D)

add_bond_charge_virtual_site(atoms, distance, **kwargs)
Add a virtual site representing the charge on a bond.

Create a bond charge-type virtual site, in which the location of the charge is specified by the
position of two atoms. This supports placement of a virtual site S along a vector between two
specified atoms, e.g. to allow for a sigma hole for halogens or similar contexts. With positive

values of the distance, the virtual site lies outside the first indexed atom.

Parameters

2.1. Molecular topology representations

127




openforcefield Documentation, Release 0.8.4

atoms [list of openforcefield.topology.molecule.Atom objects or ints of shape [N]]
The atoms defining the virtual site’s position or their indices

distance [float]

weights [list of floats of shape [N] or None, optional, default=None] weights[index]
is the weight of particles[index] contributing to the position of the virtual site.
Default is None

charge_increments [list of floats of shape [N], optional, default=None] The
amount of charge to remove from the VirtualSite’s atoms and put in the Virtu-
alSite. Indexing in this list should match the ordering in the atoms list. Default is
None.

epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VAW properties of virtual site. Default
is None.

rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.
name [string or None, default="] The name of this virtual site. Default is “.

symmetric [bool, default=True] Whether to make virtual site symmetric by creating
two particles instead of just one. As an example, for N_2 this should be set to True
to model both lone pairs with the same parameters.

Returns
index [int] The index of the newly-added virtual site in the molecule

add_monovalent_lone_pair_virtual_site(atoms, distance, out of plane angle, in_plane angle,
**kwargs)
Create a bond charge-type virtual site, in which the location of the charge is specified by the
position of three atoms.

Parameters

atoms [list of three openforcefield.topology.molecule.Atom objects or ints] The three
atoms defining the virtual site’s position or their molecule atom indices

distance [float]

out_of plane_angle [float]

in_plane_angle [float]

epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VdW properties of virtual site. Default
is None.

rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.
name [string or None, default="] The name of this virtual site. Default is “.

symmetric [bool, default=False] Whether to make virtual site symmetric by creating
two particles instead of just one. Note that because this site is defined is placed on
the noncentral atom, setting this to True will place one particle on atom1, and the
other on atom3.

Returns

index [int] The index of the newly-added virtual site in the molecule

128 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

add_divalent_lone_pair_virtual_site(atoms, distance, out _of plane_angle, **kwargs)
Create a divalent lone pair-type virtual site, in which the location of the charge is specified by the
position of three atoms.

Parameters

atoms [list of 3 openforcefield.topology.molecule.Atom objects or ints] The three
atoms defining the virtual site’s position or their molecule atom indices

distance [float]
out_of plane_angle [float]
epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VAW properties of virtual site. Default
is None.

rmin_half [float] Rmin half term for VAW properties of virtual site. Default is None.
name [string or None, default="] The name of this virtual site. Default is “.

symmetric [bool, default=True] Whether to make virtual site symmetric by creating
two particles instead of just one. As an example, for TIP5 should be set to True to
model both lone pairs with the same parameters.

Returns
index [int] The index of the newly-added virtual site in the molecule

add_trivalent_lone_pair_virtual_site(atoms, distance, **kwargs)
Create a trivalent lone pair-type virtual site, in which the location of the charge is specified by the
position of four atoms.

Parameters

atoms [list of 4 openforcefield.topology.molecule.Atom objects or ints] The three
atoms defining the virtual site’s position or their molecule atom indices

distance [float]
epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VAW properties of virtual site. Default
is None.

rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.

name [string or None, default="] The name of this virtual site. Default is .
Returns

index [int] The index of the newly-added virtual site in the molecule

add_bond(atoml, atom2, bond_order, is_aromatic, stereochemistry=None, frac-

tional_bond_order=None)
Add a bond between two specified atom indices

Parameters
atom1 [int or openforcefield.topology.molecule.Atom] Index of first atom
atom2 [int or openforcefield.topology.molecule.Atom] Index of second atom
bond_order [int] Integral bond order of Kekulized form

is_aromatic [bool] True if this bond is aromatic, False otherwise

2.1. Molecular topology representations 129



openforcefield Documentation, Release 0.8.4

stereochemistry [str, optional, default=None] Either ‘E’ or ‘Z’ for specified stereo-
chemistry, or None if stereochemistry is irrelevant

fractional_bond_order [float, optional, default=None] The fractional (eg. Wiberg)
bond order

Returns
index: int Index of the bond in this molecule

add_conformer (coordinates)
Add a conformation of the molecule

Parameters

coordinates: simtk.unit.Quantity(np.array) with shape (n_atoms, 3) and dimension of distance
Coordinates of the new conformer, with the first dimension of the array corre-
sponding to the atom index in the Molecule’s indexing system.

Returns
index: int The index of this conformer

visualize (backend="rdkit', width=500, height=300)
Render a visualization of the molecule in Jupyter

Parameters

backend [str, optional, default="rdkit’] Which visualization engine to use. Choose
from: - rdkit - openeye - nglview (conformers needed)

width [int, optional, default=500] Width of the generated representation (only ap-
plicable to backend=openeye)

height [int, optional, default=300] Width of the generated representation (only ap-
plicable to backend=openeye)

Returns

object Depending on the backend chosen: - rdkit, openeye -> IPython.display.Image
- nglview -> nglview.NGLWidget

openforcefield.topology.Topology

class openforcefield.topology.Topology(other=None)

A Topology is a chemical representation of a system containing one or more molecules appearing in a
specified order.

As of the 0.7.0 release, the Topology particle indexing system puts all atoms before all virtualsites.
This ensures that atoms keep the same Topology particle index value, even if the Topology is modified
during system creation by the addition of virtual sites.

Warning: This API is experimental and subject to change.

130 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Examples

Import some utilities

>>> from simtk.openmm import app

>>> from openforcefield.tests.utils import get_data_file_path, get_packmol_pdb_file_path
>>> pdb_filepath = get_packmol_pdb_file_path('cyclohexane_ethanol_0.4_0.6")

>>> monomer_names = ('cyclohexane', 'ethanol')

Create a Topology object from a PDB file and sdf files defining the molecular contents

>>> from openforcefield.topology import Molecule, Topology

>>> pdbfile = app.PDBFile(pdb_filepath)

>>> sdf_filepaths = [get_data_file_path(f'systems/monomers/{name}.sdf') for name in monomer_names]
>>> unique_molecules = [Molecule.from_file(sdf_filepath) for sdf_filepath in sdf_filepaths]

>>> topology = Topology.from_openmm(pdbfile.topology, unique_molecules=unique_molecules)

Create a Topology object from a PDB file and IUPAC names of the molecular contents

>>> pdbfile = app.PDBFile(pdb_filepath)
>>> unique_molecules = [Molecule.from_iupac(name) for name in monomer_names]
>>> topology = Topology.from_openmm(pdbfile.topology, unique_molecules=unique_molecules)

Create an empty Topology object and add a few copies of a single benzene molecule

>>> topology = Topology()
>>> molecule = Molecule.from_iupac('benzene')
>>> molecule_topology_indices = [topology.add_molecule(molecule) for index in range(10)]

Attributes

amber_impropers Iterate over improper torsions in the molecule, but only those with
trivalent centers, reporting the central atom first in each improper.

angles Iterable of Tuple[TopologyAtom]: iterator over the angles in this Topology.
aromaticity_model Get the aromaticity model applied to all molecules in the topology.
box_vectors Return the box vectors of the topology, if specified

charge_model Get the partial charge model applied to all molecules in the topology.
constrained_atom_pairs Returns the constrained atom pairs of the Topology
fractional_bond_order_model Get the fractional bond order model for the Topology.

impropers Iterable of Tuple[TopologyAtom]: iterator over the possible improper tor-
sions in this Topology.

is_periodic Return whether or not this Topology is intended to be described with peri-
odic boundary conditions.

n_angles int: number of angles in this Topology.
n_impropers int: number of possible improper torsions in this Topology.
n_propers int: number of proper torsions in this Topology.

n_reference_molecules Returns the number of reference (unique) molecules in in this
Topology.

n_topology_atoms Returns the number of topology atoms in in this Topology.

2.1. Molecular topology representations 131



openforcefield Documentation, Release 0.8.4

n_topology_bonds Returns the number of TopologyBonds in in this Topology.
n_topology_molecules Returns the number of topology molecules in in this Topology.

n_topology_particles Returns the number of topology particles (TopologyAtoms and
TopologyVirtualSites) in in this Topology.

n_topology_virtual_sites Returnsthe number of TopologyVirtualSites in in this Topol-
ogy.

propers Iterable of Tuple[TopologyAtom]: iterator over the proper torsions in this
Topology.

reference_molecules Get an iterator of reference molecules in this Topology.

smirnoff_impropers Iterate over improper torsions in the molecule, but only those with
trivalent centers, reporting the central atom second in each improper.

topology_atoms Returns an iterator over the atoms in this Topology.
topology_bonds Returns an iterator over the bonds in this Topology
topology_molecules Returns an iterator over all the TopologyMolecules in this Topology

topology_particles Returns an iterator over the particles (TopologyAtoms and Topol-
ogyVirtualSites) in this Topology.

topology_virtual_sites Get an iterator over the virtual sites in this Topology

Methods

add_constraint(iatom, jatom[, distance]) Mark a pair of atoms as constrained.

add_molecule(moleculel, ...]) Add a Molecule to the Topology.

add_particle(particle) Add a Particle to the Topology.

assert_bonded(atoml, atom2) Raise an exception if the specified atoms are not
bonded in the topology.

atom(atom_topology index) Get the TopologyAtom at a given Topology atom
index.

bond(bond_topology index) Get the TopologyBond at a given Topology bond
index.

chemical_environment_matches(queryl,...1) Retrieve all matches for a given chemical envi-
ronment query.

from_bson(serialized) Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d) Static constructor from dictionary representa-
tion.

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_mdtraj(mdtraj_topologyl[, Construct an openforcefield Topology object

unique_molecules]) from an MDTraj Topology object.

from_messagepack(serialized) Instantiate an object from a MessagePack serial-
ized representation.

from_molecules(molecules) Create a new Topology object containing one
copy of each of the specified molecule(s).

from_openmm(openmm_topologyl, Construct an openforcefield Topology object

unique_molecules]) from an OpenMM Topology object.

continues on next page

132 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 8 - continued from previous page
from_parmed(parmed_structure],
unique_molecules])

arning:
This

from_pickle(serialized) Instantiate an object from a pickle serialized rep-
resentation.

Instantiate an object from a TOML serialized
representation.

Instantiate an object from an XML serialized rep-
resentation.

Instantiate from a YAML serialized representa-
tion.

Returns the bond between two atoms

Returns True if the two atoms are bonded

from_toml (serialized)

from_xml (serialized)

from_yaml (serialized)

get_bond_between(i, j)
is_bonded(i, j)

is_constrained(iatom, jatom)

Check if a pair of atoms are marked as con-
strained.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_file(filename, positions[, file_format, ...])

To save a PDB file with coordinates as well
as topology from openforcefield topology object
Reference: https://github.com/openforcefield/
openforcefield/issues/502 Note: 1. This doesn’t
handle virtual sites (they’re ignored) 2. Atom
numbering may not remain same, for example
if the atoms in water are numbered as 1001,
1002, 1003, they would change to 1, 2, 3. This
doesn’t affect the topology or coordinates or
atom-ordering in anyway 3. Same issue with the
amino acid names in the pdb file, they are not
returned.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_openmm([ensure_unique_atom names])

Create an OpenMM Topology object.

continues on next page

2.1. Molecular topology representations

133


https://github.com/openforcefield/openforcefield/issues/502
https://github.com/openforcefield/openforcefield/issues/502

openforcefield Documentation, Release 0.8.4

Table 8 - continued from previous page

to_parmed()

arning:
This

to_pickle() Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.

virtual_site(vsite topology index) Get the TopologyAtom at a given Topology atom
index.

_init__(other=None)
Create a new Topology.

Parameters

other [optional, default=None] If specified, attempt to construct a copy of the Topol-
ogy from the specified object. This might be a Topology object, or a file that can be
used to construct a Topology object or serialized Topology object.

Methods

__init__([other]) Create a new Topology.

add_constraint(iatom, jatom[, distance]) Mark a pair of atoms as constrained.

add_molecule(moleculel, ...]) Add a Molecule to the Topology.

add_particle(particle) Add a Particle to the Topology.

assert_bonded(atoml1, atom2) Raise an exception if the specified atoms are not
bonded in the topology.

atom(atom_topology index) Get the TopologyAtom at a given Topology atom
index.

bond(bond_topology index) Get the TopologyBond at a given Topology bond
index.

continues on next page

134

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 9 - continued from previous page

chemical _environment_matches(query[,...]) Retrieve all matches for a given chemical envi-
ronment query.

from_bson(serialized) Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d) Static constructor from dictionary representa-
tion.

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_mdtraj(mdtraj_topologyl, Construct an openforcefield Topology object

unique_molecules]) from an MDTraj Topology object.

from_messagepack(serialized) Instantiate an object from a MessagePack serial-
ized representation.

from_molecules(molecules) Create a new Topology object containing one
copy of each of the specified molecule(s).

from_openmm(openmm_topologyl, Construct an openforcefield Topology object

unique_molecules]) from an OpenMM Topology object.

from_parmed(parmed_structure],
unique_molecules])

arning:
This
func-
tibn-
a -
itly
will
bg
ip-
pje-
njented
i1
a
fl-
t:[re
tgolkit
re-
Idase.
from_pickle(serialized) Instantiate an object from a pickle serialized rep-
resentation.
from_toml (serialized) Instantiate an object from a TOML serialized
representation.
from_xml(serialized) Instantiate an object from an XML serialized rep-
resentation.
from_yaml (serialized) Instantiate from a YAML serialized representa-
tion.
get_bond_between(, j) Returns the bond between two atoms
is_bonded(i, j) Returns True if the two atoms are bonded
is_constrained(iatom, jatom) Check if a pair of atoms are marked as con-
strained.
to_bson() Return a BSON serialized representation.
to_dict() Convert to dictionary representation.

continues on next page

2.1. Molecular topology representations 135



openforcefield Documentation, Release 0.8.4

Table 9 - continued from previous page
to_file(filename, positions[, file_format,...]) To save a PDB file with coordinates as well
as topology from openforcefield topology object
Reference: https://github.com/openforcefield/
openforcefield/issues/502 Note: 1. This doesn’t
handle virtual sites (they’re ignored) 2. Atom
numbering may not remain same, for example
if the atoms in water are numbered as 1001,
1002, 1003, they would change to 1, 2, 3. This
doesn’t affect the topology or coordinates or
atom-ordering in anyway 3. Same issue with the
amino acid names in the pdb file, they are not

returned.
to_json([indent]) Return a JSON serialized representation.
to_messagepack() Return a MessagePack representation.
to_openmm([ensure_unique atom names]) Create an OpenMM Topology object.
to_parmed()
arning:

This

func-

tipn-

al-

itly

will

bg

imn-

pje-

njented

i1

a

fl-

t:[re

tgolkit

re-

ldase.
to_pickle() Return a pickle serialized representation.
to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.
virtual_site(vsite_topology index) Get the TopologyAtom at a given Topology atom

index.

136 Chapter 2. API documentation


https://github.com/openforcefield/openforcefield/issues/502
https://github.com/openforcefield/openforcefield/issues/502

openforcefield Documentation, Release 0.8.4

Attributes

amber_impropers

Iterate over improper torsions in the molecule,
but only those with trivalent centers, reporting
the central atom first in each improper.

angles

Iterable of Tuple[TopologyAtom]: iterator over
the angles in this Topology.

aromaticity_model

Get the aromaticity model applied to all
molecules in the topology.

box_vectors

Return the box vectors of the topology,
if specified Returns —— box_vectors
simtk.unit.Quantity wrapped numpy array
of shape (3, 3) The unit-wrapped box vectors of
this topology

charge_model

Get the partial charge model applied to all
molecules in the topology.

constrained_atom_pairs

Returns the constrained atom pairs of the Topol-
ogy

fractional_bond_order_model

Get the fractional bond order model for the
Topology.

impropers

Iterable of Tuple[TopologyAtom]: iterator over
the possible improper torsions in this Topology.

is_periodic

Return whether or not this Topology is intended
to be described with periodic boundary condi-
tions.

n_angles

int: number of angles in this Topology.

n_impropers

int: number of possible improper torsions in this
Topology.

n_propers

int: number of proper torsions in this Topology.

n_reference_molecules

Returns the number of reference (unique)
molecules in in this Topology.

n_topology_atoms

Returns the number of topology atoms in in this
Topology.

n_topology_bonds

Returns the number of TopologyBonds in in this
Topology.

n_topology_molecules

Returns the number of topology molecules in in
this Topology.

n_topology_particles

Returns the number of topology particles (Topol-
ogyAtoms and TopologyVirtualSites) in in this
Topology.

n_topology_virtual_sites

Returns the number of TopologyVirtualSites in in
this Topology.

propers

Iterable of Tuple[TopologyAtom]: iterator over
the proper torsions in this Topology.

reference_molecules

Get an iterator of reference molecules in this
Topology.

smirnoff_impropers

Iterate over improper torsions in the molecule,
but only those with trivalent centers, reporting
the central atom second in each improper.

topology_atoms

Returns an iterator over the atoms in this Topol-
Ogy.

continues on next page

2.1. Molecular topology representations

137



openforcefield Documentation, Release 0.8.4

Table 10 - continued from previous page

topology_bonds Returns an iterator over the bonds in this Topol-
ogy

topology_molecules Returns an iterator over all the Topology-
Molecules in this Topology

topology_particles Returns an iterator over the particles (Topology-
Atoms and TopologyVirtualSites) in this Topol-
ogy.

topology_virtual_sites Get an iterator over the virtual sites in this Topol-
ogy

property reference_molecules
Get an iterator of reference molecules in this Topology.

Returns
iterable of openforcefield.topology.Molecule

classmethod from_molecules(molecules)
Create a new Topology object containing one copy of each of the specified molecule(s).

Parameters

molecules [Molecule or iterable of Molecules] One or more molecules to be added
to the Topology

Returns
topology [Topology] The Topology created from the specified molecule(s)

assert_bonded(atom1, atom2)
Raise an exception if the specified atoms are not bonded in the topology.

Parameters

atom1, atom2 [openforcefield.topology.Atom or int] The atoms or atom topology
indices to check to ensure they are bonded

property aromaticity_model
Get the aromaticity model applied to all molecules in the topology.

Returns
aromaticity_model [str] Aromaticity model in use.

property box_vectors
Return the box vectors of the topology, if specified Returns ——- box_vectors : simtk.unit.Quantity
wrapped numpy array of shape (3, 3)

The unit-wrapped box vectors of this topology

property is_periodic
Return whether or not this Topology is intended to be described with periodic boundary condi-
tions.

property charge_model
Get the partial charge model applied to all molecules in the topology.

Returns
charge_model [str] Charge model used for all molecules in the Topology.

property constrained_atom_pairs
Returns the constrained atom pairs of the Topology

138 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Returns

constrained_atom_pairs [dict] dictionary of the form d[(atoml topology index,
atom2_topology index)] = distance (float)

property fractional_bond_order_model
Get the fractional bond order model for the Topology.

Returns
fractional_bond_order_model [str] Fractional bond order model in use.

property n_reference_molecules
Returns the number of reference (unique) molecules in in this Topology.

Returns
n_reference_molecules [int]

property n_topology_molecules
Returns the number of topology molecules in in this Topology.

Returns
n_topology_molecules [int]

property topology_molecules
Returns an iterator over all the TopologyMolecules in this Topology

Returns
topology_molecules [Iterable of TopologyMolecule]

property n_topology_atoms
Returns the number of topology atoms in in this Topology.

Returns
n_topology_atoms [int]

property topology_atoms
Returns an iterator over the atoms in this Topology. These will be in ascending order of topology
index (Note that this is not necessarily the same as the reference molecule index)

Returns
topology_atoms [Iterable of TopologyAtom]

property n_topology_bonds
Returns the number of TopologyBonds in in this Topology.

Returns
n_bonds [int]

property topology_bonds
Returns an iterator over the bonds in this Topology

Returns
topology bonds [Iterable of TopologyBond]

property n_topology_particles
Returns the number of topology particles (TopologyAtoms and TopologyVirtualSites) in in this
Topology.

Returns

2.1. Molecular topology representations 139



openforcefield Documentation, Release 0.8.4

n_topology particles [int]

property topology_particles
Returns an iterator over the particles (TopologyAtoms and TopologyVirtualSites) in this Topology.
The TopologyAtoms will be in order of ascending Topology index (Note that this may differ from
the order of atoms in the reference molecule index).

Returns
topology_particles [Iterable of TopologyAtom and TopologyVirtualSite]

property n_topology_virtual_sites
Returns the number of TopologyVirtualSites in in this Topology.

Returns
n_virtual_sites [iterable of TopologyVirtualSites]

property topology_virtual_sites
Get an iterator over the virtual sites in this Topology

Returns
topology_virtual_sites [Iterable of TopologyVirtualSite]

property n_angles
int: number of angles in this Topology.

property angles
Iterable of Tuple[TopologyAtom]: iterator over the angles in this Topology.

property n_propers
int: number of proper torsions in this Topology.

property propers
Iterable of Tuple[TopologyAtom]: iterator over the proper torsions in this Topology.

property n_impropers
int: number of possible improper torsions in this Topology.

property impropers
Iterable of Tuple[TopologyAtom]: iterator over the possible improper torsions in this Topology.

property smirnoff_impropers
Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the
central atom second in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend
on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current
SMIRNOFF parameterization, three of these six orderings will be used for the actual assignment
of the improper term and measurement of the angles. These three orderings capture the three
unique angles that could be calculated around the improper center, therefore the sum of these
three terms will always return a consistent energy.

For more details on the use of three-fold (‘trefoil’) impropers, see https://open-forcefield-toolkit.
readthedocs.io/en/latest/smirnoff.html#impropertorsions

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed second in each
tuple.

140

Chapter 2. API documentation


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions

openforcefield Documentation, Release 0.8.4

See also:
impropers, amber_impropers

property amber_impropers
Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the
central atom first in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend
on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current
AMBER parameterization, one of these six orderings will be used for the actual assignment of
the improper term and measurement of the angle. This method does not encode the logic to
determine which of the six orderings AMBER would use.

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed first in each
tuple.

See also:
impropers, smirnoff_impropers

chemical_environment_matches(query, aromaticity_model="MDL',
toolkit_registry="ToolkitRegistry containing The RDKit, Am-
berTools, Built-in Toolkit)
Retrieve all matches for a given chemical environment query.

TODO: * Do we want to generalize this to other kinds of queries too, like mdtraj DSL, pymol
selections, atom index slices, etc?

We could just call it topology.matches(query)

Parameters

query [str or ChemicalEnvironment] SMARTS string (with one or more tagged
atoms) or ChemicalEnvironment query Query will internally be resolved to
SMARTS using query.as_smarts() if it has an .as_smarts method.

aromaticity_model [str] Override the default aromaticity model for this topology
and use the specified aromaticity model instead. Allowed values: [‘MDL’]

Returns
matches [list of Topology. ChemicalEnvironmentMatch] A list of tuples, containing
the topology indices of the matching atoms.
to_dict()
Convert to dictionary representation.

classmethod from_dict(d)
Static constructor from dictionary representation.

classmethod from_openmm(openmm_topology, unique_molecules=None)
Construct an openforcefield Topology object from an OpenMM Topology object.

Parameters

openmm_topology [simtk.openmm.app.Topology] An OpenMM Topology object

2.1. Molecular topology representations 141



openforcefield Documentation, Release 0.8.4

unique_molecules [iterable of objects that can be used to construct unique Molecule
objects] All unique molecules must be provided, in any order, though multiple
copies of each molecule are allowed. The atomic elements and bond connectivity
will be used to match the reference molecules to molecule graphs appearing in the
OpenMM Topology. If bond orders are present in the OpenMM Topology, these
will be used in matching as well.

Returns
topology [openforcefield.topology.Topology] An openforcefield Topology object

to_openmm(ensure_unique_atom_names="True)
Create an OpenMM Topology object.

The OpenMM Topology object will have one residue per topology molecule. Currently, the number
of chains depends on how many copies of the same molecule are in the Topology. Molecules with
more than 5 copies are all assigned to a single chain, otherwise one chain is created for each
molecule. This behavior may change in the future.

Parameters

ensure_unique_atom_names [bool, optional. Default=True] Whether to check that
the molecules in each molecule have unique atom names, and regenerate them if
not. Note that this looks only at molecules, and does not guarantee uniqueness in
the entire Topology.

Returns
openmm_topology [simtk.openmm.app.Topology] An OpenMM Topology object

to_file(filename, positions, file_format='PDB', keepIds=False)
To save a PDB file with coordinates as well as topology from openforcefield topology object Refer-
ence: https://github.com/openforcefield/openforcefield/issues/502 Note: 1. This doesn’t handle
virtual sites (they’re ignored)

2. Atom numbering may not remain same, for example if the atoms in water are numbered
as 1001, 1002, 1003, they would change to 1, 2, 3. This doesn’t affect the topology or
coordinates or atom-ordering in anyway

3. Same issue with the amino acid names in the pdb file, they are not returned

Parameters
filename [str] name of the pdb file to write to

positions [n_atoms x 3 numpy array or simtk.unit.Quantity-wrapped n_atoms x 3
iterable] Can be an openmm ‘quantity’ object which has atomic positions as a list
of Vec3s along with associated units, otherwise a 3D array of UNITLESS numbers
are considered as “Angstroms” by default

file format [str] Output file format. Case insensitive. Currently only supported
value is “pdb”.
static from_mdtraj(mdtraj topology, unique _molecules=None)
Construct an openforcefield Topology object from an MDTraj Topology object.
Parameters
mdtraj_topology [mdtraj.Topology] An MDTraj Topology object

unique_molecules [iterable of objects that can be used to construct unique Molecule
objects] All unique molecules must be provided, in any order, though multiple

142 Chapter 2. API documentation


https://github.com/openforcefield/openforcefield/issues/502

openforcefield Documentation, Release 0.8.4

copies of each molecule are allowed. The atomic elements and bond connectivity
will be used to match the reference molecules to molecule graphs appearing in the
MDTraj Topology. If bond orders are present in the MDTraj Topology, these will be
used in matching as well.

Returns
topology [openforcefield. Topology] An openforcefield Topology object

static from_parmed(parmed_structure, unique_molecules=None)

Warning: This functionality will be implemented in a future toolkit release.

Construct an openforcefield Topology object from a ParmEd Structure object.
Parameters
parmed_structure [parmed.Structure] A ParmEd structure object

unique_molecules [iterable of objects that can be used to construct unique Molecule
objects] All unique molecules must be provided, in any order, though multiple
copies of each molecule are allowed. The atomic elements and bond connectivity
will be used to match the reference molecules to molecule graphs appearing in the
structure’s topology object. If bond orders are present in the structure’s topology
object, these will be used in matching as well.

Returns
topology [openforcefield.Topology] An openforcefield Topology object
to_parmed()

Warning: This functionality will be implemented in a future toolkit release.

Create a ParmEd Structure object.
Returns
parmed_structure [parmed.Structure] A ParmEd Structure objecft

get_bond_between(i, j)
Returns the bond between two atoms

Parameters

i, j [int or TopologyAtom] Atoms or atom indices to check
Returns

bond [TopologyBond] The bond between i and j.

is_bonded(i, j)
Returns True if the two atoms are bonded

Parameters
i, j [int or TopologyAtom] Atoms or atom indices to check

Returns

2.1. Molecular topology representations 143



openforcefield Documentation, Release 0.8.4

is_bonded [bool] True if atoms are bonded, False otherwise.

atom(atom_topology index)
Get the TopologyAtom at a given Topology atom index.

Parameters

atom_topology index [int] The index of the TopologyAtom in this Topology
Returns

An openforcefield.topology.TopologyAtom

virtual_site(vsite_topology_index)
Get the TopologyAtom at a given Topology atom index.

Parameters

vsite_topology_index [int] The index of the TopologyVirtualSite in this Topology
Returns

An openforcefield.topology.TopologyVirtualSite

bond(bond_topology_index)
Get the TopologyBond at a given Topology bond index.

Parameters

bond_topology_index [int] The index of the TopologyBond in this Topology
Returns

An openforcefield.topology.TopologyBond

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters

serialized [bytes] A MessagePack-encoded bytes serialized representation

144 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns

serialized [bytes] A BSON serialized representation of the objecft

2.1. Molecular topology representations 145


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/

Returns

146 Chapter 2. API documentation


https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

serialized [str] A YAML serialized representation of the object

add_particle(particle)
Add a Particle to the Topology.

Parameters

particle [Particle] The Particle to be added. The Topology will take ownership of the
Particle.

add_molecule(molecule, local_topology to_reference_index=None)

Add a Molecule to the Topology. You can optionally request that the atoms be added to the
Topology in a different order than they appear in the Molecule.

Parameters
molecule [Molecule] The Molecule to be added.

local_topology_to_reference_index: dict, optional, default = None Dictionary of
{TopologyMolecule atom_index : Molecule atom_index} for the Topology-
Molecule that will be built. If None, this function will add the atoms to the Topol-
ogy in the order that they appear in the reference molecule.

Returns

index [int] The index of this molecule in the topology
add_constraint (iatom, jatom, distance="True)
Mark a pair of atoms as constrained.
Constraints between atoms that are not bonded (e.g., rigid waters) are permissible.

Parameters

iatom, jatom [Atom] Atoms to mark as constrained These atoms may be bonded or
not in the Topology

distance [simtk.unit.Quantity, optional, default=True] Constraint distance True if
distance has yet to be determined False if constraint is to be removed

is_constrained(iatom, jatom)
Check if a pair of atoms are marked as constrained.

Parameters

iatom, jatom [int] Indices of atoms to mark as constrained.

Returns

distance [simtk.unit.Quantity or bool] True if constrained but constraints have not
yet been applied Distance if constraint has already been added to System

openforcefield.topology.TopologyMolecule

class openforcefield.topology.TopologyMolecule (reference_molecule, topology,

cal_topology to_reference_index=None)
TopologyMolecules are built to be an efficient way to store large numbers of copies of the same
molecule for parameterization and system preparation.

lo-

Warning: This API is experimental and subject to change.

2.1. Molecular topology representations 147



openforcefield Documentation, Release 0.8.4

Attributes

amber_impropers Iterate over improper torsions in the molecule, but only those with
trivalent centers, reporting the central atom first in each improper.

angles Iterable of Tuple[TopologyAtom]: iterator over the angles in this Topology-
Molecule.

atom_start_topology_index Get the topology index of the first atom in this Topology-
Molecule

atoms Return an iterator of all the TopologyAtoms in this TopologyMolecule

bond_start_topology_index Get the topology index of the first bond in this Topology-
Molecule

bonds Return an iterator of all the TopologyBonds in this TopologyMolecule

impropers Iterable of Tuple[TopologyAtom]: iterator over the possible improper tor-
sions in this TopologyMolecule.

n_angles int: number of angles in this TopologyMolecule.

n_atoms The number of atoms in this topology.

n_bonds Get the number of bonds in this TopologyMolecule

n_impropers int: number of possible improper torsions in this TopologyMolecule.
n_particles Get the number of particles in this TopologyMolecule

n_propers int: number of proper torsions in this TopologyMolecule.
n_virtual_sites Get the number of virtual sites in this TopologyMolecule
particles Return an iterator of all the TopologyParticles in this TopologyMolecules

propers Iterable of Tuple[TopologyAtom]: iterator over the proper torsions in this
TopologyMolecule.

reference_molecule Get the reference molecule for this TopologyMolecule

smirnoff_impropers Note that it’s possible that a trivalent center will not have an im-
proper assigned.

topology Get the topology that this TopologyMolecule belongs to

virtual_particle_start_topology_index Get the topology index of the first virtual
particle in this TopologyMolecule

virtual_site_start_topology_index Get the topology index of the first virtual site in
this TopologyMolecule

virtual_sites Return an iterator of all the TopologyVirtualSites in this Topology-
Molecules

148 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods
atom(index) Get the TopologyAtom with a given topology
atom index in this TopologyMolecule.
bond(index) Get the TopologyBond with a given reference

molecule index in this TopologyMolecule

from_dict(d)

Static constructor from dictionary representa-
tion.

particle(index) Get the TopologyParticle with a given reference
molecule index in this TopologyMolecule
to_dict() Convert to dictionary representation.

virtual_site(index)

Get the TopologyVirtualSite with a given refer-
ence molecule index in this TopologyMolecule

__init__(reference_molecule, topology, local_topology to_reference_index=None)

Create a new TopologyMolecule.

Parameters

reference_molecule [an openforcefield.topology.molecule.Molecule] The reference
molecule, with details like formal charges, partial charges, bond orders, partial

bond orders, and atomic symbols.

topology [an openforcefield.topology.Topology] The topology that this Topology-

Molecule belongs to

local_topology to_reference index [dict, optional, default=None] Dictionary of

{TopologyMolecule atom_index :

Molecule that will be built

Methods

Molecule_atom_index} for the Topology-

__init__(reference _molecule, topologyl, ...1)

Create a new TopologyMolecule.

atom(index)

Get the TopologyAtom with a given topology
atom index in this TopologyMolecule.

bond(index)

Get the TopologyBond with a given reference
molecule index in this TopologyMolecule

from_dict(d)

Static constructor from dictionary representa-
tion.

particle(index) Get the TopologyParticle with a given reference
molecule index in this TopologyMolecule
to_dict() Convert to dictionary representation.

virtual_site(index)

Get the TopologyVirtualSite with a given refer-
ence molecule index in this TopologyMolecule

2.1. Molecular topology representations

149



openforcefield Documentation, Release 0.8.4

Attributes

amber_impropers

Iterate over improper torsions in the molecule,
but only those with trivalent centers, reporting
the central atom first in each improper.

angles

Iterable of Tuple[TopologyAtom]: iterator over
the angles in this TopologyMolecule.

atom_start_topology_index

Get the topology index of the first atom in this
TopologyMolecule

atoms

Return an iterator of all the TopologyAtoms in
this TopologyMolecule

bond_start_topology_index

Get the topology index of the first bond in this
TopologyMolecule

bonds Return an iterator of all the TopologyBonds in
this TopologyMolecule

impropers Iterable of Tuple[TopologyAtom]: iterator over
the possible improper torsions in this Topology-
Molecule.

n_angles int: number of angles in this TopologyMolecule.

n_atoms The number of atoms in this topology.

n_bonds Get the number of bonds in this Topology-

Molecule

n_impropers

int: number of possible improper torsions in this
TopologyMolecule.

n_particles

Get the number of particles in this Topology-
Molecule

n_propers

int: number of proper torsions in this Topology-
Molecule.

n_virtual_sites

Get the number of virtual sites in this Topology-
Molecule

particles

Return an iterator of all the TopologyParticles in
this TopologyMolecules

propers

Iterable of Tuple[TopologyAtom]: iterator over
the proper torsions in this TopologyMolecule.

reference_molecule

Get the reference molecule for this Topology-
Molecule

smirnoff_impropers

Note that it’s possible that a trivalent center will
not have an improper assigned.

topology

Get the topology that this TopologyMolecule be-
longs to

virtual_particle_start_topology_index

Get the topology index of the first virtual particle
in this TopologyMolecule

virtual_site_start_topology_index

Get the topology index of the first virtual site in
this TopologyMolecule

virtual_sites

Return an iterator of all the TopologyVirtualSites
in this TopologyMolecules

property topology

Get the topology that this TopologyMolecule belongs to

Returns

an openforcefield.topology.Topology

150

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

property reference_molecule
Get the reference molecule for this TopologyMolecule

Returns
an openforcefield.topology.molecule.Molecule

property n_atoms
The number of atoms in this topology.

Returns
int
atom(index)
Get the TopologyAtom with a given topology atom index in this TopologyMolecule.
Parameters
index [int] Index of the TopologyAtom within this TopologyMolecule to retrieve
Returns
an openforcefield.topology. TopologyAtom

property atoms
Return an iterator of all the TopologyAtoms in this TopologyMolecule

Returns
an iterator of openforcefield.topology. TopologyAtoms

property atom_start_topology_index
Get the topology index of the first atom in this TopologyMolecule

property virtual_particle_start_topology_index
Get the topology index of the first virtual particle in this TopologyMolecule

bond (index)
Get the TopologyBond with a given reference molecule index in this TopologyMolecule

Parameters

index [int] Index of the TopologyBond within this TopologyMolecule to retrieve
Returns

an openforcefield.topology. TopologyBond

property bonds
Return an iterator of all the TopologyBonds in this TopologyMolecule

Returns
an iterator of openforcefield.topology.TopologyBonds

property n_bonds
Get the number of bonds in this TopologyMolecule

Returns
int [number of bonds]

property bond_start_topology_index
Get the topology index of the first bond in this TopologyMolecule

particle(index)
Get the TopologyParticle with a given reference molecule index in this TopologyMolecule

21.

Molecular topology representations 151



openforcefield Documentation, Release 0.8.4

Parameters

index [int] Index of the TopologyParticle within this TopologyMolecule to retrieve
Returns

an openforcefield.topology.TopologyParticle

property particles
Return an iterator of all the TopologyParticles in this TopologyMolecules

Returns
an iterator of openforcefield.topology.TopologyParticle

property n_particles
Get the number of particles in this TopologyMolecule

Returns
int [The number of particles]

virtual_site(index)
Get the TopologyVirtualSite with a given reference molecule index in this TopologyMolecule

Parameters

index [int] Index of the TopologyVirtualSite within this TopologyMolecule to retrieve
Returns

an openforcefield.topology.TopologyVirtualSite

property virtual_sites
Return an iterator of all the TopologyVirtualSites in this TopologyMolecules

Returns
an iterator of openforcefield.topology.TopologyVirtualSite

property n_virtual_sites
Get the number of virtual sites in this TopologyMolecule

Returns
int
property angles
Iterable of Tuple[TopologyAtom]: iterator over the angles in this TopologyMolecule.

property n_angles
int: number of angles in this TopologyMolecule.

property propers
Iterable of Tuple[TopologyAtom]: iterator over the proper torsions in this TopologyMolecule.

property n_propers
int: number of proper torsions in this TopologyMolecule.

property impropers
Iterable of Tuple[TopologyAtom]: iterator over the possible improper torsions in this Topology-
Molecule.

property n_impropers
int: number of possible improper torsions in this TopologyMolecule.

152

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

property smirnoff_impropers

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend
on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current
SMIRNOFF parameterization, three of these six orderings will be used for the actual assignment
of the improper term and measurement of the angles. These three orderings capture the three
unique angles that could be calculated around the improper center, therefore the sum of these
three terms will always return a consistent energy.

For more details on the use of three-fold (‘trefoil’) impropers, see https://open-forcefield-toolkit.
readthedocs.io/en/latest/smirnoff.html#impropertorsions

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed second in each
tuple.

property amber_impropers

Iterate over improper torsions in the molecule, but only those with trivalent centers, reporting the
central atom first in each improper.

Note that it’s possible that a trivalent center will not have an improper assigned. This will depend
on the force field that is used.

Also note that this will return 6 possible atom orderings around each improper center. In current
AMBER parameterization, one of these six orderings will be used for the actual assignment of
the improper term and measurement of the angle. This method does not encode the logic to
determine which of the six orderings AMBER would use.

Returns

impropers [set of tuple] An iterator of tuples, each containing the indices of atoms
making up a possible improper torsion. The central atom is listed first in each
tuple.

property virtual_site_start_topology_index

Get the topology index of the first virtual site in this TopologyMolecule

to_dict()

Convert to dictionary representation.

classmethod from_dict(d)

Static constructor from dictionary representation.

2.1.2 Secondary objects

Particle Base class for all particles in a molecule.

Atom A particle representing a chemical atom.

Bond Chemical bond representation.

VirtualSite A container representing one or more virtual par-
ticles whose positions are defined in terms of Atom
positions.

VirtualParticle A single particle owned by a VirtualSite

continues on next page

2.1. Molecular topology representations

153


https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html#impropertorsions

openforcefield Documentation, Release 0.8.4

Table 14 - continued from previous page

TopologyVirtualParticle

Attributes

BondChargeVirtualSite

A particle representing a “Bond Charge”-type vir-
tual site, in which the location of the charge is spec-
ified by the positions of two atoms.

MonovalentLonePairVirtualSite

A particle representing a “Monovalent Lone Pair”-
type virtual site, in which the location of the charge
is specified by the positions of three atoms.

DivalentLonePairVirtualSite

A particle representing a “Divalent Lone Pair”-type
virtual site, in which the location of the charge is
specified by the positions of three atoms.

TrivalentLonePairVirtualSite

A particle representing a “Trivalent Lone Pair”-type
virtual site, in which the location of the charge is
specified by the positions of four atoms.

TopologyAtom A TopologyAtom is a lightweight data struc-
ture that represents a single openforce-
field.topology.molecule.Atom in a Topology.

TopologyBond A TopologyBond is a lightweight data struc-
ture that represents a single openforce-
field.topology.molecule.Bond in a Topology.

TopologyVirtualSite A TopologyVirtualSite is a lightweight data
structure that represents a single openforce-
field.topology.molecule.VirtualSite in a Topology.

ValenceDict Enforce uniqueness in atom indices.

ImproperDict Symmetrize improper torsions.

openforcefield.topology.Particle

class openforcefield.topology.Particle
Base class for all particles in a molecule.

A particle object could be an Atom or a VirtualSite.

Warning: This API is experimental and subject to change.

Attributes

molecule The Molecule this particle is part of.

molecule_particle_index Returns the index of this particle in its molecule

name The name of the particle

154

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

__init__(*args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(*args, **kwargs)

Initialize self.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

continues on next page

2.1. Molecular topology representations

155



openforcefield Documentation, Release 0.8.4

Table 16 - continued from previous page

to_dict() Convert to dictionary representation.
to_json([indent]) Return a JSON serialized representation.
to_messagepack() Return a MessagePack representation.
to_pickle() Return a pickle serialized representation.
to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.
Attributes
molecule The Molecule this particle is part of.
molecule_particle_index Returns the index of this particle in its molecule
name The name of the particle

property molecule
The Molecule this particle is part of.

property molecule_particle_index
Returns the index of this particle in its molecule

property name
The name of the particle

to_dict()
Convert to dictionary representation.

classmethod from_dict(d)
Static constructor from dictionary representation.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html

156 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Parameters

serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns

instance [cls] Instantiated object.

classmethod from_pickle(serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/

2.1. Molecular topology representations 157


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml()
Return a YAML serialized representation.

158 Chapter 2. API documentation


https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/

openforcefield Documentation, Release 0.8.4

Specification: http://yaml.org/

Returns

serialized [str] A YAML serialized representation of the object

openforcefield.topology.Atom

class openforcefield.topology.Atom(atomic_number, formal charge, is_aromatic, name=None,
molecule=None, stereochemistry=None)

A particle representing a chemical atom.

Note that non-chemical virtual sites are represented by the VirtualSite object.

Warning: This API is experimental and subject to change.

Attributes

atomic_number The integer atomic number of the atom.

bonded_atoms The list of Atom objects this atom is involved in bonds with
bonds The list of Bond objects this atom is involved in.

element The element name

formal_charge The atom’s formal charge

is_aromatic The atom’s is_aromatic flag

is_in_ring Return whether or not this atom is in a ring(s) (of any size)

mass The standard atomic weight (abundance-weighted isotopic mass) of the atomic
site.

molecule The Molecule this particle is part of.
molecule_atom_index The index of this Atom within the the list of atoms in Molecules.

molecule_particle_index The index of this Atom within the the list of particles in the
parent Molecule.

name The name of this atom, if any
partial_charge The partial charge of the atom, if any.
stereochemistry The atom’s stereochemistry (if defined, otherwise None)

virtual_sites The list of VirtualSite objects this atom is involved in.

Methods

add_bond(bond)

Adds a bond that this atom is involved in .

add_virtual_site(vsite)

Adds a bond that this atom is involved in .

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(atom_dict)

Create an Atom from a dict representation.

continues on next page

2.1. Molecular topology representations

159


http://yaml.org/

openforcefield Documentation, Release 0.8.4

Table 18 - continued from previous page

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized) Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized) Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized) Instantiate an object from a TOML serialized
representation.

from_xml (serialized) Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized) Instantiate from a YAML serialized representa-
tion.

is_bonded_to(atom2) Determine whether this atom is bound to an-
other atom

to_bson() Return a BSON serialized representation.

to_dict() Return a dict representation of the atom.

to_json([indent]) Return a JSON serialized representation.

to_messagepack() Return a MessagePack representation.

to_pickle() Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.

__init__(atomic_number, formal_charge, is_aromatic, name=None, molecule=None, stereochem-
istry=None)
Create an immutable Atom object.

Object is serializable and immutable.
Parameters
atomic_number [int] Atomic number of the atom

formal_charge [int or simtk.unit.Quantity-wrapped int with dimension “charge”]
Formal charge of the atom

is_aromatic [bool] If True, atom is aromatic; if False, not aromatic

stereochemistry [str, optional, default=None] Either ‘R’ or ‘S’ for specified stereo-
chemistry, or None for ambiguous stereochemistry

name [str, optional, default=None] An optional name to be associated with the atom

Examples

Create a non-aromatic carbon atom

’>>> atom = Atom(6, 0, False)

Create a chiral carbon atom

’>>> atom = Atom(6, 0, False, stereochemistry='R', name='CT")

160

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods

__init__(atomic_number, formal charge, ...)

Create an immutable Atom object.

add_bond(bond)

Adds a bond that this atom is involved in .

add_virtual_site(vsite)

Adds a bond that this atom is involved in .

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(atom_dict)

Create an Atom from a dict representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

is_bonded_to(atom2)

Determine whether this atom is bound to an-
other atom

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the atom.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

atomic_number

The integer atomic number of the atom.

bonded_atoms

The list of Atom objects this atom is involved in
bonds with

bonds

The list of Bond objects this atom is involved in.

element

The element name

formal_charge

The atom’s formal charge

is_aromatic

The atom’s is_aromatic flag

is_in_ring

Return whether or not this atom is in a ring(s)
(of any size)

mass The standard atomic weight (abundance-
weighted isotopic mass) of the atomic site.
molecule The Molecule this particle is part of.

molecule_atom_index

The index of this Atom within the the list of
atoms in Molecules.

molecule_particle_index

The index of this Atom within the the list of par-
ticles in the parent Molecule.

continues on next page

2.1. Molecular topology representations

161



openforcefield Documentation, Release 0.8.4

Table 20 - continued from previous page

name The name of this atom, if any

partial_charge The partial charge of the atom, if any.

stereochemistry The atom’s stereochemistry (if defined, other-
wise None)

virtual_sites The list of VirtualSite objects this atom is in-
volved in.

add_bond(bond)
Adds a bond that this atom is involved in .. todo :: Is this how we want to keep records?

Parameters
bond: an openforcefield.topology.molecule.Bond A bond involving this atom

add_virtual_site(vsite)
Adds a bond that this atom is involved in .. todo :: Is this how we want to keep records?

Parameters
bond: an openforcefield.topology.molecule.Bond A bond involving this atom

to_dict()
Return a dict representation of the atom.

classmethod from_dict(atom_dict)
Create an Atom from a dict representation.

property formal_charge
The atom’s formal charge

property partial_charge
The partial charge of the atom, if any.

Returns

simtk.unit.Quantity with dimension of atomic charge, or None if no charge has been specified

property is_aromatic
The atom’s is_aromatic flag

property stereochemistry
The atom’s stereochemistry (if defined, otherwise None)

property element
The element name

property atomic_number
The integer atomic number of the atom.

property mass
The standard atomic weight (abundance-weighted isotopic mass) of the atomic site.

TODO (from jeff): Are there atoms that have different chemical properties based on their iso-
topes?

property name
The name of this atom, if any

property bonds
The list of Bond objects this atom is involved in.

162 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

property bonded_atoms
The list of Atom objects this atom is involved in bonds with

is_bonded_to(atom2)
Determine whether this atom is bound to another atom

Parameters

atom2: openforcefield.topology.molecule.Atom a different atom in the same
molecule

Returns
bool Whether this atom is bound to atom2

property is_in_ring
Return whether or not this atom is in a ring(s) (of any size)

property virtual_sites
The list of VirtualSite objects this atom is involved in.

property molecule_atom_index
The index of this Atom within the the list of atoms in Molecules. Note that this can be different
from molecule_particle_index.

property molecule_particle_index
The index of this Atom within the the list of particles in the parent Molecule. Note that this can
be different from molecule_atom_index.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns

instance [cls] Instantiated object.

2.1. Molecular topology representations 163


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

classmethod from_pickle(serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

property molecule
The Molecule this particle is part of.

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns

serialized [bytes] A BSON serialized representation of the objecft

164 Chapter 2. API documentation


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/

Returns

2.1. Molecular topology representations 165


https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

serialized [str] A YAML serialized representation of the object

openforcefield.topology.Bond

class openforcefield.topology.Bond(atoml, atom2, bond_order, is_aromatic, frac-
tional_bond_order=None, stereochemistry=None)
Chemical bond representation.

Warning: This API is experimental and subject to change.

Attributes
atoml, atom2 [openforcefield.topology.Atom] Atoms involved in the bond

bondtype [int] Discrete bond type representation for the Open Forcefield aromaticity
model TODO: Do we want to pin ourselves to a single standard aromaticity model?

type [str] String based bond type
order [int] Integral bond order
fractional_bond_order [float, optional] Fractional bond order, or None.

.. warning :: This API is experimental and subject to change.

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(molecule, d)

Create a Bond from a dict representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the bond.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

__init__(atoml, atom2, bond order, is_aromatic, fractional bond order=None, stereochem-

istry=None)

166

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Create a new chemical bond.

Methods

__init__(atoml,
is_aromatic)

atom2, bond_order,

Create a new chemical bond.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(molecule, d)

Create a Bond from a dict representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the bond.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

atoml

atoml1_index

atom2

atom2_index

atoms

bond_order

fractional_bond_order

is_aromatic

continues on next page

2.1. Molecular topology representations

167



openforcefield Documentation, Release 0.8.4

Table 23 - continued from previous page
is_in_ring Return whether or not this bond is in a ring(s)
(of any size)

molecule
molecule_bond_index The index of this Bond within the the list of
bonds in Molecules.
stereochemistry
to_dict()

Return a dict representation of the bond.

classmethod from_dict(molecule, d)
Create a Bond from a dict representation.

property molecule_bond_index
The index of this Bond within the the list of bonds in Molecules.

property is_in_ring
Return whether or not this bond is in a ring(s) (of any size)

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle(serialized)
Instantiate an object from a pickle serialized representation.

168 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/

Parameters

2.1. Molecular topology representations 169


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns

serialized [str] A YAML serialized representation of the object

170 Chapter 2. API documentation


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

openforcefield.topology.VirtualSite

class openforcefield.topology.VirtualSite(atoms,
sigma=None, rmin_half=None, name=None, orienta-
tions=None)

charge_increments=None,  epsilon=None,

A container representing one or more virtual particles whose positions are defined in terms of Atom
positions. This container enables the coupling of particles that are symmetric about some axis/plane
of the underlying atoms. For example, a single virtual site can represent two lone pairs of a water
molecule, where the angle and distance parameters are expected to stay coupled, and are reflections

across the plane of symmetry.

Note that chemical atoms are represented by the Atom.

Warning: This API is experimental and subject to change.

Attributes

atoms Atoms on whose position this VirtualSite depends.

charge_increments Charges taken from this VirtualSite’s atoms and given to the Virtu-

alSite

epsilon The VAW epsilon term of this VirtualSite

molecule The Molecule this particle is part of.

molecule_particle_index Returns the index of this particle in its molecule

molecule_virtual_site_index The index of this VirtualSite within the list of virtual
sites within Molecule Note that this can be different from particle_index.

n_particles The number of particles that the virtual site represents

name The name of this VirtualSite

orientations

particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class name as string)

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict)

Create a virtual site from a dict representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

continues on next page

2.1. Molecular topology representations

171



openforcefield Documentation, Release 0.8.4

Table 24 - continued from previous page

from_toml(serialized) Instantiate an object from a TOML serialized
representation.

from_xml (serialized) Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized) Instantiate from a YAML serialized representa-
tion.

to_bson() Return a BSON serialized representation.

to_dict() Return a dict representation of the virtual site.

to_json([indent]) Return a JSON serialized representation.

to_messagepack() Return a MessagePack representation.

to_pickle() Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.

| index_of orientation | |

__init__(atoms, charge increments=None, epsilon=None, sigma=None, rmin_half=None,
name=None, orientations=None)
Base class for VirtualSites

Parameters

atoms [list of Atom of shape [N]] atoms[index] is the corresponding Atom for
weights[index]

charge_increments [list of floats of shape [N], optional, default=None] The
amount of charge to remove from the VirtualSite’s atoms and put in the Virtu-
alSite. Indexing in this list should match the ordering in the atoms list. Default is
None.

sigma [float, default=None] Sigma term for VdW properties of virtual site. Default
is None.

epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.
rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.
name [string or None, default=None] The name of this virtual site. Default is None.
virtual site_type [str] Virtual site type.

name [str or None, default=None] The name of this virtual site. Default is None

Methods

__init__(atoms[, charge increments, ...]) Base class for VirtualSites

from_bson(serialized) Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict) Create a virtual site from a dict representation.

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized) Instantiate an object from a MessagePack serial-

ized representation.

continues on next page

172

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 25 - continued from previous page

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

index_of_orientation(virtual particle)

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the virtual site.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

atoms Atoms on whose position this VirtualSite de-

pends.

charge_increments

Charges taken from this VirtualSite’s atoms and
given to the VirtualSite

epsilon

The VAW epsilon term of this VirtualSite

molecule

The Molecule this particle is part of.

molecule_particle_index

Returns the index of this particle in its molecule

molecule_virtual_site_index

The index of this VirtualSite within the list of
virtual sites within Molecule Note that this can
be different from particle_index.

n_particles

The number of particles that the virtual site rep-
resents

The name of this VirtualSite

name
orientations
particles Particles owned by this VirtualSite
rmin_half The VAW rmin_half term of this VirtualSite
sigma The VAW sigma term of this VirtualSite
type The type of this VirtualSite (returns the class
name as string)
to_dict()

Return a dict representation of the virtual site.

classmethod from_dict(vsite dict)
Create a virtual site from a dict representation.

property particles
Particles owned by this VirtualSite

property n_particles

2.1. Molecular topology representations 173



openforcefield Documentation, Release 0.8.4

The number of particles that the virtual site represents

property molecule_virtual_site_index
The index of this VirtualSite within the list of virtual sites within Molecule Note that this can be
different from particle_index.

property atoms
Atoms on whose position this VirtualSite depends.

property charge_increments
Charges taken from this VirtualSite’s atoms and given to the VirtualSite

property epsilon
The VAW epsilon term of this VirtualSite

property sigma
The VAW sigma term of this VirtualSite

property rmin_half
The VAW rmin_half term of this VirtualSite

property name
The name of this VirtualSite

property type
The type of this VirtualSite (returns the class name as string)

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns

instance [cls] Instantiated object.

174 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

classmethod from_pickle(serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

property molecule
The Molecule this particle is part of.

property molecule_particle_index
Returns the index of this particle in its molecule

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/

Returns

2.1. Molecular topology representations 175


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml()
Return a YAML serialized representation.

Specification: http://yaml.org/

176 Chapter 2. API documentation


https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

Returns
serialized [str] A YAML serialized representation of the object
openforcefield.topology.VirtualParticle

class openforcefield. topology.VirtualParticle (vsite, orientation, name=None)
A single particle owned by a VirtualSite

Warning: This API is experimental and subject to change.

Attributes

molecule The Molecule this particle is part of.

molecule_particle_index Returns the index of this particle in its molecule

name The name of the particle

orientation

virtual_site

virtual_site_particle_index The index of the particle relative to its owning virtual

site.

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

2.1. Molecular topology representations

177



openforcefield Documentation, Release 0.8.4

__init__(vsite, orientation, name=None)
A single particle owned by a VirtualSite

Parameters

vsite [openforcefield.topology.VirtualSite] The parent VirtualSite of this VirtualPar-

ticle

orientation [tuple of int] Molecule atom indices of parent atoms

name [str, optional] The name of the particle

Methods

_init__(vsite, orientation[, name])

A single particle owned by a VirtualSite

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

molecule The Molecule this particle is part of.

molecule_particle_index

Returns the index of this particle in its molecule

name

The name of the particle

orientation

virtual_site

virtual_site_particle_index

The index of the particle relative to its owning
virtual site.

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

property virtual_site_particle_index
The index of the particle relative to its owning virtual site. Normally this should either be 0 or 1.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_dict(d)
Static constructor from dictionary representation.

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml

Parameters

2.1. Molecular topology representations 179


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml

openforcefield Documentation, Release 0.8.4

serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

property molecule
The Molecule this particle is part of.

property molecule_particle_index
Returns the index of this particle in its molecule

property name
The name of the particle

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_dict()
Convert to dictionary representation.

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns

serialized [str] A JSON serialized representation of the object

180 Chapter 2. API documentation


https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns

serialized [str] A YAML serialized representation of the object

2.1. Molecular topology representations 181


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

openforcefield.topology.TopologyVirtualParticle
class openforcefield.topology.TopologyVirtualParticle(virtual site,  virtual particle,  topol-
ogy_molecule)
Attributes
atoms Get the TopologyAtoms involved in this TopologyVirtualSite.
molecule Get the reference Molecule that this TopologyVirtualSite belongs to.

n_particles Get the number of particles represented by this VirtualSite

particles Get an iterator to the reference particles that this TopologyVirtualSite con-

tains.

topology_molecule Get the TopologyMolecule that this TopologyVirtualSite belongs to.

topology_particle_index Get the index of this particle in its parent Topology.

topology_virtual_particle_start_index Get the index of the first virtual site particle

in its parent Topology.

topology_virtual_site_index Get the index of this virtual site in its parent Topology.

type Get the type of this virtual site

virtual_site Get the reference VirtualSite for this TopologyVirtualSite.

Methods

atom(index)

Get the atom at a specific index in this Topolo-
gyVirtualSite

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml()

Return a TOML serialized representation.

to_xml([indent])

Return an XML representation.

continues on next page

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 30 - continued from previous page

to_yaml()

Return a YAML serialized representation.

| invalidate_cached_data | |

__init__(virtual site, virtual particle, topology molecule)

Parameters

virtual_site [An openforcefield.topology.molecule.VirtualSite] The reference virtual

site

topology_molecule [An openforcefield.topology.TopologyMolecule] The Topology-
Molecule that this TopologyVirtualSite belongs to

Methods

_init__(virtual site, virtual particle, ...)

Parameters

atom(index)

Get the atom at a specific index in this Topolo-
gyVirtualSite

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

invalidate_cached_data()

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

2.1. Molecular topology representations

183



openforcefield Documentation, Release 0.8.4

Attributes

atoms Get the TopologyAtoms involved in this Topolo-
gyVirtualSite.

molecule Get the reference Molecule that this Topolo-
gyVirtualSite belongs to.

n_particles Get the number of particles represented by this
VirtualSite

particles Get an iterator to the reference particles that this
TopologyVirtualSite contains.

topology_molecule Get the TopologyMolecule that this TopologyVir-
tualSite belongs to.

topology_particle_index Get the index of this particle in its parent Topol-
ogy.

topology_virtual_particle_start_index Get the index of the first virtual site particle in
its parent Topology.

topology_virtual_site_index Get the index of this virtual site in its parent
Topology.

type Get the type of this virtual site

virtual_site Get the reference VirtualSite for this Topolo-
gyVirtualSite.

property topology_particle_index
Get the index of this particle in its parent Topology.

Returns
idx [int] The index of this particle in its parent topology.

atom(index)
Get the atom at a specific index in this TopologyVirtualSite

Parameters

index [int] The index of the atom in the reference VirtualSite to retrieve
Returns

TopologyAtom

property atoms
Get the TopologyAtoms involved in this TopologyVirtualSite.

Returns
iterator of openforcefield.topology. TopologyAtom

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns

instance [cls] An instantiated object

184 Chapter 2. API documentation


http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

classmethod from_dict(d)
Static constructor from dictionary representation.

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle(serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters

serialized [bytes] An XML serialized representation

2.1. Molecular topology representations 185


https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/

openforcefield Documentation, Release 0.8.4

Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

property molecule
Get the reference Molecule that this TopologyVirtualSite belongs to.

Returns
openforcefield.topology.molecule.Molecule

property n_particles
Get the number of particles represented by this VirtualSite

Returns
int [The number of particles]

property particles
Get an iterator to the reference particles that this TopologyVirtualSite contains.

Returns
iterator of TopologyVirtualParticles

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_dict()
Convert to dictionary representation.

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html

186 Chapter 2. API documentation


http://yaml.org/
http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns
serialized [str] A YAML serialized representation of the object

property topology_molecule
Get the TopologyMolecule that this TopologyVirtualSite belongs to.

Returns
openforcefield.topology.TopologyMolecule

property topology_virtual_particle_start_index
Get the index of the first virtual site particle in its parent Topology.

Returns
int The index of this particle in its parent topology.

property topology_virtual_site_index
Get the index of this virtual site in its parent Topology.

2.1. Molecular topology representations 187


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

Returns
int The index of this virtual site in its parent topology.

property type
Get the type of this virtual site

Returns
str [The class name of this virtual site]

property virtual_site
Get the reference VirtualSite for this TopologyVirtualSite.

Returns

an openforcefield.topology.molecule.VirtualSite

openforcefield.topology.BondChargeVirtualSite

class openforcefield.topology.BondChargeVirtualSite(atoms, distance, charge increments=None,

epsilon=None, sigma=None,
rmin_half=None, name=None, orien-
tations=None)

A particle representing a “Bond Charge”-type virtual site, in which the location of the charge is specified

by the positions of two atoms. This supports placement of a virtual site S along a vector between two

specified atoms, e.g. to allow for a sigma hole for halogens or similar contexts. With positive values of

the distance, the virtual site lies outside the first indexed atom.

Warning: This API is experimental and subject to change.

Attributes
atoms Atoms on whose position this VirtualSite depends.

charge_increments Charges taken from this VirtualSite’s atoms and given to the Virtu-
alSite

distance The distance parameter of the virtual site

epsilon The VAW epsilon term of this VirtualSite

molecule The Molecule this particle is part of.

molecule_particle_index Returns the index of this particle in its molecule

molecule_virtual_site_index The index of this VirtualSite within the list of virtual
sites within Molecule Note that this can be different from particle_index.

n_particles The number of particles that the virtual site represents
name The name of this VirtualSite

orientations

particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class name as string)

188 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict)

Create a virtual site from a dict representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms)

Returns the OpenMMVirtualSite corresponding
to this BondChargeVirtualSite.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the virtual site.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.
| index_of orientation | |
__init__(atoms, distance, charge_increments=None, epsilon=None, sigma=None,

rmin_half=None, name=None, orientations=None)
Create a bond charge-type virtual site, in which the location of the charge is specified by the
position of two atoms. This supports placement of a virtual site S along a vector between two
specified atoms, e.g. to allow for a sigma hole for halogens or similar contexts. With positive
values of the distance, the virtual site lies outside the first indexed atom.

TODO: One of the examples on https://open-forcefield-toolkit.readthedocs.io/en/topology/
smirnoff.html#virtualsites-virtual-sites-for-off-atom-charges has a BondCharge defined with

three atoms — How does that work?

Parameters

atoms [list of openforcefield.topology.molecule.Atom objects of shape [N]] The
atoms defining the virtual site’s position

distance [float]

weights [list of floats of shape [N] or None, optional, default=None] weights[index]
is the weight of particles[index] contributing to the position of the virtual site.

Default is None

charge_increments [list of floats of shape [N], optional, default=None] The
amount of charge to remove from the VirtualSite’s atoms and put in the Virtu-

2.1. Molecular topology representations

189


https://open-forcefield-toolkit.readthedocs.io/en/topology/smirnoff.html#virtualsites-virtual-sites-for-off-atom-charges
https://open-forcefield-toolkit.readthedocs.io/en/topology/smirnoff.html#virtualsites-virtual-sites-for-off-atom-charges

openforcefield Documentation, Release 0.8.4

alSite. Indexing in this list should match the ordering in the atoms list. Default is

None.

epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VdW properties of virtual site. Default

is None.

rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.

name [string or None, default=None] The name of this virtual site. Default is None.

orientations [list of tuples of 3 Atoms or ints] The permutations of the matched
atoms that should be used to define the orientation of each virtual site particle

Methods

__init__(atoms, distance[, ...])

Create a bond charge-type virtual site, in which
the location of the charge is specified by the po-
sition of two atoms.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict)

Create a virtual site from a dict representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms)

Returns the OpenMMVirtualSite corresponding
to this BondChargeVirtualSite.

index_of_orientation(virtual particle)

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the virtual site.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Attributes

atoms

Atoms on whose position this VirtualSite de-
pends.

charge_increments

Charges taken from this VirtualSite’s atoms and
given to the VirtualSite

distance The distance parameter of the virtual site
epsilon The VAW epsilon term of this VirtualSite
molecule The Molecule this particle is part of.

molecule_particle_index

Returns the index of this particle in its molecule

molecule_virtual_site_index

The index of this VirtualSite within the list of

virtual sites within Molecule Note that this can
be different from particle_index.
The number of particles that the virtual site rep-

n_particles

resents

name The name of this VirtualSite

orientations

particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class
name as string)

to_dict()

Return a dict representation of the virtual site.

classmethod from_dict(vsite dict)
Create a virtual site from a dict representation.

property distance
The distance parameter of the virtual site

get_openmm_virtual_site(atoms)
Returns the OpenMMVirtualSite corresponding to this BondChargeVirtualSite.

Parameters

atoms [iterable of int] The indices of the atoms involved in this virtual site (not
assumed to be the same as the molecule indices as this method may be accessed
with regard to particles in a Topology).

Returns
virtual site [a simtk.openmm LocalCoordinatesSite]

property atoms
Atoms on whose position this VirtualSite depends.

property charge_increments
Charges taken from this VirtualSite’s atoms and given to the VirtualSite

property epsilon
The VAW epsilon term of this VirtualSite

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

2.1. Molecular topology representations 191



openforcefield Documentation, Release 0.8.4

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns

instance [cls] An instantiated object

192 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml

openforcefield Documentation, Release 0.8.4

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

property molecule
The Molecule this particle is part of.

property molecule_particle_index
Returns the index of this particle in its molecule

property molecule_virtual_site_index
The index of this VirtualSite within the list of virtual sites within Molecule Note that this can be
different from particle_index.

property n_particles
The number of particles that the virtual site represents

property name
The name of this VirtualSite

property particles
Particles owned by this VirtualSite

property rmin_half
The VAW rmin_half term of this VirtualSite

property sigma
The VAW sigma term of this VirtualSite

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/

Parameters

2.1. Molecular topology representations 193


https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

change between Python versions.

Warning: This is not recommended for safe, stable storage since the pickle specification may

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns
serialized [str] A YAML serialized representation of the object

property type
The type of this VirtualSite (returns the class name as string)

194 Chapter 2. API documentation


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

openforcefield.topology.MonovalentLonePairVirtualSite

class openforcefield.topology.MonovalentLonePairVirtualSite(atoms, distance,

out_of plane_angle,
in_plane_angle,
charge_increments=None, ep-
silon=None, sigma=None,
rmin_half=None, name=None,
orientations=None)

A particle representing a “Monovalent Lone Pair”-type virtual site, in which the location of the charge is

specified by the positions of three atoms. This is originally intended for situations like a carbonyl, and

allows placement of a virtual site S at a specified distance d, in_plane_angle, and out_of plane angle

relative to a central atom and two connected atoms.

Warning: This API is experimental and subject to change.

Attributes
atoms Atoms on whose position this VirtualSite depends.

charge_increments Charges taken from this VirtualSite’s atoms and given to the Virtu-
alSite

distance The distance parameter of the virtual site

epsilon The VAW epsilon term of this VirtualSite

in_plane_angle The in_plane angle parameter of the virtual site

molecule The Molecule this particle is part of.

molecule_particle_index Returns the index of this particle in its molecule

molecule_virtual_site_index The index of this VirtualSite within the list of virtual
sites within Molecule Note that this can be different from particle_index.

n_particles The number of particles that the virtual site represents

name The name of this VirtualSite

orientations

out_of_plane_angle The out of plane angle parameter of the virtual site
particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class name as string)

2.1. Molecular topology representations 195



openforcefield Documentation, Release 0.8.4

Methods

from_bson(serialized) Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict) Construct a new MonovalentLonePairVirtualSite
from an serialized dictionary representation.

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized) Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized) Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized) Instantiate an object from a TOML serialized
representation.

from_xml(serialized) Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized) Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms) Returns the OpenMMVirtualSite corresponding
to this MonovalentLonePairVirtualSite.

to_bson() Return a BSON serialized representation.

to_dict() Return a dict representation of the virtual site.

to_json([indent]) Return a JSON serialized representation.

to_messagepack() Return a MessagePack representation.

to_pickle() Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.

| index_of orientation | |

__init__(atoms, distance, out_of plane angle, in_plane_angle, charge increments=None, ep-
silon=None, sigma=None, rmin_half=None, name=None, orientations=None)
Create a bond charge-type virtual site, in which the location of the charge is specified by the
position of three atoms.

Parameters

atoms [list of three openforcefield.topology.molecule.Atom objects] The three atoms
defining the virtual site’s position

distance [float]

out_of plane_angle [float]

in_plane_angle [float]

epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VAW properties of virtual site. Default
is None.

rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.

name [string or None, default=None] The name of this virtual site. Default is None.

196

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

orientations [list of tuples of 3 Atoms or ints] The permutations of the matched
atoms that should be used to define the orientation of each virtual site particle

Methods

__init__(atoms, distance, ... [,...])

Create a bond charge-type virtual site, in which
the location of the charge is specified by the po-
sition of three atoms.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict)

Construct a new MonovalentLonePairVirtualSite
from an serialized dictionary representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms)

Returns the OpenMMVirtualSite corresponding
to this MonovalentLonePairVirtualSite.

index_of_orientation(virtual particle)

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the virtual site.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

atoms Atoms on whose position this VirtualSite de-

pends.

charge_increments

Charges taken from this VirtualSite’s atoms and
given to the VirtualSite

distance The distance parameter of the virtual site
epsilon The VAW epsilon term of this VirtualSite
in_plane_angle The in_plane angle parameter of the virtual site
molecule The Molecule this particle is part of.

molecule_particle_index

Returns the index of this particle in its molecule

continues on next page

2.1. Molecular topology representations

197



openforcefield Documentation, Release 0.8.4

Table 38 - continued from previous page
molecule_virtual_site_index The index of this VirtualSite within the list of
virtual sites within Molecule Note that this can
be different from particle_index.

n_particles The number of particles that the virtual site rep-
resents

name The name of this VirtualSite

orientations

out_of_plane_angle The out_of plane angle parameter of the virtual
site

particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class

name as string)

to_dict()
Return a dict representation of the virtual site.

classmethod from_dict (vsite dict)
Construct a new MonovalentLonePairVirtualSite from an serialized dictionary representation.

Parameters

vsite_dict [dict] The VirtualSite to deserialize.
Returns

The newly created MonovalentLonePairVirtualSite

property distance
The distance parameter of the virtual site

property in_plane_angle
The in_plane angle parameter of the virtual site

property out_of_plane_angle
The out_of plane_angle parameter of the virtual site

get_openmm_virtual_site(atoms)
Returns the OpenMMVirtualSite corresponding to this MonovalentLonePairVirtualSite.

Parameters

atoms [iterable of int] The indices of the atoms involved in this virtual site (not
assumed to be the same as the molecule indices as this method may be accessed
with regard to particles in a Topology).

Returns
virtual_site [a simtk.openmm LocalCoordinatesSite]

property atoms
Atoms on whose position this VirtualSite depends.

property charge_increments
Charges taken from this VirtualSite’s atoms and given to the VirtualSite

property epsilon
The VAW epsilon term of this VirtualSite

198 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns

instance [cls] An instantiated object

2.1. Molecular topology representations 199


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml

openforcefield Documentation, Release 0.8.4

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

property molecule
The Molecule this particle is part of.

property molecule_particle_index
Returns the index of this particle in its molecule

property molecule_virtual_site_index
The index of this VirtualSite within the list of virtual sites within Molecule Note that this can be
different from particle_index.

property n_particles
The number of particles that the virtual site represents

property name
The name of this VirtualSite

property particles
Particles owned by this VirtualSite

property rmin_half
The VAW rmin_half term of this VirtualSite

property sigma
The VAW sigma term of this VirtualSite

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/

Parameters

200 Chapter 2. API documentation


https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns
serialized [str] A YAML serialized representation of the object

property type
The type of this VirtualSite (returns the class name as string)

2.1. Molecular topology representations 201


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

openforcefield.topology.DivalentLonePairVirtualSite

class openforcefield.topology.DivalentLonePairVirtualSite (atoms, distance,
out_of plane_angle,
charge_increments=None, ep-
silon=None, sigma=None,
rmin_half=None, name=None,

orientations=None)
A particle representing a “Divalent Lone Pair’-type virtual site, in which the location of the charge

is specified by the positions of three atoms. This is suitable for cases like four-point and five-point
water models as well as pyrimidine; a charge site S lies a specified distance d from the central atom
among three atoms along the bisector of the angle between the atoms (if out_of plane angle is zero)
or out of the plane by the specified angle (if out of plane angle is nonzero) with its projection along
the bisector. For positive values of the distance d the virtual site lies outside the 2-1-3 angle and for
negative values it lies inside.

Warning: This API is experimental and subject to change.

Attributes
atoms Atoms on whose position this VirtualSite depends.

charge_increments Charges taken from this VirtualSite’s atoms and given to the Virtu-
alSite

distance The distance parameter of the virtual site

epsilon The VAW epsilon term of this VirtualSite

molecule The Molecule this particle is part of.

molecule_particle_index Returns the index of this particle in its molecule

molecule_virtual_site_index The index of this VirtualSite within the list of virtual
sites within Molecule Note that this can be different from particle_index.

n_particles The number of particles that the virtual site represents

name The name of this VirtualSite

orientations

out_of_plane_angle The out of plane angle parameter of the virtual site
particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class name as string)

202

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict)

Construct a new DivalentlLonePairVirtualSite
from an serialized dictionary representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms)

Returns the OpenMMVirtualSite corresponding
to this DivalentLonePairVirtualSite.

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the virtual site.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

| index_of orientation | |

__init__(atoms, distance, out of plane angle, charge_increments=None, epsilon=None,
sigma=None, rmin_half=None, name=None, orientations=None)
Create a divalent lone pair-type virtual site, in which the location of the charge is specified by the

position of three atoms.

Parameters

atoms [list of 3 openforcefield.topology.molecule.Atom objects] The three atoms

defining the virtual site’s position

distance [float]

out_of plane_angle [float]

epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VAW properties of virtual site. Default

is None.

rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.

name [string or None, default=None] The name of this virtual site. Default is None.

orientations [list of tuples of 3 Atoms or ints] The permutations of the matched
atoms that should be used to define the orientation of each virtual site particle

2.1. Molecular topology representations

203



openforcefield Documentation, Release 0.8.4

Methods

__init__(atoms, distance, out_of plane angle)

Create a divalent lone pair-type virtual site, in
which the location of the charge is specified by
the position of three atoms.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict)

Construct a new DivalentLonePairVirtualSite
from an serialized dictionary representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms)

Returns the OpenMMVirtualSite corresponding
to this DivalentLonePairVirtualSite.

index_of_orientation(virtual particle)

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the virtual site.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

atoms Atoms on whose position this VirtualSite de-

pends.

charge_increments

Charges taken from this VirtualSite’s atoms and
given to the VirtualSite

distance The distance parameter of the virtual site
epsilon The VAW epsilon term of this VirtualSite
molecule The Molecule this particle is part of.

molecule_particle_index

Returns the index of this particle in its molecule

molecule_virtual_site_index

The index of this VirtualSite within the list of
virtual sites within Molecule Note that this can
be different from particle_index.

n_particles

The number of particles that the virtual site rep-
resents

continues on next page

204

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 41 - continued from previous page

name The name of this VirtualSite

orientations

out_of_plane_angle The out_of plane angle parameter of the virtual
site

particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class

name as string)

to_dict()
Return a dict representation of the virtual site.

classmethod from_dict(vsite dict)
Construct a new DivalentLonePairVirtualSite from an serialized dictionary representation.

Parameters

vsite_dict [dict] The VirtualSite to deserialize.
Returns

The newly created DivalentLonePairVirtualSite

property distance
The distance parameter of the virtual site

property out_of_plane_angle
The out_of plane angle parameter of the virtual site

get_openmm_virtual_site(atoms)
Returns the OpenMMVirtualSite corresponding to this DivalentLonePairVirtualSite.

Parameters

atoms [iterable of int] The indices of the atoms involved in this virtual site (not
assumed to be the same as the molecule indices as this method may be accessed
with regard to particles in a Topology).

Returns
virtual_site [a simtk.openmm LocalCoordinatesSite]

property atoms
Atoms on whose position this VirtualSite depends.

property charge_increments
Charges taken from this VirtualSite’s atoms and given to the VirtualSite

property epsilon
The VAW epsilon term of this VirtualSite

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters

serialized [bytes] A BSON serialized representation of the object

2.1. Molecular topology representations 205


http://bsonspec.org/

openforcefield Documentation, Release 0.8.4

Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters

serialized [bytes] An XML serialized representation

206 Chapter 2. API documentation


https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/

openforcefield Documentation, Release 0.8.4

Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

property molecule
The Molecule this particle is part of.

property molecule_particle_index
Returns the index of this particle in its molecule

property molecule_virtual_site_index

The index of this VirtualSite within the list of virtual sites within Molecule Note that this can be

different from particle_index.

property n_particles
The number of particles that the virtual site represents

property name
The name of this VirtualSite

property particles
Particles owned by this VirtualSite

property rmin_half
The VAW rmin_half term of this VirtualSite

property sigma
The VAW sigma term of this VirtualSite

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/

Returns

serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/

Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified

number of spaces for indentation
Returns

serialized [str] A JSON serialized representation of the object

2.1. Molecular topology representations

207


http://yaml.org/
http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

change between Python versions.

Warning: This is not recommended for safe, stable storage since the pickle specification may

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns
serialized [str] A YAML serialized representation of the object

property type
The type of this VirtualSite (returns the class name as string)

208 Chapter 2. API documentation


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

openforcefield.topology.TrivalentLonePairVirtualSite

class openforcefield.topology.TrivalentLonePairVirtualSite (atoms, distance,
charge_increments=None, ep-
silon=None, sigma=None,

rmin_half=None, name=None,
orientations=None)

A particle representing a “Trivalent Lone Pair”’-type virtual site, in which the location of the charge is
specified by the positions of four atoms. This is suitable for planar or tetrahedral nitrogen lone pairs;
a charge site S lies above the central atom (e.g. nitrogen a distance d along the vector perpendicular
to the plane of the three connected atoms (2,3,4). With positive values of d the site lies above the
nitrogen and with negative values it lies below the nitrogen.

Warning: This API is experimental and subject to change.

Attributes

atoms Atoms on whose position this VirtualSite depends.

charge_increments Charges taken from this VirtualSite’s atoms and given to the Virtu-

alSite

distance The distance parameter of the virtual site

epsilon The VAW epsilon term of this VirtualSite

molecule The Molecule this particle is part of.

molecule_particle_index Returns the index of this particle in its molecule

molecule_virtual_site_index The index of this VirtualSite within the list of virtual
sites within Molecule Note that this can be different from particle_index.

n_particles The number of particles that the virtual site represents

name The name of this VirtualSite

orientations

particles Particles owned by this VirtualSite

rmin_half The VAW rmin_half term of this VirtualSite

sigma The VAW sigma term of this VirtualSite

type The type of this VirtualSite (returns the class name as string)

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(vsite_dict)

Construct a new TrivalentPairVirtualSite from an
serialized dictionary representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

continues on next page

2.1. Molecular topology representations

209



openforcefield Documentation, Release 0.8.4

Table 42 - continued from previous page

from_pickle(serialized) Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized) Instantiate an object from a TOML serialized
representation.

from_xml (serialized) Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized) Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms) Returns the OpenMMVirtualSite corresponding
to this TrivalentLonePairVirtualSite.

to_bson() Return a BSON serialized representation.

to_dict() Return a dict representation of the virtual site.

to_json([indent]) Return a JSON serialized representation.

to_messagepack() Return a MessagePack representation.

to_pickle() Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.

| index_of orientation | |

__init__(atoms, distance, charge_increments=None, epsilon=None, sigma=None,
rmin_half=None, name=None, orientations=None)
Create a trivalent lone pair-type virtual site, in which the location of the charge is specified by the

position of four atoms.
Parameters

atoms [list of 4 openforcefield.topology.molecule.Atom objects] The three atoms
defining the virtual site’s position

distance [float]
epsilon [float] Epsilon term for VAW properties of virtual site. Default is None.

sigma [float, default=None] Sigma term for VdW properties of virtual site. Default
is None.

rmin_half [float] Rmin_half term for VAW properties of virtual site. Default is None.
name [string or None, default=None] The name of this virtual site. Default is None.

orientations [list of tuples of 3 Atoms or ints] The permutations of the matched
atoms that should be used to define the orientation of each virtual site particle

Methods
__init__(atoms, distance[, ...]) Create a trivalent lone pair-type virtual site, in
which the location of the charge is specified by
the position of four atoms.
from_bson(serialized) Instantiate an object from a BSON serialized rep-

resentation.

continues on next page

210 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 43 - continued from previous page

from_dict(vsite dict)

Construct a new TrivalentPairVirtualSite from an
serialized dictionary representation.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

get_openmm_virtual_site(atoms)

Returns the OpenMMVirtualSite corresponding
to this TrivalentLonePairVirtualSite.

index_of_orientation(virtual particle)

to_bson()

Return a BSON serialized representation.

to_dict()

Return a dict representation of the virtual site.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

atoms Atoms on whose position this VirtualSite de-

pends.

charge_increments

Charges taken from this VirtualSite’s atoms and
given to the VirtualSite

distance The distance parameter of the virtual site
epsilon The VAW epsilon term of this VirtualSite
molecule The Molecule this particle is part of.

molecule_particle_index

Returns the index of this particle in its molecule

molecule_virtual_site_index

The index of this VirtualSite within the list of
virtual sites within Molecule Note that this can
be different from particle_index.

n_particles

The number of particles that the virtual site rep-
resents

name The name of this VirtualSite

orientations

particles Particles owned by this VirtualSite
rmin_half The VAW rmin_half term of this VirtualSite
sigma The VAW sigma term of this VirtualSite

continues on next page

2.1. Molecular topology representations

211



openforcefield Documentation, Release 0.8.4

Table 44 - continued from previous page
type The type of this VirtualSite (returns the class
name as string)

to_dict()
Return a dict representation of the virtual site.

classmethod from_dict(vsite dict)
Construct a new TrivalentPairVirtualSite from an serialized dictionary representation.

Parameters

vsite_dict [dict] The VirtualSite to deserialize.
Returns

The newly created TrivalentLonePairVirtualSite

property distance
The distance parameter of the virtual site

get_openmm_virtual_site(atoms)
Returns the OpenMMVirtualSite corresponding to this TrivalentLonePairVirtualSite.

Parameters

atoms [iterable of int] The indices of the atoms involved in this virtual site (not
assumed to be the same as the molecule indices as this method amy be accessed
with regard to particles in a Topology).

Returns
virtual_site [a simtk.openmm LocalCoordinatesSite]

property atoms
Atoms on whose position this VirtualSite depends.

property charge_increments
Charges taken from this VirtualSite’s atoms and given to the VirtualSite

property epsilon
The VAW epsilon term of this VirtualSite

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object

Returns

212 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object

Returns

2.1. Molecular topology representations 213


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

instance [cls] Instantiated object

property molecule
The Molecule this particle is part of.

property molecule_particle_index
Returns the index of this particle in its molecule

property molecule_virtual_site_index
The index of this VirtualSite within the list of virtual sites within Molecule Note that this can be
different from particle_index.

property n_particles
The number of particles that the virtual site represents

property name
The name of this VirtualSite

property particles
Particles owned by this VirtualSite

property rmin_half
The VAW rmin_half term of this VirtualSite

property sigma
The VAW sigma term of this VirtualSite

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

214

Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns

serialized [str] A pickled representation of the object
to_toml ()
Return a TOML serialized representation.

Specification: https://github.com/toml-lang/toml

Returns

serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/

Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation.
to_yaml ()
Return a YAML serialized representation.
Specification: http://yaml.org/

Returns

serialized [str] A YAML serialized representation of the object

property type
The type of this VirtualSite (returns the class name as string)

openforcefield.topology.TopologyAtom

class openforcefield.topology.TopologyAtom(atom, topology molecule)
A TopologyAtom is a lightweight data structure that represents a single openforce-
field.topology.molecule.Atom in a Topology. A TopologyAtom consists of two references — One
to its fully detailed “atom”, an openforcefield.topology.molecule.Atom, and another to its parent
“topology_molecule”, which occupies a spot in the parent Topology’s TopologyMolecule list.

As some systems can be very large, there is no always-existing representation of a TopologyAtom. They
are created on demand as the user requests them.

Warning: This API is experimental and subject to change.

Attributes

atom Get the reference Atom for this TopologyAtom.

2.1. Molecular topology representations 215


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

atomic_number Get the atomic number of this atom

molecule Get the reference Molecule that this TopologyAtom belongs to.

topology_atom_index Get the index of this atom in its parent Topology.

topology_bonds Get the TopologyBonds connected to this TopologyAtom.

topology_molecule Get the TopologyMolecule that this TopologyAtom belongs to.

topology_particle_index Get the index of this particle in its parent Topology.

Methods

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

__init__(atom, topology molecule)
Create a new TopologyAtom.

Parameters

atom [An openforcefield.topology.molecule.Atom] The reference atom

topology_molecule [An openforcefield.topology.TopologyMolecule] The Topology-
Molecule that this TopologyAtom belongs to

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods

__init__(atom, topology molecule)

Create a new TopologyAtom.

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.

to_xml([indent]) Return an XML representation.

to_yaml() Return a YAML serialized representation.
Attributes

atom Get the reference Atom for this TopologyAtom.

atomic_number Get the atomic number of this atom

molecule Get the reference Molecule that this Topology-

Atom belongs to.

topology_atom_index

Get the index of this atom in its parent Topology.

topology_bonds

Get the TopologyBonds connected to this Topol-
ogyAtom.

topology_molecule

Get the TopologyMolecule that this Topology-
Atom belongs to.

topology_particle_index

Get the index of this particle in its parent Topol-
ogy-

property atom

Get the reference Atom for this TopologyAtom.

Returns

an openforcefield.topology.molecule.Atom

property atomic_number
Get the atomic number of this atom

2.1. Molecular topology representations

217



openforcefield Documentation, Release 0.8.4

Returns
int
property topology_molecule
Get the TopologyMolecule that this TopologyAtom belongs to.
Returns
openforcefield.topology.TopologyMolecule

property molecule
Get the reference Molecule that this TopologyAtom belongs to.

Returns
openforcefield.topology.molecule.Molecule

property topology_atom_index
Get the index of this atom in its parent Topology.

Returns
int The index of this atom in its parent topology.

property topology_particle_index
Get the index of this particle in its parent Topology.

Returns
int The index of this atom in its parent topology.

property topology_bonds
Get the TopologyBonds connected to this TopologyAtom.

Returns
iterator of openforcefield.topology.TopologyBonds

to_dict()
Convert to dictionary representation.

classmethod from_dict(d)
Static constructor from dictionary representation.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object

Returns

218 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object

Returns

2.1. Molecular topology representations 219


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

instance [cls] Instantiated object

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

220 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/

openforcefield Documentation, Release 0.8.4

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns

serialized [str] A YAML serialized representation of the object

openforcefield.topology.TopologyBond

class openforcefield.topology.TopologyBond(bond, topology molecule)
A TopologyBond is a lightweight data structure that represents a single openforce-
field.topology.molecule.Bond in a Topology. A TopologyBond consists of two references — One
to its fully detailed “bond”, an openforcefield.topology.molecule.Bond, and another to its parent
“topology_molecule”, which occupies a spot in the parent Topology’s TopologyMolecule list.

As some systems can be very large, there is no always-existing representation of a TopologyBond. They
are created on demand as the user requests them.

Warning: This API is experimental and subject to change.

Attributes
atoms Get the TopologyAtoms connected to this TopologyBond.
bond Get the reference Bond for this TopologyBond.
bond_order Get the order of this TopologyBond.
molecule Get the reference Molecule that this TopologyBond belongs to.
topology_bond_index Get the index of this bond in its parent Topology.

topology_molecule Get the TopologyMolecule that this TopologyBond belongs to.

Methods

from_bson(serialized) Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d) Static constructor from dictionary representa-
tion.

from_json(serialized) Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized) Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized) Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized) Instantiate an object from a TOML serialized
representation.

continues on next page

2.1. Molecular topology representations 221


http://yaml.org/

openforcefield Documentation, Release 0.8.4

Table 48 - continued from previous page

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

__init__(bond, topology molecule)

Parameters

bond [An openforcefield.topology.molecule.Bond] The reference bond.

topology molecule [An openforcefield.topology. TopologyMolecule] The Topology-
Molecule that this TopologyBond belongs to.

Methods

__init__(bond, topology molecule)

Parameters

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Attributes

atoms Get the TopologyAtoms connected to this Topol-
ogyBond.

bond Get the reference Bond for this TopologyBond.

bond_order Get the order of this TopologyBond.

molecule Get the reference Molecule that this Topology-
Bond belongs to.

topology_bond_index Get the index of this bond in its parent Topology.

topology_molecule Get the TopologyMolecule that this Topology-

Bond belongs to.

property bond
Get the reference Bond for this TopologyBond.

Returns
an openforcefield.topology.molecule.Bond

property topology_molecule
Get the TopologyMolecule that this TopologyBond belongs to.

Returns
openforcefield.topology.TopologyMolecule

property topology_bond_index
Get the index of this bond in its parent Topology.

Returns
int The index of this bond in its parent topology.

property molecule
Get the reference Molecule that this TopologyBond belongs to.

Returns
openforcefield.topology.molecule.Molecule

property bond_order
Get the order of this TopologyBond.

Returns
int [bond order]

property atoms
Get the TopologyAtoms connected to this TopologyBond.

Returns
iterator of openforcefield.topology.TopologyAtom

to_dict()
Convert to dictionary representation.

classmethod from_dict(d)
Static constructor from dictionary representation.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

2.1. Molecular topology representations 223



openforcefield Documentation, Release 0.8.4

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle (serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters
serialized [str] A pickled representation of the object
Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns

instance [cls] An instantiated object

224 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html
https://github.com/toml-lang/toml

openforcefield Documentation, Release 0.8.4

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns
serialized [str] A JSON serialized representation of the object

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

2.1. Molecular topology representations 225


https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns

serialized [str] A YAML serialized representation of the object

openforcefield.topology.TopologyVirtualSite

class openforcefield.topology.TopologyVirtualSite(virtual site, topology molecule)
A TopologyVirtualSite is a lightweight data structure that represents a single openforce-
field.topology.molecule.VirtualSite in a Topology. A TopologyVirtualSite consists of two references —
One to its fully detailed “VirtualSite”, an openforcefield.topology.molecule.VirtualSite, and another to
its parent “topology_molecule”, which occupies a spot in the parent Topology’s TopologyMolecule list.

As some systems can be very large, there is no always-existing representation of a TopologyVirtualSite.
They are created on demand as the user requests them.

Warning: This API is experimental and subject to change.

Attributes
atoms Get the TopologyAtoms involved in this TopologyVirtualSite.
molecule Get the reference Molecule that this TopologyVirtualSite belongs to.
n_particles Get the number of particles represented by this VirtualSite

particles Get an iterator to the reference particles that this TopologyVirtualSite con-
tains.

topology_molecule Get the TopologyMolecule that this TopologyVirtualSite belongs to.

226 Chapter 2. API documentation


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

topology_virtual_particle_start_index Get the index of the first virtual site particle

in its parent Topology.

topology_virtual_site_index Get the index of this virtual site in its parent Topology.

type Get the type of this virtual site

virtual_site Get the reference VirtualSite for this TopologyVirtualSite.

Methods

atom(index)

Get the atom at a specific index in this Topolo-
gyVirtualSite

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack(serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml (serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.

| invalidate_cached_data | |

__init__(virtual site, topology molecule)
Parameters

virtual_site [An openforcefield.topology.molecule.VirtualSite] The reference virtual
site

topology molecule [An openforcefield.topology. TopologyMolecule] The Topology-
Molecule that this TopologyVirtualSite belongs to

2.1. Molecular topology representations 227



openforcefield Documentation, Release 0.8.4

Methods

__init__(virtual_site, topology molecule)

Parameters

atom(index)

Get the atom at a specific index in this Topolo-
gyVirtualSite

from_bson(serialized)

Instantiate an object from a BSON serialized rep-
resentation.

from_dict(d)

Static constructor from dictionary representa-
tion.

from_json(serialized)

Instantiate an object from a JSON serialized rep-
resentation.

from_messagepack (serialized)

Instantiate an object from a MessagePack serial-
ized representation.

from_pickle(serialized)

Instantiate an object from a pickle serialized rep-
resentation.

from_toml(serialized)

Instantiate an object from a TOML serialized
representation.

from_xml (serialized)

Instantiate an object from an XML serialized rep-
resentation.

from_yaml (serialized)

Instantiate from a YAML serialized representa-
tion.

invalidate_cached_data()

to_bson()

Return a BSON serialized representation.

to_dict()

Convert to dictionary representation.

to_json([indent])

Return a JSON serialized representation.

to_messagepack()

Return a MessagePack representation.

to_pickle()

Return a pickle serialized representation.

to_toml() Return a TOML serialized representation.
to_xml([indent]) Return an XML representation.
to_yaml() Return a YAML serialized representation.
Attributes
atoms Get the TopologyAtoms involved in this Topolo-
gyVirtualSite.
molecule Get the reference Molecule that this Topolo-

gyVirtualSite belongs to.

n_particles

Get the number of particles represented by this
VirtualSite

particles

Get an iterator to the reference particles that this
TopologyVirtualSite contains.

topology_molecule

Get the TopologyMolecule that this TopologyVir-
tualSite belongs to.

topology_virtual_particle_start_index

Get the index of the first virtual site particle in
its parent Topology.

topology_virtual_site_index

Get the index of this virtual site in its parent
Topology.

continues on next page

228

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 53 - continued from previous page

type Get the type of this virtual site
virtual_site Get the reference VirtualSite for this Topolo-
gyVirtualSite.
atom(index)

Get the atom at a specific index in this TopologyVirtualSite
Parameters
index [int] The index of the atom in the reference VirtualSite to retrieve
Returns
TopologyAtom

property atoms
Get the TopologyAtoms involved in this TopologyVirtualSite.

Returns
iterator of openforcefield.topology.TopologyAtom

property virtual_site
Get the reference VirtualSite for this TopologyVirtualSite.

Returns
an openforcefield.topology.molecule.VirtualSite

property topology_molecule
Get the TopologyMolecule that this TopologyVirtualSite belongs to.

Returns
openforcefield.topology.TopologyMolecule

property topology_virtual_site_index
Get the index of this virtual site in its parent Topology.

Returns
int The index of this virtual site in its parent topology.

property n_particles
Get the number of particles represented by this VirtualSite

Returns
int [The number of particles]

property topology_virtual_particle_start_index
Get the index of the first virtual site particle in its parent Topology.

Returns
int The index of this particle in its parent topology.

property particles
Get an iterator to the reference particles that this TopologyVirtualSite contains.

Returns
iterator of TopologyVirtualParticles

property molecule
Get the reference Molecule that this TopologyVirtualSite belongs to.

2.1. Molecular topology representations 229



openforcefield Documentation, Release 0.8.4

Returns
openforcefield.topology.molecule.Molecule

property type
Get the type of this virtual site

Returns
str [The class name of this virtual site]

to_dict()
Convert to dictionary representation.

classmethod from_dict(d)
Static constructor from dictionary representation.

classmethod from_bson(serialized)
Instantiate an object from a BSON serialized representation.

Specification: http://bsonspec.org/
Parameters
serialized [bytes] A BSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_json(serialized)
Instantiate an object from a JSON serialized representation.

Specification: https://www.json.org/
Parameters
serialized [str] A JSON serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_messagepack(serialized)
Instantiate an object from a MessagePack serialized representation.

Specification: https://msgpack.org/index.html
Parameters
serialized [bytes] A MessagePack-encoded bytes serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_pickle(serialized)
Instantiate an object from a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Parameters

serialized [str] A pickled representation of the object

230 Chapter 2. API documentation


http://bsonspec.org/
https://www.json.org/
https://msgpack.org/index.html

openforcefield Documentation, Release 0.8.4

Returns
instance [cls] An instantiated object
classmethod from_toml (serialized)
Instantiate an object from a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Parameters
serlialized [str] A TOML serialized representation of the object
Returns
instance [cls] An instantiated object

classmethod from_xml (serialized)
Instantiate an object from an XML serialized representation.

Specification: https://www.w3.org/XML/
Parameters
serialized [bytes] An XML serialized representation
Returns
instance [cls] Instantiated object.

classmethod from_yaml (serialized)
Instantiate from a YAML serialized representation.

Specification: http://yaml.org/
Parameters
serialized [str] A YAML serialized representation of the object
Returns
instance [cls] Instantiated object

to_bson()
Return a BSON serialized representation.

Specification: http://bsonspec.org/
Returns
serialized [bytes] A BSON serialized representation of the objecft

to_json(indent=None)
Return a JSON serialized representation.

Specification: https://www.json.org/
Parameters

indent [int, optional, default=None] If not None, will pretty-print with specified
number of spaces for indentation

Returns

serialized [str] A JSON serialized representation of the object

2.1. Molecular topology representations 231


https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/
http://bsonspec.org/
https://www.json.org/

openforcefield Documentation, Release 0.8.4

to_messagepack()
Return a MessagePack representation.

Specification: https://msgpack.org/index.html
Returns

serialized [bytes] A MessagePack-encoded bytes serialized representation of the ob-
ject

to_pickle()
Return a pickle serialized representation.

Warning: This is not recommended for safe, stable storage since the pickle specification may
change between Python versions.

Returns
serialized [str] A pickled representation of the object
to_toml()
Return a TOML serialized representation.
Specification: https://github.com/toml-lang/toml
Returns
serialized [str] A TOML serialized representation of the object

to_xml (indent=2)
Return an XML representation.

Specification: https://www.w3.org/XML/
Parameters

indent [int, optional, default=2] If not None, will pretty-print with specified number
of spaces for indentation

Returns
serialized [bytes] A MessagePack-encoded bytes serialized representation.

to_yaml ()
Return a YAML serialized representation.

Specification: http://yaml.org/
Returns

serialized [str] A YAML serialized representation of the object

232 Chapter 2. API documentation


https://msgpack.org/index.html
https://github.com/toml-lang/toml
https://www.w3.org/XML/
http://yaml.org/

openforcefield Documentation, Release 0.8.4

openforcefield.topology.ValenceDict

class openforcefield.topology.ValenceDict(*args, **kwargs)

Enforce uniqueness in atom indices.

Methods

clear()

get(k[,dD

index_of (key[, possible])

Generates a canonical ordering of the equivalent
permutations of key (equivalent rearrangements
of indices) and identifies which of those possible
orderings this particular ordering is.

items()

key_transform(key)

Reverse tuple if first element is larger than last
element.

keys()

pop(k[,d]) If key is not found, d is returned if given, other-
wise KeyError is raised.

popitem() as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[,d])

update([E, 1**F)

If E present and has a .keys() method, does: for
kin E: D[k] = E[Kk] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either
case, this is followed by: for k, v in F.items():
D[k] =v

values()

__init__(*args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(*args, **kwargs)

Initialize self.

clear()

get(k[,d])

index_of (key[, possible])

Generates a canonical ordering of the equivalent
permutations of key (equivalent rearrangements
of indices) and identifies which of those possible
orderings this particular ordering is.

continues on next page

2.1. Molecular topology representations

233



openforcefield Documentation, Release 0.8.4

Table 55 - continued from previous page

items()

key_transform(key) Reverse tuple if first element is larger than last
element.

keys()

pop(k[,d]) If key is not found, d is returned if given, other-
wise KeyError is raised.

popitem() as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[,d])

update([E, 1**F) If E present and has a .keys() method, does: for
kin E: D[k] = E[K] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either
case, this is followed by: for k, v in F.items():
D[k] =v

values()

static key_transform(key)
Reverse tuple if first element is larger than last element.

static index_of (key, possible=None)
Generates a canonical ordering of the equivalent permutations of key (equivalent rearrangements
of indices) and identifies which of those possible orderings this particular ordering is. This method
is useful when multiple SMARTS patterns might match the same atoms, but local molecular sym-
metry or the use of wildcards in the SMARTS could make the matches occur in arbitrary order.

This method can be restricted to a subset of the canonical orderings, by providing the optional
possible keyword argument. If provided, the index returned by this method will be the index of
the element in possible after undergoing the same canonical sorting as above.

Parameters
key [iterable of int] A valid key for ValenceDict

possible [iterable of iterable of int, optional. default=""None' '] A subset of the
possible orderings that this match might take.

Returns
index [int]
clear() — None. Remove all items from D.
get(k[, d ]) — D[k] if k in D, else d. d defaults to None.
items() — a set-like object providing a view on D’s items
keys() — a set-like object providing a view on D’s keys

pop (k [, d ]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem() — (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k [, d ] ) — D.get(k,d), also set D[k]=d if k not in D

234 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

update([E ] , **F) — None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items():
D[k] =v

values() — an object providing a view on D’s values
openforcefield.topology.ImproperDict

class openforcefield.topology.ImproperDict(*args, **kwargs)
Symmetrize improper torsions.

Methods

clear()

get(k[,d])

index_of (key[, possible]) Generates a canonical ordering of the equivalent
permutations of key (equivalent rearrangements
of indices) and identifies which of those possible
orderings this particular ordering is.

items()

key_transform(key) Reorder tuple in numerical order except for ele-
ment[1] which is the central atom; it retains its
position.

keys(Q)

pop(k[,d]) If key is not found, d is returned if given, other-
wise KeyError is raised.

popitem() as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[,d])

update([E, ]**F) If E present and has a .keys() method, does: for
kin E: D[k] = E[Kk] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either
case, this is followed by: for k, v in F.items():
D[k] =v

values()

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

2.1. Molecular topology representations 235



openforcefield Documentation, Release 0.8.4

Methods

__init__(*args, **kwargs) Initialize self.

clear()

get(k[,d])

index_of (key[, possible]) Generates a canonical ordering of the equivalent
permutations of key (equivalent rearrangements
of indices) and identifies which of those possible
orderings this particular ordering is.

items()

key_transform(key) Reorder tuple in numerical order except for ele-
ment[1] which is the central atom; it retains its
position.

keys()

pop(k[,d]) If key is not found, d is returned if given, other-
wise KeyError is raised.

popitem() as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[,d])

update([E, 1**F) If E present and has a .keys() method, does: for
kin E: D[k] = E[K] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either
case, this is followed by: for k, v in F.items():
D[k] =v

values()

static key_transform(key)
Reorder tuple in numerical order except for element[1] which is the central atom; it retains its
position.

static index_of (key, possible=None)
Generates a canonical ordering of the equivalent permutations of key (equivalent rearrangements
of indices) and identifies which of those possible orderings this particular ordering is. This method
is useful when multiple SMARTS patterns might match the same atoms, but local molecular sym-
metry or the use of wildcards in the SMARTS could make the matches occur in arbitrary order.

This method can be restricted to a subset of the canonical orderings, by providing the optional
possible keyword argument. If provided, the index returned by this method will be the index of
the element in possible after undergoing the same canonical sorting as above.

Parameters
key [iterable of int] A valid key for ValenceDict

possible [iterable of iterable of int, optional. default=""None' '] A subset of the
possible orderings that this match might take.

Returns

index [int]

236

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

clear() — None. Remove all items from D.

get(k [, d ]) — D[k] if k in D, else d. d defaults to None.
items() — a set-like object providing a view on D’s items
keys() — a set-like object providing a view on D’s keys

pop (k [, d ]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem() — (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k [, d ] ) — D.get(k,d), also set D[k]=d if k not in D

update( [E ] , **F) — None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys()
method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items():
D[k] =v

values() — an object providing a view on D’s values

2.2 Forcefield typing tools

2.2.1 Chemical environments

Tools for representing and operating on chemical environments

ChemicalEnvironment Chemical environment abstract base class used for
validating SMIRKS

openforcefield.typing.chemistry.ChemicalEnvironment

class openforcefield.typing.chemistry.ChemicalEnvironment (smirks=None, label=None,
validate_parsable=True, val-
idate valence_type=True,
toolkit registry=None)
Chemical environment abstract base class used for validating SMIRKS

Methods
get_type([toolkit registry]) Return the valence type implied by the connec-
tivity of the bound atoms in this ChemicalEnvi-
ronment.
validate([validate valence type,...]) Returns True if the underlying smirks is the cor-

rect valence type, False otherwise.
validate_smirks(smirks[, validate parsable, Check the provided SMIRKS string is valid, and
)| if requested, tags atoms appropriate to the spec-
ified valence type.

__init__(smirks=None, label=None, validate parsable=True, validate valence type=True,
toolkit registry=None)

2.2. Forcefield typing tools 237



openforcefield Documentation, Release 0.8.4

Initialize a chemical environment abstract base class.

smirks = string, optional if smirks is not None, a chemical environment is built from the pro-
vided SMIRKS string

label = anything, optional intended to be used to label this chemical environment could be a
string, int, or float, or anything

validate_parsable: bool, optional, default=True If specified, ensure the provided smirks is
parsable

validate_valence_type [bool, optional, default=True] If specified, ensure the tagged atoms are
appropriate to the specified valence type

toolkit_registry = string or ToolkitWrapper or ToolkitRegistry. Default = None Either a
ToolkitRegistry, ToolkitWrapper, or the strings ‘openeye’ or ‘rdkit’, indicating the backend to
use for validating the correct connectivity of the SMIRKS during initialization. If None, this
function will use the GLOBAL_TOOLKIT REGISTRY
Raises

SMIRKSParsingError if smirks was unparsable

SMIRKSMismatchError if smirks did not have expected connectivity between
tagged atoms and validate valence type=True

Methods

__init__([smirks, label, validate parsable, Initialize a chemical environment abstract base

D class.

get_type([toolkit registry]) Return the valence type implied by the connec-
tivity of the bound atoms in this ChemicalEnvi-
ronment.

validate([validate valence type,...]) Returns True if the underlying smirks is the cor-

rect valence type, False otherwise.
validate_smirks(smirks[, validate parsable, Check the provided SMIRKS string is valid, and
) if requested, tags atoms appropriate to the spec-
ified valence type.

validate(validate_valence_type=True, toolkit_registry=None)
Returns True if the underlying smirks is the correct valence type, False otherwise. If the expected
type is None, this method always returns True.

validate_valence_type [bool, optional, default=True] If specified, ensure the tagged atoms are
appropriate to the specified valence type

toolkit_registry = ToolkitWrapper or ToolkitRegistry. Default = None Either a ToolkitReg-
istry or ToolkitWrapper, indicating the backend to use for validating the correct con-
nectivity of the SMIRKS during initialization. If None, this function will use the
GLOBAL TOOLKIT REGISTRY

Raises

SMIRKSParsingError if smirks was unparsable

SMIRKSMismatchError if smirks did not have expected connectivity between
tagged atoms and validate valence type=True

238 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

classmethod validate_smirks(smirks, validate parsable=True, validate valence type=True,
toolkit registry=None)
Check the provided SMIRKS string is valid, and if requested, tags atoms appropriate to the speci-
fied valence type.

Parameters
smirks [str] The SMIRKS expression to validate

validate_parsable: bool, optional, default=True If specified, ensure the provided
smirks is parsable

validate valence_type [bool, optional, default=True] If specified, ensure the
tagged atoms are appropriate to the specified valence type

toolkit_registry = string or ToolkitWrapper or ToolkitRegistry. Default = None
Either a ToolkitRegistry, ToolkitWrapper, or the strings ‘openeye’ or ‘rdkit’, indicat-
ing the backend to use for validating the correct connectivity of the SMIRKS during
initialization. If None, this function will use the GLOBAL TOOLKIT REGISTRY

Raises
SMIRKSParsingError if smirks was unparsable

SMIRKSMismatchError if smirks did not have expected connectivity between
tagged atoms and validate valence type=True

get_type (toolkit registry=None)
Return the valence type implied by the connectivity of the bound atoms in this ChemicalEnviron-
ment.

Parameters

toolkit_registry [openforcefield.utils.ToolkitRegistry or openforce-
field.utils. ToolkitWrapper] The cheminformatics toolkit to use for parsing the
smirks

Returns

valence_type [str] One of “Atom”, “Bond”, “Angle”, “ProperTorsion”, “ImproperTor-
sion”, or None. If tagged atoms are not connected in a known pattern this method
will return None.

Raises

SMIRKSParsingError if smirks was unparsable

2.2.2 Forcefield typing engines

Engines for applying parameters to chemical systems

2.2. Forcefield typing tools 239



openforcefield Documentation, Release 0.8.4

The SMIRks-Native Open Force Field (SMIRNOFF)
A reference implementation of the SMIRNOFF specification for parameterizing biomolecular systems
ForceField

The ForceField class is a primary part of the top-level toolkit API. ForceField objects are initialized from
SMIRNOFF data sources (e.g. an OFFXML file). For a basic example of system creation using a ForceField,
see examples/SMIRNOFF_simulation.

ForceField A factory that assigns SMIRNOFF parameters to a
molecular system

get_available_force_fields Get the filenames of all available .offxml force field
files.

openforcefield.typing.engines.smirnoff.forcefield.ForceField

class openforcefield.typing.engines.smirnoff.forcefield.ForceField(*sources, aromatic-
ity model='OEAroModel MDL',
parame-
ter_handler_classes=None,
parame-
ter_io_handler_classes=None,
dis-
able_version_check=False,
al-

low_cosmetic_attributes=False,
load_plugins=False)
A factory that assigns SMIRNOFF parameters to a molecular system

ForceField is a factory that constructs an OpenMM simtk.openmm.System object from a
openforcefield.topology.Topology object defining a (bio)molecular system containing one or more
molecules.

When a ForceField object is created from one or more specified SMIRNOFF serialized representations,
all ParameterHandler subclasses currently imported are identified and registered to handle different
sections of the SMIRNOFF force field definition file(s).

All ParameterIOHandler subclasses currently imported are identified and registered to handle different
serialization formats (such as XML).

The force field definition is processed by these handlers to populate the ForceField object model data
structures that can easily be manipulated via the API:

Processing a Topology object defining a chemical system will then call all :class’ ParameterHandler®
objects in an order guaranteed to satisfy the declared processing order constraints of each
:class” ParameterHandler".

240 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Examples

Create a new ForceField containing the smirnoff99Frosst parameter set:

>>> from openforcefield. typing.engines.smirnoff import ForceField
>>> forcefield = ForceField('test_forcefields/test_forcefield.offxml")

Create an OpenMM system from a openforcefield.topology.Topology object:

>>> from openforcefield.topology import Molecule, Topology
>>> ethanol = Molecule.from_smiles('CCO")

>>> topology = Topology.from_molecules(molecules=[ethanol])
>>> system = forcefield.create_openmm_system(topology)

Modify the long-range electrostatics method:

’>>> forcefield.get_parameter_handler('Electrostatics').method = 'PME'

Inspect the first few vdW parameters:

’>>> low_precedence_parameters = forcefield.get_parameter_handler('vdW").parameters[0:3]

Retrieve the vdW parameters by SMIRKS string and manipulate it:

>>> parameter = forcefield.get_parameter_handler('vdW').parameters['[#1:1]-[#7]1"]
>>> parameter.rmin_half += 0.1 * unit.angstroms
>>> parameter.epsilon *= 1.02

Make a child vdW type more specific (checking modified SMIRKS for validity):

>>> forcefield.get_parameter_handler('vdW').parameters[-1].smirks += '~[#53]"'

Warning: While we check whether the modified SMIRKS is still valid and has the appropriate
valence type, we currently don’t check whether the typing remains hierarchical, which could result
in some types no longer being assignable because more general types now come below them and
preferentially match.

Delete a parameter:

>>> del forcefield.get_parameter_handler('vdW').parameters['[#1:1]1-[#6X4]"']

Insert a parameter at a specific point in the parameter tree:

>>> from openforcefield.typing.engines.smirnoff import vdWHandler

>>> new_parameter = vdWHandler.vdWType(smirks='[*:1]", epsilon=0.0157*unit.kilocalories_per_mole, ..
—rmin_half=0.6000*unit.angstroms)

>>> forcefield.get_parameter_handler('vdW').parameters.insert(@, new_parameter)

Warning: We currently don’t check whether removing a parameter could accidentally remove the
root type, so it’s possible to no longer type all molecules this way.

Attributes

2.2. Forcefield typing tools 241



openforcefield Documentation, Release 0.8.4

parameters [dict of str] parameters[tagname] is the instantiated ParameterHandler
class that handles parameters associated with the force tagname. This is the primary
means of retrieving and modifying parameters, such as parameters['vdW'][e].

sigma *= 1.1

parameter_object_handlers [dict of str] Registered list of ParameterHandler classes
that will handle different forcefield tags to create the parameter object model.
parameter_object_handlers[tagname] is the ParameterHandler that will be instan-
tiated to process the force field definition section tagname. ParameterHandler classes
are registered when the ForceField object is created, but can be manipulated after-

wards.

parameter_io_handlers [dict of str] Registered list of ParameterIOHandler classes
that will handle serializing/deserializing the parameter object model to string
or file representations, such as XML. parameter_io_handlers[iotype] is the
ParameterHandler that will be instantiated to process the serialization scheme
iotype. ParameterIOHandler classes are registered when the ForceField object is
created, but can be manipulated afterwards.

Methods

create_openmm_system(topology, **kwargs)

Create an OpenMM System representing the in-
teractions for the specified Topology with the
current force field

create_parmed_structure(topology,

.

positions,

Create a ParmEd Structure object representing
the interactions for the specified Topology with
the current force field

deregister_parameter_handler(handler)

Deregister a parameter handler specified by tag
name, class, or instance.

get_parameter_handler(tagnamel, ...])

Retrieve the parameter handlers associated with
the provided tagname.

get_parameter_io_handler(io_format)

Retrieve the parameter handlers associated with
the provided tagname.

label_molecules(topology)

Return labels for a list of molecules correspond-
ing to parameters from this force field.

parse_smirnoff_from_source(source)

Reads a SMIRNOFF data structure from a
source, which can be one of many types.

parse_sources(sources|, ...])

Parse a SMIRNOFF force field definition.

register_parameter_handler(parameter handler)Register a new ParameterHandler for a specific

tag, making it available for lookup in the Force-
Field.

register_parameter_io_handler(...)

Register a new ParameterlOHandler, making it
available for lookup in the ForceField.

to_file(filenamel[, io_format, ...])

Wrrite this Forcefield and all its associated param-
eters to a string in a given format which complies
with the SMIRNOFF spec.

to_string([io_format, ...])

Wrrite this Forcefield and all its associated param-
eters to a string in a given format which complies
with the SMIRNOFF spec.

__init__(*sources,
parameter_io_handler classes=None,

aromaticity_model='OEAroModel MDL', parameter_handler classes=None,

disable_version_check=False, al-

low_cosmetic_attributes=False, load_plugins=False)

242

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Create a new ForceField object from one or more SMIRNOFF parameter definition files.
Parameters

sources [string or file-like object or open file handle or URL (or iterable of these)]
A list of files defining the SMIRNOFF force field to be loaded. Currently, only the
SMIRNOFF XML format is supported. Each entry may be an absolute file path, a
path relative to the current working directory, a path relative to this module’s data
subdirectory (for built in force fields), or an open file-like object with a read()
method from which the forcefield XML data can be loaded. If multiple files are
specified, any top-level tags that are repeated will be merged if they are compat-
ible, with files appearing later in the sequence resulting in parameters that have
higher precedence. Support for multiple files is primarily intended to allow solvent
parameters to be specified by listing them last in the sequence.

aromaticity_model [string, default="OEAroModel MDL’] The aromaticity model
used by the force field. Currently, only ‘OEAroModel MDL’ is supported

parameter _handler classes [iterable of ParameterHandler classes, optional, de-
fault=None] If not None, the specified set of ParameterHandler classes will be
instantiated to create the parameter object model. By default, all imported sub-
classes of ParameterHandler are automatically registered.

parameter_io_handler_classes [iterable of ParameterIlOHandler classes] If not
None, the specified set of ParameterlOHandler classes will be wused to
parse/generate serialized parameter sets. By default, all imported subclasses of
ParameterlOHandler are automatically registered.

disable_version_check [bool, optional, default=False] If True, will disable checks
against the current highest supported forcefield version. This option is primarily
intended for forcefield development.

allow_cosmetic_attributes [bool, optional. Default = False] Whether to retain non-
spec kwargs from data sources.

load_plugins: bool, optional. Default = False Whether to load ParameterHandler
classes which have been registered by installed plugins.

Examples

Load one SMIRNOFF parameter set in XML format (searching the package data directory by de-
fault, which includes some standard parameter sets):

>>> forcefield = ForceField('test_forcefields/test_forcefield.offxml")

Load multiple SMIRNOFF parameter sets:
forcefield = ForceField(‘test_forcefields/test forcefield.offxml’, ‘test_forcefields/tip3p.offxml’)

Load a parameter set from a string:

>>> offxml = '<SMIRNOFF version="0.2" aromaticity_model="OEAroModel _MDL"/>'
>>> forcefield = ForceField(offxml)

2.2. Forcefield typing tools 243


https://github.com/openforcefield/openforcefield/blob/master/The-SMIRNOFF-force-field-format.md
https://github.com/openforcefield/openforcefield/blob/master/The-SMIRNOFF-force-field-format.md

openforcefield Documentation, Release 0.8.4

Methods

__init__(*sources[, aromaticity model, ...])

Create a new ForceField object from one or
more SMIRNOFF parameter definition files.

create_openmm_system(topology, **kwargs)

Create an OpenMM System representing the in-
teractions for the specified Topology with the
current force field

create_parmed_structure(topology,

)

positions,

Create a ParmEd Structure object representing
the interactions for the specified Topology with
the current force field

deregister_parameter_handler(handler)

Deregister a parameter handler specified by tag
name, class, or instance.

get_parameter_handler(tagnamel[, ...])

Retrieve the parameter handlers associated with
the provided tagname.

get_parameter_io_handler(io_format)

Retrieve the parameter handlers associated with
the provided tagname.

label_molecules(topology)

Return labels for a list of molecules correspond-
ing to parameters from this force field.

parse_smirnoff_from_source(source)

Reads a SMIRNOFF data structure from a
source, which can be one of many types.

parse_sources(sources[, ...])

Parse a SMIRNOFF force field definition.

register_parameter_handler(parameter handler)Register a new ParameterHandler for a specific

tag, making it available for lookup in the Force-
Field.

register_parameter_io_handler(...)

Register a new ParameterlOHandler, making it
available for lookup in the ForceField.

to_file(filename[, io format, ...])

Wrrite this Forcefield and all its associated param-
eters to a string in a given format which complies
with the SMIRNOFF spec.

to_string([io_format, ...])

Wrrite this Forcefield and all its associated param-
eters to a string in a given format which complies
with the SMIRNOFF spec.

Attributes

aromaticity_model

Returns the aromaticity model for this Force-
Field object.

author

Returns the author data for this ForceField ob-
ject.

date

Returns the date data for this ForceField object.

registered_parameter_handlers

Return the list of registered parameter handlers
by name

property aromaticity_model

Returns the aromaticity model for this ForceField object.

Returns

aromaticity_model The aromaticity model for this force field.

property author

Returns the author data for this ForceField object. If not defined in any loaded files, this will be

244

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

None.
Returns
author [str] The author data for this forcefield.

property date

Returns the date data for this ForceField object. If not defined in any loaded files, this will be
None.

Returns

date [str] The date data for this forcefield.

register_parameter_handler (parameter_handler)

Register a new ParameterHandler for a specific tag, making it available for lookup in the Force-
Field.

Warning: This API is experimental and subject to change.

Parameters

parameter_handler [A ParameterHandler object] The ParameterHandler to register.
The TAGNAME attribute of this object will be used as the key for registration.

register_parameter_io_handler (parameter_io_handler)
Register a new ParameterIOHandler, making it available for lookup in the ForceField.

Warning: This API is experimental and subject to change.

Parameters

parameter_io_handler [A ParameterlOHandler object] The ParameterlOHandler to

register. The FORMAT attribute of this object will be used to associate it to a file
format/suffix.

property registered_parameter_handlers
Return the list of registered parameter handlers by name

Warning: This API is experimental and subject to change.

Returns

registered_parameter_handlers: iterable of names of ParameterHandler objects in this ForceField

get_parameter_handler (tagname, handler_kwargs=None, allow_cosmetic_attributes=False)
Retrieve the parameter handlers associated with the provided tagname.

If the parameter handler has not yet been instantiated, it will be created and returned. If a
parameter handler object already exists, it will be checked for compatibility and an Exception
raised if it is incompatible with the provided kwargs. If compatible, the existing ParameterHandler
will be returned.

Parameters

2.2. Forcefield typing tools 245



openforcefield Documentation, Release 0.8.4

tagname [str] The name of the parameter to be handled.

handler_kwargs [dict, optional. Default = None] Dict to be passed to the handler
for construction or checking compatibility. If this is None and no existing Parame-
terHandler exists for the desired tag, a handler will be initialized with all default
values. If this is None and a handler for the desired tag exists, the existing Param-
eterHandler will be returned.

allow_cosmetic_attributes [bool, optional. Default = False] Whether to permit
non-spec kwargs in smirnoff data.

Returns

handler [An openforcefield.engines.typing.smirnoff.ParameterHandler]
Raises

KeyError if there is no ParameterHandler for the given tagname

get_parameter_io_handler (io_format)
Retrieve the parameter handlers associated with the provided tagname. If the parameter 10 han-
dler has not yet been instantiated, it will be created.

Parameters

io_format [str] The name of the io format to be handled.
Returns

io_handler [An openforcefield.engines.typing.smirnoff.ParameterIOHandler]
Raises

KeyError if there is no ParameterIOHandler for the given tagname

deregister_parameter_handler (handler)
Deregister a parameter handler specified by tag name, class, or instance.

Parameters

handler: str, openforcefield.typing.engines.smirnoff.ParameterHandler-derived type or object
The handler to deregister.

parse_sources (sources, allow_cosmetic_attributes=True)
Parse a SMIRNOFF force field definition.

Parameters

sources [string or file-like object or open file handle or URL (or iterable of these)]
A list of files defining the SMIRNOFF force field to be loaded. Currently, only the
SMIRNOFF XML format is supported. Each entry may be an absolute file path, a
path relative to the current working directory, a path relative to this module’s data
subdirectory (for built in force fields), or an open file-like object with a read()
method from which the forcefield XML data can be loaded. If multiple files are
specified, any top-level tags that are repeated will be merged if they are compat-
ible, with files appearing later in the sequence resulting in parameters that have
higher precedence. Support for multiple files is primarily intended to allow solvent
parameters to be specified by listing them last in the sequence.

allow_cosmetic_attributes [bool, optional. Default = False] Whether to permit
non-spec kwargs present in the source.

.. notes ::

246 Chapter 2. API documentation


https://github.com/openforcefield/openforcefield/blob/master/The-SMIRNOFF-force-field-format.md
https://github.com/openforcefield/openforcefield/blob/master/The-SMIRNOFF-force-field-format.md

openforcefield Documentation, Release 0.8.4

* New SMIRNOFF sections are handled independently, as if they were specified in
the same file.

 If a SMIRNOFF section that has already been read appears again, its definitions
are appended to the end of the previously-read definitions if the sections are
configured with compatible attributes; otherwise, an IncompatibleTagException
is raised.

parse_smirnoff_from_source (source)
Reads a SMIRNOFF data structure from a source, which can be one of many types.

Parameters

source [str or bytes] sources : string or file-like object or open file handle or URL
(or iterable of these) A list of files defining the SMIRNOFF force field to be loaded
Currently, only the SMIRNOFF XML format is supported. Each entry may be an
absolute file path, a path relative to the current working directory, a path relative
to this module’s data subdirectory (for built in force fields), or an open file-like
object with a read() method from which the forcefield XML data can be loaded.

Returns

smirnoff data [OrderedDict] A representation of a SMIRNOFF-format data struc-
ture. Begins at top-level ‘SMIRNOFF’ key.

to_string(io format='XML', discard _cosmetic_attributes=False)
Wrrite this Forcefield and all its associated parameters to a string in a given format which complies
with the SMIRNOFF spec.

Parameters

io_format [str or ParameterIOHandler, optional. Default="XML’] The serialization
format to write to

discard_cosmetic_attributes [bool, default=False] Whether to discard any non-
spec attributes stored in the ForceField.

Returns
forcefield_string [str] The string representation of the serialized forcefield

to_file(filename, io_format=None, discard_cosmetic_attributes=False)
Write this Forcefield and all its associated parameters to a string in a given format which complies
with the SMIRNOFF spec.

Parameters
filename [str] The filename to write to

io_format [str or ParameterlOHandler, optional. Default=None] The serialization
format to write out. If None, will attempt to be inferred from the filename.

discard_cosmetic_attributes [bool, default=False] Whether to discard any non-
spec attributes stored in the ForceField.

Returns
forcefield string [str] The string representation of the serialized forcefield

create_openmm_system(topology, **kwargs)
Create an OpenMM System representing the interactions for the specified Topology with the cur-
rent force field

Parameters

2.2. Forcefield typing tools 247


https://github.com/openforcefield/openforcefield/blob/master/The-SMIRNOFF-force-field-format.md

openforcefield Documentation, Release 0.8.4

topology [openforcefield.topology.Topology]l The Topology corresponding to the
system to be parameterized

charge_from_molecules [List[openforcefield.molecule.Molecule], optional. default
=[1] If specified, partial charges will be taken from the given molecules instead of
being determined by the force field.

partial_bond_orders_from_molecules [List[openforcefield.molecule.Molecule],
optional. default=[]] If specified, partial bond orders will be taken from the
given molecules instead of being determined by the force field. All bonds on
each molecule given must have fractional_bond_order specified. A ValueError
will be raised if any bonds have fractional_bond_order=None. Molecules in the
topology not represented in this list will have fractional bond orders calculated
using underlying toolkits as needed.

return_topology [bool, optional. default=False] If True, return tuple of (system,
topology), where topology is the processed topology. Default False. This topology
will have the final partial charges assigned on its reference molecules attribute, as
well as partial bond orders (if they were calculated).

toolkit_registry [openforcefield.utils.toolkits. ToolkitRegistry,  optional. de-
fault=GLOBAL _TOOLKIT REGISTRY] The toolkit registry to use for operations
like conformer generation and partial charge assignment.

Returns

system [simtk.openmm.System] The newly created OpenMM System corresponding
to the specified topology

topology [openforcefield.topology.Topology, optional.] If the return_topology key-
word argument is used, this method will also return a Topology. This can be used
to inspect the partial charges and partial bond orders assigned to the molecules
during parameterization.

create_parmed_structure(topology, positions, **kwargs)
Create a ParmEd Structure object representing the interactions for the specified Topology with the
current force field

This method creates a ParmEd Structure object containing a topology, positions, and parameters.
Parameters

topology [openforcefield.topology.Topology] The Topology corresponding to the
System object to be created.

positions [simtk.unit.Quantity of dimension (natoms,3) with units compatible with
angstroms] The positions corresponding to the System object to be created

Returns
structure [parmed.Structure] The newly created parmed.Structure object

label_molecules(topology)
Return labels for a list of molecules corresponding to parameters from this force field. For each
molecule, a dictionary of force types is returned, and for each force type, each force term is
provided with the atoms involved, the parameter id assigned, and the corresponding SMIRKS.

Parameters

topology [openforcefield.topology.Topology] A Topology object containing one or
more unique molecules to be labeled

Returns

248 Chapter 2. API documentation


http://github.com/parmed/parmed

openforcefield Documentation, Release 0.8.4

molecule labels [list] List of labels for unique molecules. Each entry in the list
corresponds to one unique molecule in the Topology and is a dictionary keyed by
force type, i.e., molecule_labels[@]['HarmonicBondForce'] gives details for the
harmonic bond parameters for the first molecule. Each element is a list of the
form: [ ( [ atoml, ..., atomN], parameter_id, SMIRKS), ... 1.

openforcefield.typing.engines.smirnoff.forcefield.get_available_force_fields

openforcefield. typing.engines.smirnoff.forcefield.get_available_force_fields(full paths=False)
Get the filenames of all available .offxml force field files.
Availability is determined by what is discovered through the

openforcefield.smirnoff forcefield directory entry point. If the openforcefields package is installed, this
should include several .offxml files such as openff-1.0.0.offxml.

Parameters

full_paths [bool, default=False] If False, return the name of each available *.offxml
file. If True, return the full path to each available .offxml file.

Returns

available_force_fields [List[str]] List of available force field files

Parameter Type

ParameterType objects are representations of individual SMIRKS-based SMIRNOFF parameters. These are
usually initialized during ForceField creation, and can be inspected and modified by users via the Python
API. For more information, see examples/forcefield_modification.

ParameterType Base class for SMIRNOFF parameter types.
BondHandler.BondType A SMIRNOFF bond type
AngleHandler.AngleType A SMIRNOFF angle type.
ProperTorsionHandler.ProperTorsionType A SMIRNOFF torsion type for proper torsions.
ImproperTorsionHandler.ImproperTorsionType A SMIRNOFF torsion type for improper torsions.
vdWHandler.vdWType A SMIRNOFF vdWForce type.
LibraryChargeHandler.LibraryChargeType A SMIRNOFF Library Charge type.
GBSAHandler.GBSAType A SMIRNOFF GBSA type.

openforcefield.typing.engines.smirnoff.parameters.ParameterType

class openforcefield.typing.engines.smirnoff.parameters.ParameterType(smirks, al-
low_cosmetic_attributes=False,
**hwargs)

Base class for SMIRNOFF parameter types.

This base class provides utilities to create new parameter types. See the below for examples of how to
do this.

Warning: This API is experimental and subject to change.

2.2. Forcefield typing tools 249



openforcefield Documentation, Release 0.8.4

See also:

ParameterAttribute

IndexedParameterAttribute
Examples
This class allows to define new parameter types by just listing its attributes. In the example below,

_VALENCE_TYPE AND _ELEMENT_NAME are used for the validation of the SMIRKS pattern associated to
the parameter and the automatic serialization/deserialization into a dict.

>>> class MyBondParameter(ParameterType):
_VALENCE_TYPE = 'Bond'
_ELEMENT_NAME = 'Bond’
length = ParameterAttribute(unit=unit.angstrom)
k = ParameterAttribute(unit=unit.kilocalorie_per_mole / unit.angstromx#*2)

The parameter automatically inherits the required smirks attribute from ParameterType. Associating
a unit to a ParameterAttribute cause the attribute to accept only values in compatible units and to
parse string expressions.

>>> my_par = MyBondParameter(

smirks="[*:1]-[*:2]",

length="1.01 * angstrom',

.. k=5 = unit.kilocalorie_per_mole / unit.angstromx=*2
)

>>> my_par.length

Quantity(value=1.01, unit=angstrom)

>>> my_par.k = 3.0 * unit.gram

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: k=3.0 g should have units of kilocalorie/
— (angstrom*x2*mole)

Each attribute can be made optional by specifying a default value, and you can attach a converter
function by passing a callable as an argument or through the decorator syntax.

>>> class MyParameterType(ParameterType):
_VALENCE_TYPE = 'Atom'
_ELEMENT_NAME = 'Atom'

attr_optional = ParameterAttribute(default=2)
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()

@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to floats
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f"”Cannot convert '{value}' to float")
return value

(continues on next page)

250 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

(continued from previous page)

>>> my_par = MyParameterType(smirks='[*:1]"', attr_all_to_float='3.0', attr_int_to_float=1)
>>> my_par.attr_optional

2

>>> my_par.attr_all_to_float

3.0

>>> my_par.attr_int_to_float

1.0

The float() function can convert strings to integers, but our custom converter forbids it

>>> my_par.attr_all_to_float = '2.0'
>>> my_par.attr_int_to_float = '4.0'
Traceback (most recent call last):

TypeError: Cannot convert '4.0' to float

Parameter attributes that can be indexed can be handled with the IndexedParameterAttribute.
These support unit validation and converters exactly as ' ParameterAttribute' 's, but the valida-
tion/conversion is performed for each indexed attribute.

>>> class MyTorsionType(ParameterType):
_VALENCE_TYPE = 'ProperTorsion'
_ELEMENT_NAME = 'Proper'
periodicity = IndexedParameterAttribute(converter=int)
k = IndexedParameterAttribute(unit=unit.kilocalorie_per_mole)

>>> my_par = MyTorsionType(

smirks="[*:1]-[*:2]-[*:3]-[*:4]",

periodicity1=2,

k1=5 % unit.kilocalorie_per_mole,

periodicity2="3",

.. k2=6 * unit.kilocalorie_per_mole,
-)

>>> my_par.periodicity

[2, 3]

Indexed attributes, can be accessed both as a list or as their indexed parameter name.

>>> my_par.periodicity2 =
>>> my_par.periodicity[0]
>>> my_par.periodicity
L1, 61

6
=1

Attributes
smirks [str] The SMIRKS pattern that this parameter matches.
id [str or None] An optional identifier for the parameter.

parent_id [str or None] Optionally, the identifier of the parameter of which this param-
eter is a specialization.

2.2. Forcefield typing tools 251



openforcefield Documentation, Release 0.8.4

Methods
add_cosmetic_attribute(attr_name, Add a cosmetic attribute to this object.
attr_value)
attribute_is_cosmetic(attr_name) Determine whether an attribute of this object is
cosmetic.
delete_cosmetic_attribute(attr name) Delete a cosmetic attribute from this object.
to_dict([discard_cosmetic_attributes, ...]) Convert this object to dict format.

__init__(smirks, allow_cosmetic_attributes=False, **kwargs)
Create a ParameterType.

Parameters
smirks [str] The SMIRKS match for the provided parameter type.

allow_cosmetic_attributes [bool optional. Default = False] Whether to permit non-
spec kwargs (“cosmetic attributes”). If True, non-spec kwargs will be stored as an
attribute of this parameter which can be accessed and written out. Otherwise an
exception will be raised.

Methods

__init__(smirks[, allow_cosmetic_attributes]) Create a ParameterType.

add_cosmetic_attribute(attr_name, Add a cosmetic attribute to this object.
attr_value)
attribute_is_cosmetic(attr_name) Determine whether an attribute of this object is
cosmetic.

delete_cosmetic_attribute(attr name) Delete a cosmetic attribute from this object.
to_dict([discard_cosmetic_attributes, ...]) Convert this object to dict format.

Attributes
id A descriptor for ParameterType attributes.
parent_id A descriptor for ParameterType attributes.
smirks A descriptor for ParameterType attributes.

add_cosmetic_attribute(attr_name, attr_value)
Add a cosmetic attribute to this object.

This attribute will not have a functional effect on the object in the Open Force Field toolkit, but
can be written out during output.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

Parameters

attr_name [str] Name of the attribute to define for this object.

252 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

attr_value [str] The value of the attribute to define for this object.

attribute_is_cosmetic(attr_name)
Determine whether an attribute of this object is cosmetic.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

Parameters
attr_name [str] The attribute name to check
Returns
is_cosmetic [bool] Returns True if the attribute is defined and is cosmetic. Returns

False otherwise.

delete_cosmetic_attribute(attr_name)
Delete a cosmetic attribute from this object.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

Parameters
attr name [str] Name of the cosmetic attribute to delete.
to_dict(discard_cosmetic_attributes=False, duplicate_attributes=None)
Convert this object to dict format.

The returning dictionary contains all the ParameterAttribute and IndexedParameterAttribute
as well as cosmetic attributes if discard_cosmetic_attributes is False.

Parameters

discard_cosmetic_attributes [bool, optional. Default = False] Whether to discard
non-spec attributes of this object

duplicate_attributes [list of string, optional. Default = None] A list of names of
attributes that redundantly decsribe data and should be discarded during serial-
izaiton

Returns

smirnoff dict [dict] The SMIRNOFF-compliant dict representation of this object.

2.2. Forcefield typing tools 253



openforcefield Documentation, Release 0.8.4

openforcefield.typing.engines.smirnoff.parameters.BondHandler.BondType
openforcefield.typing.engines.smirnoff.parameters.AngleHandler.AngleType
openforcefield.typing.engines.smirnoff.parameters.ProperTorsionHandler.ProperTorsionType
openforcefield.typing.engines.smirnoff.parameters.ImproperTorsionHandler.ImproperTorsionType
openforcefield.typing.engines.smirnoff.parameters.vdWHandler.vdWType
openforcefield.typing.engines.smirnoff.parameters.LibraryChargeHandler.LibraryChargeType
openforcefield.typing.engines.smirnoff.parameters.GBSAHandler.GBSAType

Parameter Handlers

Each ForceField primarily consists of several ParameterHandler objects, which each contain the machinery
to add one energy component to a system. During system creation, each ParameterHandler registered to a
ForceField has its assign_parameters() function called..

ParameterList Parameter list that also supports accessing items by
SMARTS string.

ParameterHandler Base class for parameter handlers.

BondHandler Handle SMIRNOFF <Bonds> tags

AngleHandler Handle SMIRNOFF <AngleForce> tags

ProperTorsionHandler Handle SMIRNOFF <ProperTorsionForce> tags

ImproperTorsionHandler Handle SMIRNOFF <ImproperTorsionForce> tags

vdWHandler Handle SMIRNOFF <vdw> tags

ElectrostaticsHandler Handles SMIRNOFF <Electrostatics> tags.

LibraryChargeHandler Handle SMIRNOFF <LibraryCharges> tags

ToolkitAM1BCCHandler Handle SMIRNOFF <ToolkitAM1BCC> tags

GBSAHandler Handle SMIRNOFF <GBSA> tags

openforcefield.typing.engines.smirnoff.parameters.ParameterList

class openforcefield.typing.engines.smirnoff.parameters.ParameterList(input parameter list=None)
Parameter list that also supports accessing items by SMARTS string.

Warning: This API is experimental and subject to change.

254 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Methods

append(parameter) Add a ParameterType object to the end of the
ParameterList

clear(/) Remove all items from list.

copy (/) Return a shallow copy of the list.

count(value, /) Return number of occurrences of value.

extend(other) Add a ParameterList object to the end of the Pa-
rameterList

index(item) Get the numerical index of a ParameterType ob-
ject or SMIRKS in this ParameterList.

insert(index, parameter) Add a ParameterType object as if this were a list

pop([index]) Remove and return item at index (default last).

remove(value, /) Remove first occurrence of value.

reverse(/) Reverse IN PLACE.

sort(*[, key, reverse]) Stable sort IN PLACE.

to_list([discard_cosmetic_attributes]) Render this ParameterList to a normal list, seri-

alizing each ParameterType object in it to dict.

__init__(input_parameter list=None)
Initialize a new ParameterList, optionally providing a list of ParameterType objects to initially
populate it.

Parameters

input_parameter_list: list[ParameterType], default=None A pre-existing list of
ParameterType-based objects. If None, this ParameterList will be initialized empty.

Methods

__init__([input_parameter list]) Initialize a new ParameterList, optionally pro-
viding a list of ParameterType objects to initially
populate it.

append(parameter) Add a ParameterType object to the end of the
ParameterList

clear(/) Remove all items from list.

copy(/) Return a shallow copy of the list.

count (value, /) Return number of occurrences of value.

extend(other) Add a ParameterList object to the end of the Pa-
rameterList

index(item) Get the numerical index of a ParameterType ob-
ject or SMIRKS in this ParameterList.

insert(index, parameter) Add a ParameterType object as if this were a list

pop([index]) Remove and return item at index (default last).

remove (value, /) Remove first occurrence of value.

reverse(/) Reverse IN PLACE.

sort(*[, key, reverse]) Stable sort IN PLACE.

to_list([discard cosmetic_attributes]) Render this ParameterList to a normal list, seri-
alizing each ParameterType object in it to dict.

append (parameter)

2.2. Forcefield typing tools 255



openforcefield Documentation, Release 0.8.4

Add a ParameterType object to the end of the ParameterList
Parameters
parameter [a ParameterType object]

extend (other)
Add a ParameterList object to the end of the ParameterList

Parameters
other [a ParameterList]

index(item)
Get the numerical index of a ParameterType object or SMIRKS in this ParameterList. Raises Pa-
rameterLookupError if the item is not found.

Parameters

item [ParameterType object or str] The parameter or SMIRKS to look up in this Pa-
rameterList

Returns
index [int] The index of the found item
Raises
ParameterLookupError if SMIRKS pattern is passed in but not found

insert(index, parameter)
Add a ParameterType object as if this were a list

Parameters
index [int] The numerical position to insert the parameter at
parameter [a ParameterType object] The parameter to insert

to_list(discard_cosmetic_attributes=True)
Render this ParameterList to a normal list, serializing each ParameterType object in it to dict.

Parameters

discard_cosmetic_attributes [bool, optional. Default = True] Whether to discard
non-spec attributes of each ParameterType object.

Returns

parameter _list [List[dict]] A serialized representation of a ParameterList, with each
ParameterType it contains converted to dict.

clear(/)
Remove all items from list.

copy (/)
Return a shallow copy of the list.

count (value, /)
Return number of occurrences of value.

pop (index=-1, /)
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

256 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

remove (value, /)
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse(/)
Reverse IN PLACE.

sort(*, key=None, reverse=False)
Stable sort IN PLACE.

openforcefield.typing.engines.smirnoff.parameters.ParameterHandler

class openforcefield.typing.engines.smirnoff.parameters.ParameterHandler (allow cosmetic_attributes=False,
skip_version_check=False,
**hwargs)
Base class for parameter handlers.

Parameter handlers are configured with some global parameters for a given section. They may also
contain a ParameterList populated with ParameterType objects if they are responsible for assigning
SMIRKS-based parameters.

Warning: This API is experimental and subject to change.

Attributes
TAGNAME The name of this ParameterHandler corresponding to the SMIRNOFF tag name
known_kwargs List of kwargs that can be parsed by the function.
parameters The ParameterList that holds this ParameterHandler’s parameter objects
version A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compati-
ble units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert val-
ues before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

2.2. Forcefield typing tools 257



openforcefield Documentation, Release 0.8.4

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'’

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity
Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0_
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f”Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1
>>> my_par.attr_all_to_float

(continues on next page)

258 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

(continued from previous page)

1.0

>>> my_par.attr_all_to_float = '2.0'
>>> my_par.attr_all_to_float

2.0

The custom converter associated to attr_int to float converts only integers in-
stead. >>> my parattr_int_to_float = 3 >>> my_parattr_int to_float 3.0 >>>
my parattr_int to float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

Methods

add_cosmetic_attribute(attr_name, Add a cosmetic attribute to this object.
attr_value)

add_parameter([parameter kwargs, parameter, Add a parameter to the forcefield, ensuring all

D parameters are valid.

assign_parameters(topology, system) Assign parameters for the given Topology to the
specified System object.

attribute_is_cosmetic(attr name) Determine whether an attribute of this object is
cosmetic.

check_handler_compatibility(handler kwargs) Checks if a set of kwargs used to create a Param-
eterHandler are compatible with this Parameter-

Handler.
delete_cosmetic_attribute(attr name) Delete a cosmetic attribute from this object.
find_matches(entity) Find the elements of the topology/molecule
matched by a parameter type.
get_parameter(parameter_ attrs) Return the parameters in this ParameterHandler
that match the parameter_attrs argument.
postprocess_system(topology, system, Allow the force to perform a a final post-
**kwargs) processing pass on the System following param-
eter assignment, if needed.
to_dict([discard_cosmetic_attributes]) Convert this ParameterHandler to an Ordered-

Dict, compliant with the SMIRNOFF data spec.

assign_partial bond orders from_molecules
check_partial bond_orders_from_molecules_duplicates

__init__(allow _cosmetic_attributes=False, skip_version_check=False, **kwargs)
Initialize a ParameterHandler, optionally with a list of parameters and other kwargs.

Parameters

allow_cosmetic_attributes [bool, optional. Default = False] Whether to permit
non-spec kwargs. If True, non-spec kwargs will be stored as attributes of this ob-
ject and can be accessed and modified. Otherwise an exception will be raised if a
non-spec kwarg is encountered.

skip_version_check: bool, optional. Default = False If False, the SMIRNOFF sec-
tion version will not be checked, and the ParameterHandler will be initialized with
version set to _MAX SUPPORTED_ SECTION_VERSION.

**kwargs [dict] The dict representation of the SMIRNOFF data source

. Forcefield typing tools 259



openforcefield Documentation, Release 0.8.4

Methods

__init__([allow cosmetic_attributes, ...])

Initialize a ParameterHandler, optionally with a
list of parameters and other kwargs.

add_cosmetic_attribute(attr_name,
attr_value)

Add a cosmetic attribute to this object.

add_parameter([parameter kwargs, parameter,

D

Add a parameter to the forcefield, ensuring all
parameters are valid.

assign_parameters(topology, system)

Assign parameters for the given Topology to the
specified System object.

assign_partial_bond_orders_from_molecules(...

)

attribute_is_cosmetic(attr_name)

Determine whether an attribute of this object is
cosmetic.

check_handler_compatibility(handler kwargs)

Checks if a set of kwargs used to create a Param-
eterHandler are compatible with this Parameter-
Handler.

check_partial_bond_orders_from_molecules_duplicates(pb_mols)

delete_cosmetic_attribute(attr name)

Delete a cosmetic attribute from this object.

find_matches(entity)

Find the elements of the topology/molecule
matched by a parameter type.

get_parameter(parameter attrs)

Return the parameters in this ParameterHandler
that match the parameter attrs argument.

postprocess_system(topology,
**kwargs)

system,

Allow the force to perform a a final post-
processing pass on the System following param-
eter assignment, if needed.

to_dict([discard cosmetic_attributes])

Convert this ParameterHandler to an Ordered-
Dict, compliant with the SMIRNOFF data spec.

Attributes

TAGNAME

The name of this ParameterHandler correspond-
ing to the SMIRNOFF tag name

known_kwargs

List of kwargs that can be parsed by the function.

parameters The ParameterList that holds this ParameterHan-
dler’s parameter objects
version A descriptor for ParameterType attributes.

property parameters

The ParameterList that holds this ParameterHandler’s parameter objects

property TAGNAME

The name of this ParameterHandler corresponding to the SMIRNOFF tag name

Returns

handler_name [str] The name of this parameter handler

property known_kwargs

List of kwargs that can be parsed by the function.

check_handler_compatibility(handler kwargs)

260

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Checks if a set of kwargs used to create a ParameterHandler are compatible with this Parameter-
Handler. This is called if a second handler is attempted to be initialized for the same tag.

Parameters
handler_kwargs [dict] The kwargs that would be used to construct
Raises

IncompatibleParameterError if handler_kwargs are incompatible with existing parameters.

add_parameter (parameter_kwargs=None, parameter=None, after=None, before=None)
Add a parameter to the forcefield, ensuring all parameters are valid.

Parameters

parameter_kwargs: dict, optional The kwargs to pass to the ParameterHan-
dler.INFOTYPE (a ParameterType) constructor

parameter: ParameterType, optional A ParameterType to add to the Parameter-
Handler

after [str or int, optional] The SMIRKS pattern (if str) or index (if int) of the param-
eter directly before where the new parameter will be added

before [str, optional] The SMIRKS pattern (if str) or index (if int) of the parameter
directly after where the new parameter will be added

Note that one of (parameter_kwargs, parameter) must be specified

Note that when “before’ and "after’ are both None, the new parameter will be appended
to the END of the parameter list.

Note that when "before® and "after’ are both specified, the new parameter
will be added immediately after the parameter matching the after pattern or index.

Examples

Add a ParameterType to an existing ParameterList at a specified position.

Given an existing parameter handler and a new parameter to add to it:

>>> from simtk import unit

>>> bh = BondHandler(skip_version_check=True)

>>> length = 1.5 % unit.angstrom

>>> k = 100 * unit.kilocalorie_per_mole / unit.angstrom #*x 2

>>> bh.add_parameter({'smirks': '[*:1]-[*:2]', 'length': length, 'k': k, "id': 'b1'})
>>> bh.add_parameter({'smirks': '[x:1]=[*:2]"', 'length': length, 'k': k, 'id': 'b2'})
>>> bh.add_parameter ({'smirks': "[*:1]#[*:2]", 'length': length, 'k': k, 'id': 'b3'})
>>> [p.id for p in bh.parameters]

['b1', 'b2', "b3']

>>> param = {'smirks': "[#1:1]1-[#6:2]"', 'length': length, 'k': k, 'id': 'b4'}

Add a new parameter immediately after the parameter with the smirks ‘[:1]=[:2]

>>> bh.add_parameter(param, after='[*:1]=[*:2]")
>>> [p.id for p in bh.parameters]
['b1", 'b2"', 'b4', 'b3']

2.2. Forcefield typing tools 261



openforcefield Documentation, Release 0.8.4

get_parameter (parameter_attrs)
Return the parameters in this ParameterHandler that match the parameter attrs argument. When
multiple attrs are passed, parameters that have any (not all) matching attributes are returned.

Parameters

parameter_attrs [dict of {attr: value}] The attrs mapped to desired values (for ex-
ample {“smirks”: “[:1]~[#16:2]=,:[#6:3]~[:4]", “id”: “t105"} )

Returns
params [list of ParameterType objects] A list of matching ParameterType objects

Examples

Create a parameter handler and populate it with some data.

>>> from simtk import unit
>>> handler = BondHandler (skip_version_check=True)
>>> handler.add_parameter(

{

‘smirks': '[*:1]-[*:2]",

"length': Txunit.angstrom,

"k': 10*unit.kilocalorie_per_mole/unit.angstrom#*2,
}

)

Look up, from this handler, all parameters matching some SMIRKS pattern

>>> handler.get_parameter({'smirks': "[*:1]-[*:2]'})
[<BondType with smirks: [*:1]-[%:2] length: 1 A k: 10 kcal/(A**2 mol) >]

find_matches (entity)
Find the elements of the topology/molecule matched by a parameter type.

Parameters
entity [openforcefield.topology.Topology] Topology to search.
Returns

matches [ValenceDict[Tuple[int], ParameterHandler. Match]]
matches[particle_indices] is the ParameterType object matching the tuple
of particle indices in entity.

assign_parameters(topology, system)
Assign parameters for the given Topology to the specified System object.

Parameters

topology [openforcefield.topology.Topology] The Topology for which parameters
are to be assigned. Either a new Force will be created or parameters will be ap-
pended to an existing Force.

system [simtk.openmm.System] The OpenMM System object to add the Force (or
append new parameters) to.

postprocess_system(topology, system, **kwargs)
Allow the force to perform a a final post-processing pass on the System following parameter
assignment, if needed.

Parameters

262 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

topology [openforcefield.topology.Topology]l The Topology for which parameters

are to be assigned. Either a new Force will be created or parameters will be ap-
pended to an existing Force.

system [simtk.openmm.System] The OpenMM System object to add the Force (or
append new parameters) to.

to_dict(discard _cosmetic_attributes=False)

Convert this ParameterHandler to an OrderedDict, compliant with the SMIRNOFF data spec.
Parameters

discard_cosmetic_attributes [bool, optional. Default = False.] Whether to discard
non-spec parameter and header attributes in this ParameterHandler.
Returns

smirnoff data [OrderedDict] SMIRNOFEF-spec compliant representation of this Pa-
rameterHandler and its internal ParameterList.

add_cosmetic_attribute(attr_name, attr_value)
Add a cosmetic attribute to this object.

This attribute will not have a functional effect on the object in the Open Force Field toolkit, but
can be written out during output.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

Parameters

attr_name [str] Name of the attribute to define for this object.
attr_value [str] The value of the attribute to define for this object.

attribute_is_cosmetic(attr_name)
Determine whether an attribute of this object is cosmetic.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

Parameters

attr_name [str] The attribute name to check
Returns

is_cosmetic [bool] Returns True if the attribute is defined and is cosmetic. Returns
False otherwise.

delete_cosmetic_attribute(attr name)
Delete a cosmetic attribute from this object.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

2.2. Forcefield typing tools

263



openforcefield Documentation, Release 0.8.4

Parameters

attr_name [str] Name of the cosmetic attribute to delete.

openforcefield.typing.engines.smirnoff.parameters.BondHandler

class openforcefield. typing.engines.smirnoff.parameters.BondHandler (**kwargs)
Handle SMIRNOFF <Bonds> tags

Warning: This API is experimental and subject to change.

Attributes
TAGNAME The name of this ParameterHandler corresponding to the SMIRNOFF tag name
fractional_bondorder_interpolation A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compati-
ble units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert val-
ues before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

264 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'’

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity
Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0_
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f”Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1

>>> my_par.attr_all_to_float

1.0

>>> my_par.attr_all_to_float = '2.0'
>>> my_par.attr_all_to_float

2.0

The custom converter associated to attr_int to float converts only integers in-
stead. >>> my parattr_int to float = 3 >>> my parattr_int to_float 3.0 >>>
my_parattr_int to_float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

fractional_bondorder_method A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

2.2. Forcefield typing tools 265



openforcefield Documentation, Release 0.8.4

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compati-
ble units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert val-
ues before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required’

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity
Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0.
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

266 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f”Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1
>>> my_par.attr_all_to_float
1.0
>>> my_par.attr_all_to_float
>>> my_par.attr_all_to_float
2.0

'2.0'

The custom converter associated to attr_int to float converts only integers in-
stead. >>> my parattr_int to float = 3 >>> my parattr_int to_float 3.0 >>>
my_parattr_int to_float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

known_kwargs List of kwargs that can be parsed by the function.
parameters The ParameterList that holds this ParameterHandler’s parameter objects
potential A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compati-
ble units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert val-
ues before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

2.2. Forcefield typing tools 267



openforcefield Documentation, Release 0.8.4

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'’

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity
Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0_
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f”Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1
>>> my_par.attr_all_to_float

(continues on next page)

268 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

(continued from previous page)

1.0

>>> my_par.attr_all_to_float = '2.0'
>>> my_par.attr_all_to_float

2.0

The custom converter associated to attr_int to float converts only integers in-
stead. >>> my parattr_int_to_float = 3 >>> my_parattr_int to_float 3.0 >>>
my parattr_int to float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

version A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compati-
ble units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert val-
ues before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'

The attribute allow automatic conversion and validation of units.

2.2. Forcefield typing tools 269



openforcefield Documentation, Release 0.8.4

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity
Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0._
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f”Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1

>>> my_par.attr_all_to_float

1.0

>>> my_par.attr_all_to_float = '2.0'
>>> my_par.attr_all_to_float

2.0

The custom converter associated to attr int to float converts only integers in-
stead. >>> my parattr_int to_float = 3 >>> my parattr_int to_float 3.0 >>>
my_parattr_int to_float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

Methods
BondType (**kwargs) A SMIRNOFF bond type
add_cosmetic_attribute(attr_name, Add a cosmetic attribute to this object.

attr_value)

add_parameter([parameter kwargs, parameter, Add a parameter to the forcefield, ensuring all

)]

parameters are valid.

continues on next page

270

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Table 75 - continued from previous page

assign_parameters(topology, system) Assign parameters for the given Topology to the
specified System object.

attribute_is_cosmetic(attr name) Determine whether an attribute of this object is
cosmetic.

check_handler_compatibility(other handler) = Checks whether this ParameterHandler encodes
compatible physics as another ParameterHan-

dler.
delete_cosmetic_attribute(attr name) Delete a cosmetic attribute from this object.
find_matches(entity) Find the elements of the topology/molecule
matched by a parameter type.
get_parameter(parameter_attrs) Return the parameters in this ParameterHandler
that match the parameter attrs argument.
postprocess_system(topology, system, Allow the force to perform a a final post-
**kwargs) processing pass on the System following param-
eter assignment, if needed.
to_dict([discard_cosmetic_attributes]) Convert this ParameterHandler to an Ordered-

Dict, compliant with the SMIRNOFF data spec.

assign_partial_bond_orders_from_molecules
check partial bond orders from molecules duplicates
create_force

__init__(**kwargs)
Initialize a ParameterHandler, optionally with a list of parameters and other kwargs.

Parameters

allow_cosmetic_attributes [bool, optional. Default = False] Whether to permit
non-spec kwargs. If True, non-spec kwargs will be stored as attributes of this ob-
ject and can be accessed and modified. Otherwise an exception will be raised if a
non-spec kwarg is encountered.

skip_version_check: bool, optional. Default = False If False, the SMIRNOFF sec-
tion version will not be checked, and the ParameterHandler will be initialized with
version set to _MAX SUPPORTED_SECTION_VERSION.

**kwargs [dict] The dict representation of the SMIRNOFF data source

Methods
__init__(**kwargs) Initialize a ParameterHandler, optionally with a
list of parameters and other kwargs.
add_cosmetic_attribute(attr_name, Add a cosmetic attribute to this object.

attr_value)

add_parameter([parameter kwargs, parameter, Add a parameter to the forcefield, ensuring all

D parameters are valid.

assign_parameters(topology, system) Assign parameters for the given Topology to the
specified System object.

assign_partial_bond_orders_from_molecules(...)

continues on next page

2.2. Forcefield typing tools 271



openforcefield Documentation, Release 0.8.4

Table 76 - continued from previous page

attribute_is_cosmetic(attr name)

Determine whether an attribute of this object is
cosmetic.

check_handler_compatibility(other handler)

Checks whether this ParameterHandler encodes
compatible physics as another ParameterHan-
dler.

check_partial_bond_orders_from_molecules_duplicates(pb_mols)

create_force(system, topology, **kwargs)

delete_cosmetic_attribute(attr name)

Delete a cosmetic attribute from this object.

find_matches(entity)

Find the elements of the topology/molecule
matched by a parameter type.

get_parameter(parameter_ attrs)

Return the parameters in this ParameterHandler
that match the parameter_attrs argument.

postprocess_system(topology,
**kwargs)

system,

Allow the force to perform a a final post-
processing pass on the System following param-
eter assignment, if needed.

to_dict([discard_cosmetic_attributes])

Convert this ParameterHandler to an Ordered-
Dict, compliant with the SMIRNOFF data spec.

Attributes

TAGNAME

The name of this ParameterHandler correspond-
ing to the SMIRNOFF tag name

fractional_bondorder_interpolation

A descriptor for ParameterType attributes.

fractional_bondorder_method

A descriptor for ParameterType attributes.

known_kwargs

List of kwargs that can be parsed by the function.

parameters The ParameterList that holds this ParameterHan-
dler’s parameter objects

potential A descriptor for ParameterType attributes.

version A descriptor for ParameterType attributes.

class BondType (**kwargs)
A SMIRNOFF bond type

Warning: This API is experimental and subject to change.

Attributes

id A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-

tures

converter(value): -> converted value converter(instance, parameter attribute,

272

Chapter 2. API documentation




openforcefield Documentation, Release 0.8.4

value): -> converted_value
A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compat-
ible units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert
values before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity

Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0.
—sdimensionless should have units of angstrom

You can attach a custom converter to an attribute.

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()

(continues on next page)

2.2. Forcefield typing tools 273



openforcefield Documentation, Release 0.8.4

(continued from previous page)

@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f"”Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1
>>> my_par.attr_all_to_float

1.0

>>> my_par.attr_all_to_float = '2.0'
>>> my_par.attr_all_to_float

2.0

The custom converter associated to attr_int to float converts only integers in-
stead. >>> my parattr_int_to_float = 3 >>> my parattr_int to_float 3.0 >>>
my_parattr_int to float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

k A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted_value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compat-
ible units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert
values before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()

(continues on next page)

274 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

(continued from previous page)

attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity

Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0._
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f"”Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1
>>> my_par.attr_all_to_float

1.0

>>> my_par.attr_all_to_float = '2.0'

(continues on next page)

2.2. Forcefield typing tools 275



openforcefield Documentation, Release 0.8.4

(continued from previous page)

>>> my_par.attr_all_to_float
2.0

The custom converter associated to attr_int to float converts only integers in-
stead. >>> my parattr_int_to_float = 3 >>> my parattr_int_to_float 3.0 >>>
my_parattr_int to_float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

k_bondorder The attribute of a parameter in which each term is a mapping.

The substantial difference with IndexedParameterAttribute is that, unlike index-
ing, the mapping can be based on artbitrary references, like indices but can starting
at non-zero values and include non-adjacent keys.

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only sequences of mappings
where values are quantities with compatible units are allowed to be set.

converter [callable, optional] An optional function that can be used to validate
and cast each component of each element of the sequence before setting the
attribute.

IndexedParameterAttribute A parameter attribute representing a sequence.

IndexedMappedParameterAttribute A parameter attribute representing a se-
quence, each term of which is a mapping.

Create an optional indexed attribute with unit of angstrom.

>>> from simtk import unit
>>> class MyParameter:
length = MappedParameterAttribute(default=None, unit=unit.angstrom)

>>> my_par = MyParameter()
>>> my_par.length is None
True

Like other ParameterAttribute objects, strings are parsed into Quantity objects.

>>> my_par.length = {1:'1.5 % angstrom', 2: '1.4 % angstrom'}
>>> my_par.length[1]
Quantity(value=1.5, unit=angstrom)

Unlike other ParameterAttribute objects, the reference points can do not need ot
be zero-indexed, non-adjancent, such as interpolating defining a bond parameter
for interpolation by defining references values and bond orders 2 and 3:

>>> my_par.length = {2:'1.42 % angstrom', 3: '1.35 * angstrom'}
>>> my_par.length[2]
Quantity(value=1.42, unit=angstrom)

length A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

276 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted_value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compat-
ible units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert
values before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity

Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0.
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

2.2. Forcefield typing tools 277



openforcefield Documentation, Release 0.8.4

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f"Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to_float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1
>>> my_par.attr_all_to_float
1.0
>>> my_par.attr_all_to_float
>>> my_par.attr_all_to_float
2.0

'2.0'

The custom converter associated to attr int to float converts only integers in-
stead. >>> my parattr_int to float = 3 >>> my parattr_int to float 3.0 >>>
my_parattr_int to_float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

length_bondorder The attribute of a parameter in which each term is a mapping.

The substantial difference with IndexedParameterAttribute is that, unlike index-
ing, the mapping can be based on artbitrary references, like indices but can starting
at non-zero values and include non-adjacent keys.

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only sequences of mappings
where values are quantities with compatible units are allowed to be set.

converter [callable, optional] An optional function that can be used to validate
and cast each component of each element of the sequence before setting the
attribute.

IndexedParameterAttribute A parameter attribute representing a sequence.

IndexedMappedParameterAttribute A parameter attribute representing a se-
quence, each term of which is a mapping.

Create an optional indexed attribute with unit of angstrom.

>>> from simtk import unit
>>> class MyParameter:
length = MappedParameterAttribute(default=None, unit=unit.angstrom)

>>> my_par = MyParameter()

(continues on next page)

278 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

(continued from previous page)

>>> my_par.length is None
True

Like other ParameterAttribute objects, strings are parsed into Quantity objects.

>>> my_par.length = {1:'1.5 % angstrom', 2: '1.4 * angstrom'}
>>> my_par.length[1]
Quantity(value=1.5, unit=angstrom)

Unlike other ParameterAttribute objects, the reference points can do not need ot
be zero-indexed, non-adjancent, such as interpolating defining a bond parameter
for interpolation by defining references values and bond orders 2 and 3:

>>> my_par.length = {2:'1.42 % angstrom', 3: '1.35 * angstrom'}
>>> my_par.length[2]
Quantity(value=1.42, unit=angstrom)

parent_id A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted_value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compat-
ible units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert
values before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

2.2. Forcefield typing tools 279



openforcefield Documentation, Release 0.8.4

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity

Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0.
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

>>> class MyParameter:
# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f"Cannot convert '{value}' to float")
return value

>>> my_par = MyParameter()

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float = 1
>>> my_par.attr_all_to_float

1.0

>>> my_par.attr_all_to_float = '2.0'
>>> my_par.attr_all_to_float

2.0

The custom converter associated to attr_int to_float converts only integers in-
stead. >>> my parattr_int to_float = 3 >>> my parattr_int to float 3.0 >>>
my_parattr_int to_float = ‘4.0’ Traceback (most recent call last): ... TypeError:
Cannot convert ‘4.0’ to float

smirks A descriptor for ParameterType attributes.

The descriptors allows associating to the parameter a default value, which makes
the attribute optional, a unit, and a custom converter.

280 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Because we may want to have None as a default value, required attributes have the
default set to the special type UNDEFINED.

Converters can be both static or instance functions/methods with respective signa-
tures

converter(value): -> converted value converter(instance, parameter attribute,
value): -> converted_value

A decorator syntax is available (see example below).

default [object, optional] When specified, the descriptor makes this attribute op-
tional by attaching a default value to it.

unit [simtk.unit.Quantity, optional] When specified, only quantities with compat-
ible units are allowed to be set, and string expressions are automatically parsed
into a Quantity.

converter [callable, optional] An optional function that can be used to convert
values before setting the attribute.

IndexedParameterAttribute A parameter attribute with multiple terms.

Create a parameter type with an optional and a required attribute.

>>> class MyParameter:
attr_required = ParameterAttribute()
attr_optional = ParameterAttribute(default=2)

>>> my_par = MyParameter()

Even without explicit assignment, the default value is returned.

>>> my_par.attr_optional
2

If you try to access an attribute without setting it first, an exception is raised.

>>> my_par.attr_required
Traceback (most recent call last):

AttributeError: 'MyParameter' object has no attribute '_attr_required'

The attribute allow automatic conversion and validation of units.

>>> from simtk import unit
>>> class MyParameter:
attr_quantity = ParameterAttribute(unit=unit.angstrom)

>>> my_par = MyParameter()

>>> my_par.attr_quantity = '1.0 * nanometer'
>>> my_par.attr_quantity

Quantity(value=1.0, unit=nanometer)

>>> my_par.attr_quantity = 3.0

Traceback (most recent call last):

openforcefield.utils.utils.IncompatibleUnitError: attr_quantity=3.0.
—dimensionless should have units of angstrom

You can attach a custom converter to an attribute.

2.2. Forcefield typing tools 281



openforcefield Documentation, Release 0.8.4

>>> class MyParameter:

return value

>>> my_par = MyParameter()

# Both strings and integers convert nicely to floats with float().
attr_all_to_float = ParameterAttribute(converter=float)
attr_int_to_float = ParameterAttribute()
@attr_int_to_float.converter
def attr_int_to_float(self, attr, value):
# This converter converts only integers to float
# and raise an exception for the other types.
if isinstance(value, int):
return float(value)
elif not isinstance(value, float):
raise TypeError(f"Cannot convert '{value}' to float")

attr_all to float accepts and convert to float both strings and integers

>>> my_par.attr_all_to_float
>>> my_par.attr_all_to_float
1.0
>>> my_par.attr_all_to_float
>>> my_par.attr_all_to_float
2.0

1

'2.0'

The custom converter associated to attr int to float converts only integers in-
stead. >>> my parattr_int to float = 3 >>> my parattr_int to float 3.0 >>>
my_parattr_int to_float = ‘4.0’ Traceback (most recent call last): ... TypeError:

Cannot convert ‘4.0’ to float

Methods

add_cosmetic_attribute(attr_name,
attr_value)

Add a cosmetic attribute to this object.

attribute_is_cosmetic(attr name)

Determine whether an attribute of this object
is cosmetic.

delete_cosmetic_attribute(attr name)

Delete a cosmetic attribute from this object.

to_dict([discard cosmetic_attributes, ...])

Convert this object to dict format.

add_cosmetic_attribute(attr _name, attr_value)
Add a cosmetic attribute to this object.

This attribute will not have a functional effect on the object in the Open Force Field toolkit,

but can be written out during output.

the future (see issue #338).

Warning: The API for modifying cosmetic attributes is experimental and may change in

Parameters

attr_name [str] Name of the attribute to define for this object.
attr_value [str] The value of the attribute to define for this object.

attribute_is_cosmetic(attr_name)

282

Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

Determine whether an attribute of this object is cosmetic.

Warning: The API for modifying cosmetic attributes is experimental and may change in
the future (see issue #338).

Parameters
attr_name [str] The attribute name to check
Returns
is_cosmetic [bool] Returns True if the attribute is defined and is cosmetic. Returns
False otherwise.

delete_cosmetic_attribute(attr_name)
Delete a cosmetic attribute from this object.

Warning: The API for modifying cosmetic attributes is experimental and may change in
the future (see issue #338).

Parameters
attr name [str] Name of the cosmetic attribute to delete.

to_dict(discard cosmetic_attributes=False, duplicate_attributes=None)
Convert this object to dict format.

The returning dictionary contains all the ParameterAttribute and
IndexedParameterAttribute as well as cosmetic attributes if discard_cosmetic_attributes
is False.
Parameters
discard_cosmetic_attributes [bool, optional. Default = False] Whether to discard
non-spec attributes of this object
duplicate_attributes [list of string, optional. Default = None] A list of names of
attributes that redundantly decsribe data and should be discarded during serial-
izaiton
Returns
smirnoff_dict [dict] The SMIRNOFF-compliant dict representation of this object.

check_handler_compatibility(other handler)
Checks whether this ParameterHandler encodes compatible physics as another ParameterHandler.
This is called if a second handler is attempted to be initialized for the same tag.

Parameters
other_handler [a ParameterHandler object] The handler to compare to.
Raises

IncompatibleParameterError if handler_kwargs are incompatible with existing parameters.

property TAGNAME
The name of this ParameterHandler corresponding to the SMIRNOFF tag name

Returns
handler_name [str] The name of this parameter handler

add_cosmetic_attribute(attr_name, attr_value)
Add a cosmetic attribute to this object.

2.2. Forcefield typing tools 283



openforcefield Documentation, Release 0.8.4

This attribute will not have a functional effect on the object in the Open Force Field toolkit, but
can be written out during output.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

Parameters
attr_name [str] Name of the attribute to define for this object.
attr_value [str] The value of the attribute to define for this object.
add_parameter (parameter_kwargs=None, parameter=None, after=None, before=None)
Add a parameter to the forcefield, ensuring all parameters are valid.
Parameters

parameter_kwargs: dict, optional The kwargs to pass to the ParameterHan-
dler.INFOTYPE (a ParameterType) constructor

parameter: ParameterType, optional A ParameterType to add to the Parameter-
Handler

after [str or int, optional] The SMIRKS pattern (if str) or index (if int) of the param-
eter directly before where the new parameter will be added

before [str, optional] The SMIRKS pattern (if str) or index (if int) of the parameter
directly after where the new parameter will be added

Note that one of (parameter_kwargs, parameter) must be specified

Note that when "before' and "after’ are both None, the new parameter will be appended
to the END of the parameter list.

Note that when “before’ and "after’ are both specified, the new parameter
will be added immediately after the parameter matching the after pattern or index.

Examples

Add a ParameterType to an existing ParameterList at a specified position.

Given an existing parameter handler and a new parameter to add to it:

>>> from simtk import unit

>>> bh = BondHandler (skip_version_check=True)

>>> length = 1.5 % unit.angstrom

>>> k = 100 * unit.kilocalorie_per_mole / unit.angstrom *x 2

>>> bh.add_parameter ({'smirks': "[*:1]-[*:2]", 'length': length, 'k': k, 'id': 'b1'})
>>> bh.add_parameter({'smirks': '[*:1]=[*:2]"', 'length': length, 'k': k, "id': 'b2'})
>>> bh.add_parameter ({'smirks': '[*:1]#[*:2]", 'length': length, 'k': k, 'id': 'b3'})
>>> [p.id for p in bh.parameters]

['b1', 'b2', 'b3']

>>> param = {'smirks': "[#1:1]-[#6:2]", 'length': length, 'k': k, 'id': 'b4'}

Add a new parameter immediately after the parameter with the smirks ‘[:1]=[:2]’

284 Chapter 2. API documentation



openforcefield Documentation, Release 0.8.4

>>> bh.add_parameter(param, after='[x:1]=[*:2]")
>>> [p.id for p in bh.parameters]
['b1', 'b2', 'b4', 'b3']

assign_parameters (topology, system)
Assign parameters for the given Topology to the specified System object.

Parameters

topology [openforcefield.topology.Topology] The Topology for which parameters
are to be assigned. Either a new Force will be created or parameters will be ap-
pended to an existing Force.

system [simtk.openmm.System] The OpenMM System object to add the Force (or
append new parameters) to.

attribute_is_cosmetic(attr_name)
Determine whether an attribute of this object is cosmetic.

Warning: The API for modifying cosmetic attributes is experimental and may change in the
future (see issue #338).

Parameters
attr_name [str] The attribute name to check
Returns
is_cosmetic [bool] Returns True if the attribute is defined and is cosmetic. Returns

Fal