
OpenFF Evaluator Documentation

openff-evaluator

Oct 05, 2021

GETTING STARTED

1 Calculation Approaches 3

2 Supported Physical Properties 5
2.1 Installation . 6
2.2 Architecture . 7
2.3 Evaluator Client . 7
2.4 Evaluator Server . 9
2.5 Tutorial 01 - Loading Data Sets . 11
2.6 Tutorial 02 - Estimating Data Sets . 16
2.7 Tutorial 03 - Analysing Data Sets . 20
2.8 Tutorial 04 - Optimizing Force Fields . 23
2.9 Property Data Sets . 30
2.10 ThermoML Archive . 33
2.11 Taproom . 35
2.12 Data Set Curation . 36
2.13 Physical Properties . 42
2.14 Common Workflows . 46
2.15 Gradients . 48
2.16 Calculation Layers . 49
2.17 Workflow Layers . 52
2.18 The Direct Simulation Layer . 54
2.19 The MBAR Reweighting Layer . 54
2.20 Workflows . 55
2.21 Replicators . 57
2.22 Workflow Graphs . 61
2.23 Protocols . 62
2.24 Protocol Groups . 65
2.25 Observables . 66
2.26 Calculation Backends . 68
2.27 Dask Backends . 69
2.28 Storage Backends . 71
2.29 Data Classes and Queries . 72
2.30 Local File Storage . 74
2.31 Building the Docs . 75
2.32 API . 75
2.33 Release History . 554
2.34 Release Process . 565

Bibliography 569

i

Index 571

ii

OpenFF Evaluator Documentation

An automated and scalable framework for curating, manipulating, and computing data sets of physical properties from
molecular simulation and simulation data.

The framework is built around four central ideas:

• Flexibility: New physical properties, data sources and calculation approaches are easily added via an extensible
plug-in system and a flexible workflow engine.

• Automation: Physical property measurements are readily importable from open data sources (such as the NIST
ThermoML Archive) through the data set APIs, and automatically calculated using either the built-in or user
specified calculation schemas.

• Scalability: Calculations are readily scalable from single machines and laptops up to large HPC clusters and
supercomputers through seamless integration with libraries such as dask.

• Efficiency: Properties are estimated using the fastest approach available to the framework, whether that be
through evaluating a trained surrogate model, re-evaluating cached simulation data, or by running simulations
directly.

GETTING STARTED 1

http://trc.nist.gov/ThermoML.html
http://trc.nist.gov/ThermoML.html
https://distributed.dask.org/en/latest/

OpenFF Evaluator Documentation

2 GETTING STARTED

CHAPTER

ONE

CALCULATION APPROACHES

The framework is designed around the idea of allowing multiple calculation approaches for estimating the same set of
properties, in addition to estimation directly from molecular simulation, all using a uniform API.

The primary purpose of this is to take advantage of the many techniques exist which are able to leverage data from
previous simulations to rapidly estimate sets of properties, such as reweighting cached simulation data, or evaluating
surrogate models trained upon cached data. The most rapid approach which may accurately estimate a set of properties
is automatically determined by the framework on the fly.

Each approach supported by the framework is implemented as a calculation layer. Two such layers are currently
supported (although new calculation layers can be readily added via the plug-in system):

• evaluating physical properties directly from molecular simulation using the SimulationLayer.

• reprocessing cached simulation data with MBAR reweighting using the ReweightingLayer.

3

http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00223
http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio

OpenFF Evaluator Documentation

4 Chapter 1. Calculation Approaches

CHAPTER

TWO

SUPPORTED PHYSICAL PROPERTIES

The framework has built-in support for evaluating a number of physical properties, ranging from relatively ‘cheap’ to
compute properties such as liquid densities, up to more computationally demanding properties such as solvation free
energies and host-guest binding affinities.

Included for most of these properties is the ability to calculate their derivatives with respect to force field parameters,
making the framework ideal for evaluating an objective function and it’s gradient as part of a force field optimisation.

Table 1: The physical properties which are natively supported by the
framework.

Direct Simulation MBAR Reweighting

Supported Gradients Supported Gradients

Density X X X X

Dielectric Constant X X* X X*

Hvaporization X X X X

Hmixing X X X* X

Vexcess X X X X

Gsolvation X X* × ×

Ghost-guest (beta) X* × × ×

5

OpenFF Evaluator Documentation

* Entries marked with an asterisk are supported but have not yet been extensively tested and validated.

See the physical properties overview page for more details.

2.1 Installation

The OpenFF Evaluator is currently installable either through conda or directly from the source code. Whichever route
is chosen, it is recommended to install the framework within a conda environment and allow the conda package manager
to install the required and optional dependencies.

More information about conda and instructions to perform a lightweight miniconda installation can be found here. It
will be assumed that these have been followed and conda is available on your machine.

2.1.1 Installation from Conda

To install the openff-evaluator from the conda-forge channel simply run:

conda install -c conda-forge openff-evaluator

2.1.2 Recommended Dependencies

If you have access to the fantastic OpenEye toolkit we recommend installing this to enable (among many other things)
the use of the BuildDockedCoordinates protocol and faster conformer generation / AM1BCC partial charge calcu-
lations:

conda install -c openeye openeye-toolkits

To parameterize systems with the Amber tleap tool using a TLeapForceFieldSource the ambertools package
must be installed:

conda install -c conda-forge 'ambertools >=19.0'

2.1.3 Installation from Source

To install the OpenFF Evaluator from source begin by cloning the repository from github:

git clone https://github.com/openforcefield/openff-evaluator.git
cd openff-evaluator

Create a custom conda environment which contains the required dependencies and activate it:

conda env create --name openff-evaluator --file devtools/conda-envs/test_env.yaml
conda activate openff-evaluator

Finally, install the estimator itself:

python setup.py develop

6 Chapter 2. Supported Physical Properties

https://docs.conda.io/en/latest/miniconda.html
https://docs.eyesopen.com/toolkits/python/index.html
https://github.com/openforcefield/openff-evaluator

OpenFF Evaluator Documentation

2.2 Architecture

The openff-evaluator framework is constructed as a collection of modular components, each performing a specific role
within the estimation of physical property data sets. These components are designed to be as extensible as possible,
with support for user created plug-ins built into their core.

Fig. 1: An overview of the openff-evaluators modular design. The framework is split into a ‘client-side’ which handles
the curation and preparation of data sets, and a ‘server-side’ which performs the estimation of the data sets.

The framework is implemented as a client-server architecture. This design allows users to spin up Evaluator Server
instances on whichever compute resources they may have available (from a single machine up to a large HPC cluster),
and to which Evaluator Client objects may connect to both request that data sets be estimated, and to query and retrieve
the results of those requests.

The client-side of the framework is predominantly responsible for providing APIs and objects for:

• curating data sets of physical properties from open data sources.

• specifing custom calculation schemas which describe how individual properties should be computed.

• requesting that data sets be estimated by a running Evaluator Server instance.

• retrieving the results of estimation requests from a running Evaluator Server instance.

while the server-side is responsible for:

• receiving estimation requests from an Evaluator Client object.

• automatically determining which calculation approach to use for each property in the request.

• executing those requests across the available compute resources following the calculation schemas provided by
the client

• caching data from any calculations which may be useful for future calculations.

All communication between servers and clients is handled through the TCP protocol.

2.3 Evaluator Client

The EvaluatorClient object is responsible for both submitting requests to estimate a data set of properties to a
running Evaluator Server instance, and for pulling back the results of those requests when complete.

An EvaluatorClient object may optionally be created using a set of ConnectionOptions which specifies the
network address of the running Evaluator Server instance to connect to:

Specify the address of a server running on the local machine.
connection_options = ConnectionOptions(server_address="localhost", server_port=8000)
Create the client object
evaluator_client = EvaluatorClient(connection_options)

2.2. Architecture 7

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

OpenFF Evaluator Documentation

2.3.1 Requesting Estimates

The client can request the estimation of a data set of properties using the request_estimate() function:

Specify the data set.
data_set = PhysicalPropertyDataSet()
data_set.add_properties(...)

Specify the force field source.
force_field = SmirnoffForceFieldSource.from_path("openff-1.0.0.offxml")

Specify some estimation options (optional).
options = client.default_request_options(data_set, force_field)

Specify the parameters to differentiate with respect to (optional).
gradient_keys = [

ParameterGradientKey(tag="vdW", smirks="[#6X4:1]", attribute="epsilon")
]

Request the estimation of the data set.
request, errors = evaluator_client.request_estimate(

data_set,
force_field,
options,
gradient_keys

)

A request must at minimum specify:

• the data set of physical properties to estimate.

• the force field parameters to estimate the data set using.

and may also optionally specify:

• the options to use when estimating the property set.

• the parameters to differentiate each physical property estimate with respect to.

Note: Gradients can currently only be computed for requests using a SMIRNOFF based force field.

The request_estimate() function returns back two objects:

• a Request object which can be used to retrieve the results of the request and,

• an EvaluatorException object which will be populated if any errors occured while submitting the request.

The Request object is similar to a Future object, in that it is an object which can be used to query the current status
of a request either asynchronously:

results = request.results(synchronous=False)

or synchronously:

results = request.results(synchronous=True)

The results (which may currently be incomplete) are returned back as a RequestResult object.

8 Chapter 2. Supported Physical Properties

https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future

OpenFF Evaluator Documentation

The Request object is fully JSON serializable:

Save the request to JSON
request.json(file_path="request.json", format=True)
Load the request from JSON
request = Request.from_json(file_path="request.json")

making it easy to keep track of any open requests.

2.3.2 Request Options

The RequestOptions object allows greater control over how properties are estimated by the server. It currently allows
control over:

• calculation_layers: The calculation layers which the server should attempt to use when estimating the data
set. The order which the layers are specified in this list is the order which the server will attempt to use each
layer.

• calculation_schemas: The calculation schemas to use for each allowed calculation layer per class of property.
These will be automatically populated in the cases where no user specified schema is provided, and where a
default schema has been registered with the plugin system for the particular layer and property type.

If no options are passed to request_estimate() a default set will be generated through a call to
default_request_options(). For more information about how default calculation schemas are registered, see
the Default Schemas section.

2.3.3 Force Field Sources

Different force field representations (e.g. SMIRNOFF, TLeap, LigParGen) are defined within the framework as
ForceFieldSource objects. A force field source should specify all of the options which would be required by a
particular force field, such as the non-bonded cutoff or the charge scheme if not specified directly in the force field
itself.

Currently the framework has built in support for force fields applied via:

• the OpenFF toolkit (SmirnoffForceFieldSource).

• the tleap program from the AmberTools suite (LigParGenForceFieldSource).

• an instance of the LigParGen server (LigParGenForceFieldSource).

The client will automatically adapt any of the built-in calculation schemas which are based off of the
WorkflowCalculationSchema to use the correct workflow protocol (BuildSmirnoffSystem , BuildTLeapSystem
or BuildLigParGenSystem) for the requested force field.

2.4 Evaluator Server

The EvaluatorServer object is responsible for coordinating the estimation of physical property data sets as requested
by evaluator clients. Its primary responsibilities are to:

• recieve incoming requests from an evaluator clients to either estimate a dataset of properties, or to query the
status of a previous request.

• request that each specified calculation layers attempt to estimate the data set of properties, cascading unestimated
properties through the different layers.

2.4. Evaluator Server 9

https://open-forcefield-toolkit.readthedocs.io/en/latest/
https://ambermd.org/AmberTools.php
http://zarbi.chem.yale.edu/ligpargen/

OpenFF Evaluator Documentation

An EvaluatorServer must be created with an accompanying calculation backend which will be responsible for
distributing any calculations launched by the different calculation layers:

with DaskLocalCluster() as calculation_backend:

evaluator_server = EvaluatorServer(calculation_backend)
evaluator_server.start()

It may also be optionally created using a specific storage backend if the default LocalFileStorage is not sufficient:

with DaskLocalCluster() as calculation_backend:

storage_backend = LocalFileStorage()

evaluator_server = EvaluatorServer(calculation_backend, storage_backend)
evaluator_server.start()

By default the server will run synchronously until it is killed, however it may also be run asynchronously such that it
can be interacted with directly by a client in the same script:

with DaskLocalCluster() as calculation_backend:

with EvaluatorServer(calculation_backend) as evaluator_server:

Specify the data set.
data_set = PhysicalPropertyDataSet()
data_set.add_properties(...)

Specify the force field source.
force_field = SmirnoffForceFieldSource.from_path("openff-1.0.0.offxml")

Request the estimation of the data set.
request, errors = evaluator_client.request_estimate(data_set,force_field)
Wait for the results.
results = request.results(synchronous=True)

2.4.1 Estimation Batches

When a server recieves a request from a client, it will attempt to split the requested set of properties into smaller batches,
represented by the Batch object. The server is currently only able to mark entire batches of estimated properties as
being completed, as opposed to individual properties.

Currently the server supports two ways of batching properties:

• SameComponents: All properties measured for the substance containing the same components will be batched
together. As an example, the density of a 80:20 and a 20:80 mix of ethanol and water would be batched together,
but the density of pure ethanol and the density of pure water would be placed into separate batches.

• SharedComponents: All properties measured for substances containing at least one common component will
be batched together. As an example, the densities of 80:20 and 20:80 mixtures of ethanol and water, and the pure
densities of ethanol and water would be batched together.

The mode of batching is set by the client using the batch_mode attribute of the request options.

10 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

2.5 Tutorial 01 - Loading Data Sets

In this tutorial we will be exploring the frameworks utilities for loading and manipulating data sets of physical property
measurements. The tutorial will cover

• Loading a data set of density measurements from NISTs ThermoML Archive

• Filtering the data set down using a range of criteria, including temperature pressure, and composition.

• Supplementing the data set with enthalpy of vaporization (∆𝐻𝑣) data sourced directly from the literature

If you haven’t yet installed the OpenFF Evaluator framework on your machine, check out the installation instructions
here!

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

[1]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/master/docs/
→˓tutorials/colab_setup.ipynb
%run colab_setup.ipynb

For the sake of clarity all warnings will be disabled in this tutorial:

[2]: import warnings
warnings.filterwarnings('ignore')
import logging
logging.getLogger("openff.toolkit").setLevel(logging.ERROR)

2.5.1 Extracting Data from ThermoML

For anyone who is not familiar with the ThermoML archive - it is a fantastic database of physical property measurements
which have been extracted from data published in the

• Journal of Chemical and Engineering Data

• Journal of Chemical Thermodynamics

• Fluid Phase Equilibria

• Thermochimica Acta

• International Journal of Thermophysics

journals. It includes data for a wealth of different physical properties, from simple densities and melting points, to
activity coefficients and osmotic coefficients, all of which is freely available. As such, it serves as a fantastic resource
for benchmarking and optimising molecular force fields against.

The Evaluator framework has built-in support for extracting this wealth of data, storing the data in easy to manipulate
python objects, and for automatically re-computing those properties using an array of calculation techniques, such as
molecular simulations and, in future, from trained surrogate models.

This support is provided by the ThermoMLDataSet object:

[3]: from openff.evaluator.datasets.thermoml import ThermoMLDataSet

The ThermoMLDataSet object offers two main routes for extracting data the the archive:

• extracting data directly from the NIST ThermoML web server

2.5. Tutorial 01 - Loading Data Sets 11

https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/master/docs/tutorials/tutorial01.ipynb

OpenFF Evaluator Documentation

• extracting data from a local ThermoML XML archive file

Here we will be extracting data directly from the web server. To pull data from the web server we need to specifiy the
digital object identifiers (DOIs) of the data we wish to extract - these correspond to the DOI of the publication that the
data was initially sourced from.

For this tutorial we will be extracting data using the following DOIs:

[4]: data_set = ThermoMLDataSet.from_doi(
"10.1016/j.fluid.2013.10.034",
"10.1021/je1013476",

)

We can inspect the data set to see how many properties were loaded:

[5]: len(data_set)

[5]: 275

and for how many different substances those properties were measured for:

[6]: len(data_set.substances)

[6]: 254

We can also easily check which types of properties were loaded in:

[7]: print(data_set.property_types)

{'EnthalpyOfMixing', 'Density'}

2.5.2 Filtering the Data Set

The data set object we just created contains many different functions which will allow us to filter the data down, retaining
only those measurements which are of interest to us.

The first thing we will do is filter out all of the measurements which aren’t density measurements:

[8]: from openff.evaluator.datasets.curation.components.filtering import (
FilterByPropertyTypes,
FilterByPropertyTypesSchema

)

data_set = FilterByPropertyTypes.apply(
data_set, FilterByPropertyTypesSchema(property_types=["Density"])

)

print(data_set.property_types)

{'Density'}

Next we will filter out all measurements which were made away from atmospheric conditions:

[9]: from openff.evaluator.datasets.curation.components.filtering import (
FilterByPressure,
FilterByPressureSchema,

(continues on next page)

12 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

FilterByTemperature,
FilterByTemperatureSchema,

)

print(f"There were {len(data_set)} properties before filtering")

First filter by temperature.
data_set = FilterByTemperature.apply(

data_set,
FilterByTemperatureSchema(minimum_temperature=298.0, maximum_temperature=298.2)

)
and then by pressure
data_set = FilterByPressure.apply(

data_set,
FilterByPressureSchema(minimum_pressure=101.224, maximum_pressure=101.426)

)

print(f"There are now {len(data_set)} properties after filtering")

There were 213 properties before filtering
There are now 9 properties after filtering

Finally, we will filter out all measurements which were not measured for either ethanol (CCO) or isopropanol (CC(C)O):

[10]: from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

)

data_set = FilterBySmiles.apply(
data_set,
FilterBySmilesSchema(smiles_to_include=["CCO", "CC(C)O"])

)

print(f"There are now {len(data_set)} properties after filtering")

There are now 2 properties after filtering

We will convert the filtered data to a pandas DataFrame to more easily visualize the final data set:

[11]: pandas_data_set = data_set.to_pandas()
pandas_data_set[

["Temperature (K)", "Pressure (kPa)", "Component 1", "Density Value (g / ml)",
→˓"Source"]
].head()

[11]: Temperature (K) Pressure (kPa) Component 1 Density Value (g / ml) \
0 298.15 101.325 CC(C)O 0.78270
1 298.15 101.325 CCO 0.78507

Source
0 10.1016/j.fluid.2013.10.034
1 10.1021/je1013476

Through filtering, we have now cut down from over 250 property measurements down to just 2. There are many more

2.5. Tutorial 01 - Loading Data Sets 13

OpenFF Evaluator Documentation

possible filters which can be applied. All of these and more information about the data set object can be found in the
PhysicalPropertyDataSet (from which the ThermoMLDataSet class inherits) API documentation.

2.5.3 Adding Extra Data

For the final part of this tutorial, we will be supplementing our newly filtered data set with some enthalpy of vaporization
(∆𝐻𝑣) measurements sourced directly from the literature (as opposed to from the ThermoML archive).

We will be sourcing values of the ∆𝐻𝑣 of ethanol and isopropanol, summarised in the table below, from the Enthalpies
of vaporization of some aliphatic alcohols publication:

Compound Temperature / 𝐾 ∆𝐻𝑣 / 𝑘𝐽𝑚𝑜𝑙−1 𝛿∆𝐻𝑣 / 𝑘𝐽𝑚𝑜𝑙−1

Ethanol 298.15 42.26 0.02
Isopropanol 298.15 45.34 0.02

In order to create a new ∆𝐻𝑣 measurements, we will first define the state (namely temperature and pressure) that the
measurements were recorded at:

[12]: from openff.evaluator import unit
from openff.evaluator.thermodynamics import ThermodynamicState

thermodynamic_state = ThermodynamicState(
temperature=298.15 * unit.kelvin, pressure=1.0 * unit.atmosphere

)

Note: Here we have made use of the ``openff.evaluator.unit`` module to attach units to the temperatures and pressures
we are filtering by. This module simply exposes a ``UnitRegistry`` from the fantasticpintlibrary. Pint provides full
support for attaching to units to values and is used extensively throughout this framework.

the substances that the measurements were recorded for:

[13]: from openff.evaluator.substances import Substance

ethanol = Substance.from_components("CCO")
isopropanol = Substance.from_components("CC(C)O")

and the source of this measurement (defined as the DOI of the publication):

[14]: from openff.evaluator.datasets import MeasurementSource

source = MeasurementSource(doi="10.1016/S0021-9614(71)80108-8")

We will combine this information with the values of the measurements to create an object which encodes each of the
∆𝐻𝑣 measurements

[15]: from openff.evaluator.datasets import PropertyPhase
from openff.evaluator.properties import EnthalpyOfVaporization

ethanol_hvap = EnthalpyOfVaporization(
thermodynamic_state=thermodynamic_state,
phase=PropertyPhase.Liquid | PropertyPhase.Gas,
substance=ethanol,
value=42.26*unit.kilojoule / unit.mole,

(continues on next page)

14 Chapter 2. Supported Physical Properties

https://www.sciencedirect.com/science/article/pii/S0021961471801088
https://www.sciencedirect.com/science/article/pii/S0021961471801088
https://pint.readthedocs.io/en/stable/

OpenFF Evaluator Documentation

(continued from previous page)

uncertainty=0.02*unit.kilojoule / unit.mole,
source=source

)
isopropanol_hvap = EnthalpyOfVaporization(

thermodynamic_state=thermodynamic_state,
phase=PropertyPhase.Liquid | PropertyPhase.Gas,
substance=isopropanol,
value=45.34*unit.kilojoule / unit.mole,
uncertainty=0.02*unit.kilojoule / unit.mole,
source=source

)

These properties can then be added to our data set:

[16]: data_set.add_properties(ethanol_hvap, isopropanol_hvap)

If we print the data set again using pandas we should see that our new measurements have been added:

[17]: pandas_data_set = data_set.to_pandas()
pandas_data_set[

["Temperature (K)",
"Pressure (kPa)",
"Component 1",
"Density Value (g / ml)",
"EnthalpyOfVaporization Value (kJ / mol)",
"Source"
]

].head()

[17]: Temperature (K) Pressure (kPa) Component 1 Density Value (g / ml) \
0 298.15 101.325 CC(C)O 0.78270
1 298.15 101.325 CCO 0.78507
2 298.15 101.325 CCO NaN
3 298.15 101.325 CC(C)O NaN

EnthalpyOfVaporization Value (kJ / mol) Source
0 NaN 10.1016/j.fluid.2013.10.034
1 NaN 10.1021/je1013476
2 42.26 10.1016/S0021-9614(71)80108-8
3 45.34 10.1016/S0021-9614(71)80108-8

2.5.4 Conclusion

We will finish off this tutorial by saving the data set we have created as a JSON file for future use:

[18]: data_set.json("filtered_data_set.json", format=True);

And that concludes the first tutorial. For more information about data sets in the Evaluator framework check out the
data set and ThermoML documentation.

In the next tutorial we will be estimating the data set we have created here using molecular simulation.

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.5. Tutorial 01 - Loading Data Sets 15

https://github.com/openforcefield/openff-evaluator/issues

OpenFF Evaluator Documentation

2.6 Tutorial 02 - Estimating Data Sets

In this tutorial we will be estimating the data set we created in the first tutorial using molecular simulation. The tutorial
will cover:

• loading in the data set to estimate, and the force field parameters to use in the calculations.

• defining custom calculation schemas for the properties in our data set.

• estimating the data set of properties using an Evaluator server instance.

• retrieving the results from the server and storing them on disk.

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

[1]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/master/docs/
→˓tutorials/colab_setup.ipynb
%run colab_setup.ipynb

For this tutorial make sure that you are using a GPU accelerated runtime.

For the sake of clarity all warnings will be disabled in this tutorial:

[2]: import warnings
warnings.filterwarnings('ignore')
import logging
logging.getLogger("openforcefield").setLevel(logging.ERROR)

We will also enable time-stamped logging to help track the progress of our calculations:

[3]: from openff.evaluator.utils import setup_timestamp_logging
setup_timestamp_logging()

2.6.1 Loading the Data Set and Force Field Parameters

We will begin by loading in the data set which we created in the previous tutorial:

[4]: from openff.evaluator.datasets import PhysicalPropertyDataSet

data_set_path = "filtered_data_set.json"

If you have not yet completed that tutorial or do not have the data set file
available, a copy is provided by the framework:

from openff.evaluator.utils import get_data_filename
data_set_path = get_data_filename("tutorials/tutorial01/filtered_data_set.json")

data_set = PhysicalPropertyDataSet.from_json(data_set_path)

As a reminder, this data contains the experimentally measured density and 𝐻𝑣𝑎𝑝 measurements for ethanol and iso-
propanol at ambient conditions:

16 Chapter 2. Supported Physical Properties

https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/master/docs/tutorials/tutorial02.ipynb

OpenFF Evaluator Documentation

[5]: data_set.to_pandas().head()

[5]: Temperature (K) ... Source
0 298.15 ... 10.1016/j.fluid.2013.10.034
1 298.15 ... 10.1021/je1013476
2 298.15 ... 10.1016/S0021-9614(71)80108-8
3 298.15 ... 10.1016/S0021-9614(71)80108-8

[4 rows x 13 columns]

We will also define the set of force field parameters which we wish to use to estimate this data set of properties. The
framework has support for estimating force field parameters from a range of sources, including those in the OpenFF
SMIRNOFF format, those which can be applied by AmberTools, and more.

Each source of a force field has a corresponding source object in the framework. In this tutorial we will be using the
OpenFF Parsley force field which is based off of the SMIRNOFF format:

[6]: from openff.evaluator.forcefield import SmirnoffForceFieldSource

force_field_path = "openff-1.0.0.offxml"
force_field_source = SmirnoffForceFieldSource.from_path(force_field_path)

2.6.2 Defining the Calculation Schemas

The next step we will take will be to define a custom calculation schema for each type of property in our data set.

A calculation schema is the blueprint for how a type of property should be calculated using a particular calculation
approach, such as directly by simulation, by reprocessing cached simulation data or, in future, a range of other options.

The framework has built-in schemas defining how densities and 𝐻𝑣𝑎𝑝 should be estimated from molecular simulation,
covering all aspects from coordinate generation, force field assignment, energy minimisation, equilibration and finally
the production simulation and data analysis. All of this functionality is implemented via the frameworks built-in,
lightweight workflow engine, however we won’t dive into the details of this until a later tutorial.

For the purpose of this tutorial, we will simply modify the default calculation schemas to reduce the number of
molecules to include in our simulations to speed up the calculations. This step can be skipped entirely if the default
options (which we recommend using for ‘real-world’ calculations) are to be used:

[7]: from openff.evaluator.properties import Density, EnthalpyOfVaporization

density_schema = Density.default_simulation_schema(n_molecules=256)
h_vap_schema = EnthalpyOfVaporization.default_simulation_schema(n_molecules=256)

We could further use this method to set either the absolute or the relative uncertainty that the property should be
estimated to within. If either of these are set, the simulations will automatically be extended until the target uncertainty
in the property has been met.

For our purposes however we won’t set any targets, leaving the simulations to run for the default 1 ns.

To use these custom schemas, we need to add them to the a request options object which defines all of the options for
estimating our data set:

[8]: from openff.evaluator.client import RequestOptions

Create an options object which defines how the data set should be estimated.
(continues on next page)

2.6. Tutorial 02 - Estimating Data Sets 17

https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html
https://ambermd.org/AmberTools.php

OpenFF Evaluator Documentation

(continued from previous page)

estimation_options = RequestOptions()
Specify that we only wish to use molecular simulation to estimate the data set.
estimation_options.calculation_layers = ["SimulationLayer"]

Add our custom schemas, specifying that the should be used by the 'SimulationLayer'
estimation_options.add_schema("SimulationLayer", "Density", density_schema)
estimation_options.add_schema("SimulationLayer", "EnthalpyOfVaporization", h_vap_schema)

2.6.3 Launching the Server

The framework is split into two main applications - an EvaluatorServer and an EvaluatorClient.

The EvaluatorServer is the main object which will perform any and all calculations needed to estimate sets of
properties. It is design to run on whichever compute resources you may have available (whether that be a single
machine or a high performance cluster), wait until a user requests a set of properties be estimated, and then handle that
request.

The EvaluatorClient is the object used by the user to send requests to estimate data sets to running server instances
over a TCP connection. It is also used to query the server to see when that request has been fulfilled, and to pull back
any results.

Let us begin by spawning a new server instance.

To launch a server, we need to define how this object is going to interact with the compute resource it is running on.

This is accomplished using a calculation backend. While there are several to choose from depending on your needs,
well will go with a simple dask based one designed to run on a single machine:

[9]: from openff.evaluator.backends import ComputeResources
from openff.evaluator.backends.dask import DaskLocalCluster

calculation_backend = DaskLocalCluster(
number_of_workers=1,
resources_per_worker=ComputeResources(

number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.CUDA

),
)
calculation_backend.start()

Here we have specified that we want to run our calculations on a single worker which has access to a single GPU.

With that defined, we can go ahead and spin up the server:

[10]: from openff.evaluator.server import EvaluatorServer

evaluator_server = EvaluatorServer(calculation_backend=calculation_backend)
evaluator_server.start(asynchronous=True)

02:47:53.961 INFO Server listening at port 8000

The server will run asynchronously in the background waiting until a client connects and requests that a data set be
estimated.

18 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

2.6.4 Estimating the Data Set

With the server spun up we can go ahead and connect to it using an EvaluatorClient and request that it estimate our
data set using the custom options we defined earlier:

[11]: from openff.evaluator.client import EvaluatorClient
evaluator_client = EvaluatorClient()

request, exception = evaluator_client.request_estimate(
property_set=data_set,
force_field_source=force_field_source,
options=estimation_options,

)

assert exception is None

02:47:54.012 INFO Received estimation request from ('127.0.0.1', 50618)

The server will now receive the requests and begin whirring away fulfilling it. It should be noted that the
request_estimate() function returns two values - a request object, and an exception object. If all went well (as
it should do here) the exception object will be None.

The request object represents the request which we just sent to the server. It stores the unique id which the server
assigned to the request, as well as the address of the server that the request was sent to.

The request object is primarily used to query the current state of our request, and to pull down the results when it the
request finishes. Here we will use it it synchronously query the server every 30 seconds until our request has completed.

[12]: # Wait for the results.
results, exception = request.results(synchronous=True, polling_interval=30)
assert exception is None

Note: we could also asynchronously query for the results of the request. The resultant results object would then contain
the partial results of any completed estimates, as well as any exceptions raised during the estimation.

2.6.5 Inspecting the Results

Now that the server has finished estimating our data set and returned the results to us, we can begin to inspect the results
of the calculations:

[13]: print(len(results.queued_properties))

print(len(results.estimated_properties))

print(len(results.unsuccessful_properties))
print(len(results.exceptions))

0
4
0
0

We can (hopefully) see here that there were no exceptions raised during the calculation, and that all of our properties
were successfully estimated.

We will extract the estimated data set and save this to disk:

2.6. Tutorial 02 - Estimating Data Sets 19

OpenFF Evaluator Documentation

[14]: results.estimated_properties.json("estimated_data_set.json", format=True);

2.6.6 Conclusion

And that concludes the second tutorial. In the next tutorial we will be performing some basic analysis on our estimated
results.

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.7 Tutorial 03 - Analysing Data Sets

In this tutorial we will be analysing the results of the calculations which we performed in the second tutorial. The
tutorial will cover:

• comparing the estimated data set with the experimental data set.

• plotting the two data sets.

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

[1]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/master/docs/
→˓tutorials/colab_setup.ipynb
%run colab_setup.ipynb

For the sake of clarity all warnings will be disabled in this tutorial:

[2]: import warnings
warnings.filterwarnings('ignore')
import logging
logging.getLogger("openforcefield").setLevel(logging.ERROR)

2.7.1 Loading the Data Sets

We will begin by loading both the experimental data set and the estimated data set:

[3]: from openff.evaluator.datasets import PhysicalPropertyDataSet

experimental_data_set_path = "filtered_data_set.json"
estimated_data_set_path = "estimated_data_set.json"

If you have not yet completed the previous tutorials or do not have the data set files
available, copies are provided by the framework:

from openff.evaluator.utils import get_data_filename
experimental_data_set_path = get_data_filename(
"tutorials/tutorial01/filtered_data_set.json"
)
estimated_data_set_path = get_data_filename(

(continues on next page)

20 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/openff-evaluator/issues
https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/master/docs/tutorials/tutorial03.ipynb

OpenFF Evaluator Documentation

(continued from previous page)

"tutorials/tutorial02/estimated_data_set.json"
)

experimental_data_set = PhysicalPropertyDataSet.from_json(experimental_data_set_path)
estimated_data_set = PhysicalPropertyDataSet.from_json(estimated_data_set_path)

if everything went well from the previous tutorials, these data sets will contain the density and 𝐻𝑣𝑎𝑝 of ethanol and
isopropanol:

[4]: experimental_data_set.to_pandas().head()

[4]: Temperature (K) ... Source
0 298.15 ... 10.1016/j.fluid.2013.10.034
1 298.15 ... 10.1021/je1013476
2 298.15 ... 10.1016/S0021-9614(71)80108-8
3 298.15 ... 10.1016/S0021-9614(71)80108-8

[4 rows x 13 columns]

[5]: estimated_data_set.to_pandas().head()

[5]: Temperature (K) ... Source
0 298.15 ... SimulationLayer
1 298.15 ... SimulationLayer
2 298.15 ... SimulationLayer
3 298.15 ... SimulationLayer

[4 rows x 13 columns]

2.7.2 Extracting the Results

We will now compare how the value of each property estimated by simulation deviates from the experimental mea-
surement.

To do this we will extract a list which contains pairs of experimental and evaluated properties. We can easily match
properties based on the unique ids which were automatically assigned to them on their creation:

[6]: properties_by_type = {
"Density": [],
"EnthalpyOfVaporization": []

}

for experimental_property in experimental_data_set:

Find the estimated property which has the same id as the
experimental property.
estimated_property = next(

x for x in estimated_data_set if x.id == experimental_property.id
)

Add this pair of properties to the list of pairs
property_type = experimental_property.__class__.__name__
properties_by_type[property_type].append((experimental_property, estimated_property))

2.7. Tutorial 03 - Analysing Data Sets 21

OpenFF Evaluator Documentation

2.7.3 Plotting the Results

We will now compare the experimental results to the estimated ones by plotting them using matplotlib:

[7]: from matplotlib import pyplot

Create the figure we will plot to.
figure, axes = pyplot.subplots(nrows=1, ncols=2, figsize=(8.0, 4.0))

Set the axis titles
axes[0].set_xlabel('OpenFF 1.0.0')
axes[0].set_ylabel('Experimental')
axes[0].set_title('Density $kg m^{-3}$')

axes[1].set_xlabel('OpenFF 1.0.0')
axes[1].set_ylabel('Experimental')
axes[1].set_title('H_{vap} $kJ mol^{-1}$')

Define the preferred units of the properties
from openff.evaluator import unit

preferred_units = {
"Density": unit.kilogram / unit.meter ** 3,
"EnthalpyOfVaporization": unit.kilojoule / unit.mole

}

for index, property_type in enumerate(properties_by_type):

experimental_values = []
estimated_values = []

preferred_unit = preferred_units[property_type]

Convert the values of our properties to the preferred units.
for experimental_property, estimated_property in properties_by_type[property_type]:

experimental_values.append(
experimental_property.value.to(preferred_unit).magnitude

)
estimated_values.append(

estimated_property.value.to(preferred_unit).magnitude
)

axes[index].plot(
estimated_values, experimental_values, marker='x', linestyle='None'

)

22 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

2.7.4 Conclusion

And that concludes the third tutorial!

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.8 Tutorial 04 - Optimizing Force Fields

In this tutorial we will be using the OpenFF Evaluator framework in combination with the fantastic ForceBalance
software to optimize a molecular force field against the physical property data set we created in the first tutorial.

ForceBalance offers a suite of tools for optimizing molecular force fields against a set of target data. Perhaps one of
the most fundamental targets to fit against is experimental physical property data. Physical property data has been
used extensively for decades to inform the values of non-bonded Van der Waals (VdW) interaction parameters (often
referred to as Lennard-Jones parameters).

ForceBalance is seamlessly integrated with the evaluator framework, using it to evaluate the deviations between target
experimentally measured data points and those evaluated using the force field being optimized (as well as the gradient
of those deviations with respect to the force field parameters being optimized).

The tutorial will cover:

• setting up the input files and directory structure required by ForceBalace.

• setting up an EvaluatorServer for ForceBalance to connect to.

• running ForceBalance using those input files.

• extracting and plotting a number of statistics output during the optimization.

Note: If you are running this tutorial in google colab you will need to run a setup script instead of following the
installation instructions:

2.8. Tutorial 04 - Optimizing Force Fields 23

https://github.com/openforcefield/openff-evaluator/issues
https://colab.research.google.com/github/openforcefield/openff-evaluator/blob/master/docs/tutorials/tutorial04.ipynb
https://github.com/leeping/forcebalance

OpenFF Evaluator Documentation

[1]: # !wget https://raw.githubusercontent.com/openforcefield/openff-evaluator/master/docs/
→˓tutorials/colab_setup.ipynb
%run colab_setup.ipynb

For this tutorial make sure that you are using a GPU accelerated runtime.

For the sake of clarity all warnings will be disabled in this tutorial:

[2]: import warnings
warnings.filterwarnings('ignore')
import logging
logging.getLogger("openforcefield").setLevel(logging.ERROR)

We will also enable time-stamped logging to help track the progress of our calculations:

[3]: from openff.evaluator.utils import setup_timestamp_logging
setup_timestamp_logging()

2.8.1 Setting up the ForceBalance Inputs

In this section we will be creating the directory structure required by ForceBalance, and populating it with the required
input files.

Creating the Directory Structure

To begin with, we will create a directory to store the starting force field parameters in:

[4]: !mkdir forcefield

and one to store the input parameters for our ‘fitting target’ - in this case a data set of physical properties:

[5]: !mkdir -p targets/pure_data

Defining the Training Data Set

With the directories created, we will next specify the data set of physical properties which we will be training the force
field against:

[6]: # For convenience we will use the copy shipped with the framework
from openff.evaluator.utils import get_data_filename
data_set_path = get_data_filename("tutorials/tutorial01/filtered_data_set.json")

Load the data set.
from openff.evaluator.datasets import PhysicalPropertyDataSet
data_set = PhysicalPropertyDataSet.from_json(data_set_path)

Due to a small bug in ForceBalance we need to zero out any uncertainties
which are undefined. This will be fixed in future versions.
from openff.evaluator.attributes import UNDEFINED

for physical_property in data_set:
(continues on next page)

24 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

if physical_property.uncertainty != UNDEFINED:
continue

physical_property.uncertainty = 0.0 * physical_property.default_unit()

To speed up the runtime of this tutorial, we will only train the force field against measurements made for ethanol

[7]: data_set.filter_by_smiles("CCO")

in real optimizations however the data set should be much larger than two data points!

With those changes made, we can save the data set in our targets directory:

[8]: # Store the data set in the `pure_data` targets folder:
data_set.json("targets/pure_data/training_set.json");

Defining the Starting Force Field Parameters

We will use the OpenFF Parsley 1.0.0 force field as the starting parameters for the optimization. These can be loaded
directly into an OpenFF ForceField object using the OpenFF toolkit:

[9]: from openforcefield.typing.engines.smirnoff import ForceField
force_field = ForceField('openff-1.0.0.offxml')

In order to use these parameters in ForceBalance, we need to ‘tag’ the individual parameters in the force field that we
wish to optimize. The toolkit easily enables us to add these tags using cosmetic attributes:

[10]: # Extract the smiles of all unique components in our data set.
from openforcefield.topology import Molecule, Topology

all_smiles = set(
component.smiles
for substance in data_set.substances
for component in substance.components

)

for smiles in all_smiles:

Find those VdW parameters which would be applied to those components.
molecule = Molecule.from_smiles(smiles)
topology = Topology.from_molecules([molecule])

labels = force_field.label_molecules(topology)[0]

Tag the exercised parameters as to be optimized.
for parameter in labels["vdW"].values():

parameter.add_cosmetic_attribute("parameterize", "epsilon, rmin_half")

Here we have made use of the toolkit’s handy label_molecules function to see which VdW parameters will be
assigned to the molecules in our data set, and tagged them to be parameterized.

With those tags added, we can save the parameters in the forcefield directory:

2.8. Tutorial 04 - Optimizing Force Fields 25

OpenFF Evaluator Documentation

[11]: # Save the annotated force field file.
force_field.to_file('forcefield/openff-1.0.0-tagged.offxml')

Note: The force field parameters are stored in theOpenFF SMIRNOFF XML format.

Creating the Main Input File

Next, we will create the main ForceBalance input file. For the sake of brevity a default input file which ships with this
framework will be used:

[12]: input_file_path = get_data_filename("tutorials/tutorial04/optimize.in")

Copy the input file into our directory structure
import shutil
shutil.copyfile(input_file_path, "optimize.in")

[12]: 'optimize.in'

While there are many options that can be set within this file, the main options of interest for our purposes appear at the
bottom of the file:

[13]: !tail -n 6 optimize.in

$target
name pure_data
type Evaluator_SMIRNOFF
weight 1.0
openff.evaluator_input options.json
$end

Here we have specified that we wish to create a new ForceBalance Evaluator_SMIRNOFF target called pure_data
(corresponding to the name of the directory we created in the earlier step).

The main input to this target is the file path to an options.json file - it is this file which will specify all the options
which should be used when ForceBalance requests that our target data set be estimated using the current sets of force
field parameters.

We will create this file in the targets/pure_data directory later in this section.

The data set is the JSON serialized representation of the PhysicalPropertyDataSet we created during the first
tutorial.

Defining the Estimation Options

The final step before we can start the optimization is to create the set of options which will govern how our data set is
estimated using the Evaluator framework.

These options will be stored in an Evaluator_SMIRNOFF object:

[14]: from forcebalance.evaluator_io import Evaluator_SMIRNOFF

Create the ForceBalance options object
target_options = Evaluator_SMIRNOFF.OptionsFile()
Set the path to the data set
target_options.data_set_path = "training_set.json"

26 Chapter 2. Supported Physical Properties

https://open-forcefield-toolkit.readthedocs.io/en/0.6.0/smirnoff.html

OpenFF Evaluator Documentation

This object exposes both a set of ForceBalance specific options, as well as the set of Evaluator options.

The ForceBalance specific options allow us to define how each type of property will contribute to the optimization
objective function (the value which we are trying to minimize):

∆(𝜃) =

𝑁∑︁
𝑛

𝑤𝑒𝑖𝑔ℎ𝑡𝑛
𝑀𝑛

𝑀𝑛∑︁
𝑚

(︂
𝑦𝑟𝑒𝑓𝑚 − 𝑦𝑚(𝜃)

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑛

)︂2

where 𝑁 is the number of types of properties (e.g. density, enthalpy of vaporization, etc.), 𝑀𝑛 is the number of data
points of type 𝑛, 𝑦𝑟𝑒𝑓𝑚 is the experimental value of data point 𝑚 and 𝑦𝑚(𝜃) is the estimated value of data point 𝑚 using
the current force field parameters

In particular, the options object allows us to specify both an amount to scale each type of properties contribution to
the objective function by (𝑤𝑒𝑖𝑔ℎ𝑡𝑛), and the amount to scale the difference between the experimental and estimated
properties (𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑛):

[15]: from openff.evaluator import unit

target_options.weights = {
"Density": 1.0,
"EnthalpyOfVaporization": 1.0

}
target_options.denominators = {

"Density": 30.0 * unit.kilogram / unit.meter ** 3,
"EnthalpyOfVaporization": 3.0 * unit.kilojoule / unit.mole

}

where here we have chosen values that ensure that both types of properties contribute roughly equally to the total
objective function.

The Evaluator specific options correspond to a standard RequestOptions object:

[16]: from openff.evaluator.client import RequestOptions

Create the options which evaluator should use.
evaluator_options = RequestOptions()
Choose which calculation layers to make available.
evaluator_options.calculation_layers = ["SimulationLayer"]

Reduce the default number of molecules
from evaluator.properties import Density, EnthalpyOfVaporization

density_schema = Density.default_simulation_schema(n_molecules=256)
h_vap_schema = EnthalpyOfVaporization.default_simulation_schema(n_molecules=256)

evaluator_options.add_schema("SimulationLayer", "Density", density_schema)
evaluator_options.add_schema("SimulationLayer", "EnthalpyOfVaporization", h_vap_schema)

target_options.estimation_options = evaluator_options

These options allow us to control exactly how each type of property should be estimated, which calculation approaches
should be used and more. Here we use the same options are were used in the second tutorial

Note: more information about the different estimation options can befound here

And that’s the options created! We will finish off by serializing the options into our target directory:

2.8. Tutorial 04 - Optimizing Force Fields 27

OpenFF Evaluator Documentation

[17]: # Save the options to file.
with open("targets/pure_data/options.json", "w") as file:

file.write(target_options.to_json())

2.8.2 Launching an Evaluator Server

With the ForceBalance options created, we can now move onto launching the EvaluatorServer which ForceBalance
will call out to when it needs the data set to be evaluated:

[18]: # Launch the calculation backend which will distribute any calculations.
from openff.evaluator.backends import ComputeResources
from openff.evaluator.backends.dask import DaskLocalCluster

calculation_backend = DaskLocalCluster(
number_of_workers=1,
resources_per_worker=ComputeResources(

number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=ComputeResources.GPUToolkit.CUDA

),
)
calculation_backend.start()

Launch the server object which will listen for estimation requests and schedule any
required calculations.
from openff.evaluator.server import EvaluatorServer

evaluator_server = EvaluatorServer(calculation_backend=calculation_backend)
evaluator_server.start(asynchronous=True)

01:30:20.505 INFO Server listening at port 8000

We will not go into the details of this here as this was already covered in the second tutorial

2.8.3 Running ForceBalance

With the inputs created and an Evaluator server spun up, we are finally ready to run the optimization! This can be
accomplished with a single command:

[19]: !ForceBalance optimize.in

If everything went well ForceBalance should exit cleanly, and will have stored out newly optimized force field in the
results directory.

[20]: !ls result/optimize

openff-1.0.0-tagged_1.offxml openff-1.0.0-tagged.offxml

28 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

2.8.4 Plotting the results

As a last step in this tutorial, we will extract the objective function at each iteration from the ForceBalance output files
and plot this using matplotlib.

First, we will extract the objective function from the pickle serialized output files which can be found in the
optimize.tmp/pure_data/iter_****/ directories:

[21]: from forcebalance.nifty import lp_load

Determine how many iterations ForceBalance has completed.
from glob import glob
n_iterations = len(glob("optimize.tmp/pure_data/iter*"))

Extract the objective function at each iteration.
objective_function = []

for iteration in range(n_iterations):

folder_name = "iter_" + str(iteration).zfill(4)
file_path = f"optimize.tmp/pure_data/{folder_name}/objective.p"

statistics = lp_load(file_path)
objective_function.append(statistics["X"])

print(objective_function)

[0.9270359101845124, 0.011497456194198362]

The objective function is then easily plotted:

[22]: from matplotlib import pyplot
figure, axis = pyplot.subplots(1, 1, figsize=(4, 4))

axis.set_xlabel("Iteration")
axis.set_ylabel("Objective Function")

axis.plot(range(n_iterations), objective_function, marker="o")

figure.tight_layout()

2.8. Tutorial 04 - Optimizing Force Fields 29

OpenFF Evaluator Documentation

2.8.5 Conclusion

And that concludes the fourth tutorial!

If you have any questions and / or feedback, please open an issue on the GitHub issue tracker.

2.9 Property Data Sets

A PhysicalPropertyDataSet is a collection of measured physical properties encapsulated as physical property
objects. They may be created from scratch:

Define a density measurement
density = Density(

substance=Substance.from_components("O"),
thermodynamic_state=ThermodynamicState(

pressure=1.0*unit.atmospheres, temperature=298.15*unit.kelvin
),
phase=PropertyPhase.Liquid,
value=1.0*unit.gram/unit.millilitre,
uncertainty=0.0001*unit.gram/unit.millilitre

)

Add the property to a data set
data_set = PhysicalPropertyDataset()
data_set.add_properties(density)

are readily JSON (de)serializable:

Save the data set as a JSON file.
data_set.json(file_path="data_set.json", format=True)
Load the data set from a JSON file
data_set = PhysicalPropertyDataset.from_json(file_path="data_set.json")

30 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/openff-evaluator/issues

OpenFF Evaluator Documentation

and may be converted to pandas DataFrame objects:

data_set.to_pandas()

The framework implements specific data set objects for extracting data measurements directly from a number of open
data sources, such as the ThermoMLDataSet (see ThermoML Archive) which provides utilities for extracting the data
from the NIST ThermoML Archive and converting it into the standard framework objects.

Data set objects are directly iterable:

for physical_property in data_set:
...

or can be iterated over for a specific substance:

for physical_property in data_set.properties_by_substance(substance):
...

or for a specific type of property:

for physical_property in data_set.properties_by_type("Density"):
...

2.9.1 Physical Properties

The PhysicalProperty object is a base class for any object which describes a measured property of substance, and
is defined by a combination of:

• the observed value of the property.

• Substance specifying the substance that the measurement was collected for.

• PropertyPhase specifying the phase that the measurement was collected in.

• ThermodynamicState specifying the thermodynamic conditions under which the measurement was performed

as well as optionally

• the uncertainty in the value of the property.

• a list of ParameterGradient which defines the gradient of the property with respect to the model parameters
if it was computationally estimated.

• a Source specifying the source (either experimental or computational) and provenance of the measurement.

Each type of property supported by the framework, such as a density of an enthalpy of vaporization, must have it’s own
class representation which inherits from PhysicalProperty:

Define a density measurement
density = Density(

substance=Substance.from_components("O"),
thermodynamic_state=ThermodynamicState(

pressure=1.0*unit.atmospheres, temperature=298.15*unit.kelvin
),
phase=PropertyPhase.Liquid,
value=1.0*unit.gram/unit.millilitre,
uncertainty=0.0001*unit.gram/unit.millilitre

)

2.9. Property Data Sets 31

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
http://trc.nist.gov/ThermoML.html

OpenFF Evaluator Documentation

2.9.2 Substances

A Substance is defined by a number of components (which may have specific roles assigned to them such as being
solutes in the system) and the amount of each component in the substance.

To create a pure substance containing only water:

water_substance = Substance.from_components("O")

To create binary mixture of water and methanol in a 20:80 ratio:

binary_mixture = Substance()
binary_mixture.add_component(Component(smiles="O"), MoleFraction(value=0.2))
binary_mixture.add_component(Component(smiles="CO"), MoleFraction(value=0.8))

To create a substance of an infinitely dilute paracetamol solute dissolved in water:

solution = Substance()
solution.add_component(

Component(smiles="O", role=Component.Role.Solvent), MoleFraction(value=1.0)
)
solution.add_component(

Component(smiles="CC(=O)Nc1ccc(O)cc1", role=Component.Role.Solute),␣
→˓ExactAmount(value=1)
)

2.9.3 Property Phases

The PropertyPhase enum describes the possible phases which a measurement was performed in.

While the enum only has three defined phases (Solid, Liquid and Gas), multiple phases can be formed by OR’ing (|)
multiple phases together. As an example, to define a phase for a liquid and gas coexisting:

liquid_gas_phase = PropertyPhase.Liquid | PropertyPhase.Gas

2.9.4 Thermodynamic States

A ThermodynamicState specifies a combination of the temperature and (optionally) the pressure at which a measure-
ment is performed:

thermodynamic_state = ThermodynamicState(
temperature=298.15*unit.kelvin, pressure=1.0*unit.atmosphere

)

32 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

2.10 ThermoML Archive

The ThermoMLDataSet object offers an API for extracting physical properties from the NIST ThermoML Archive,
both directly from the archive itself or from files stored in the IUPAC- standard ThermoML format.

The API only supports extracting those properties which have been registered with the frameworks plug-in system, and
does not currently load the full set of metadata available in the archive files.

Note: If the metadata you require is not currently exposed, please open an issue on the GitHub issue tracker to request
it.

Currently the framework has built-in support for extracting:

• Mass density, kg/m3 (Density)

• Excess molar volume, m3/mol (ExcessMolarVolume)

• Relative permittivity at zero frequency (DielectricConstant)

• Excess molar enthalpy (molar enthalpy of mixing), kJ/mol (EnthalpyOfMixing)

• Molar enthalpy of vaporization or sublimation, kJ/mol (EnthalpyOfVaporization)

where here both the ThermoML property name (as defined by the IUPAC XML schema) and the built-in framework
class are listed.

2.10.1 Registering Properties

Properties to be extracted from ThermoML archives must have a corresponding class representation to be loading into.
This class representation must both:

• inherit from the frameworks PhysicalProperty class and

• be registered with the frameworks plug-in system using either the thermoml_property() decorator or the
register_thermoml_property() method.

As an example, a class representation of the ThermoML ‘Mass density, kg/m3’ property could be defined and registered
with the plug-in system using:

@thermoml_property("Mass density, kg/m3", supported_phases=PropertyPhase.Liquid)
class Density(PhysicalProperty):

"""A class representation of a mass density property"""

The thermoml_property() decorator takes in the name of the ThermoML property (as defined by the IUPAC schema)
as well as the phases which the framework will be able to estimate this property in.

Multiple ThermoML properties can be mapped onto a single class using the flexible
register_thermoml_property() function. For example, the ‘Specific volume, m3/kg’ property (which is simply
the reciprocal of mass density) may be mapped onto the Density object by providing a conversion_function:

def specific_volume_to_mass_density(specific_volume):
"""Converts a specific volume measurement into a mass
density.

Parameters

(continues on next page)

2.10. ThermoML Archive 33

http://trc.nist.gov/ThermoML.html
http://trc.nist.gov/ThermoMLRecommendations.pdf
https://github.com/openforcefield/openff-evaluator/issues
https://trc.nist.gov/ThermoML.xsd
https://trc.nist.gov/ThermoML.xsd

OpenFF Evaluator Documentation

(continued from previous page)

specific_volume: ThermoMLProperty
The specific volume measurement to convert.

"""
mass_density = Density()

mass_density.value = 1.0 / specific_volume.value

if mass_density.uncertainty is not None:
mass_density.uncertainty = 1.0 / mass_density.uncertainty

mass_density.phase = specific_volume.phase

mass_density.thermodynamic_state = specific_volume.thermodynamic_state
mass_density.substance = specific_volume.substance

return mass_density

Register the ThermoML property using the conversion function.
register_thermoml_property(

thermoml_string="Specific volume, m3/kg",
supported_phases=PropertyPhase.Liquid,
property_class=Density,
conversion_function=specific_volume_to_mass_density

)

Converting the different density derivatives into a single density class removes the need to produce many very similar
class representations of density measurements, and allows a single calculation schema to be defined for all variants.

2.10.2 Loading Data Sets

Data sets are most easily loaded using their digital object identifiers (DOI). For example, to retrieve the ThermoML
data set that accompanies this paper, we can simply use the DOI 10.1016/j.jct.2005.03.012:

data_set = ThermoMLDataset.from_doi('10.1016/j.jct.2005.03.012')

Data can be pulled from multiple sources at once by specifying multiple identifiers:

identifiers = ['10.1021/acs.jced.5b00365', '10.1021/acs.jced.5b00474']
dataset = ThermoMLDataset.from_doi(*identifiers)

Entire archives of properties can be downloaded directly from the ThermoML website and parsed by the framework.
For example, to create a data set object containing all of the measurements recorded from the International Journal of
Thermophysics:

Download the archive of all properties from the IJT journal.
import requests
request = requests.get("https://trc.nist.gov/ThermoML/IJT.tgz", stream=True)

Make sure the request went ok.
assert request

Unzip the files into a new 'ijt_files' directory.
(continues on next page)

34 Chapter 2. Supported Physical Properties

http://trc.boulder.nist.gov/ThermoML/10.1016/j.jct.2005.03.012
http://trc.boulder.nist.gov/ThermoML/10.1016/j.jct.2005.03.012
http://www.sciencedirect.com/science/article/pii/S0021961405000741
https://trc.nist.gov/RSS/

OpenFF Evaluator Documentation

(continued from previous page)

import io, tarfile
tar_file = tarfile.open(fileobj=io.BytesIO(request.content))
tar_file.extractall("ijt_files")

Get the names of the extracted files
import glob
file_names = glob.glob("ijt_files/*.xml")

Create the data set object
from openff.evaluator.datasets.thermoml import ThermoMLDataSet
data_set = ThermoMLDataSet.from_file(*file_names)

Save the data set to a JSON object
data_set.json(file_path="ijt.json", format=True)

2.11 Taproom

The TaproomDataSet object offers an API for retrieving host-guest binding affinity measurements from the curated
taproom repository.

Note: taproom may be installed by running conda install -c conda-forge taproom

This includes retrieving all of the data available:

from openff.evaluator.datasets.taproom import TaproomDataSet
taproom_set = TaproomDataSet()

data measure for a single host molecule (e.g. alpha-cyclodextrin):

acd_taproom_set = TaproomDataSet(host_codes=["acd"])

or data for a particular host and guest pair:

acd_taproom_set = TaproomDataSet(host_codes=["acd"], guest_codes=["bam"])

All measurements in this data set have an associated TaproomSource as their source provenance. This tracks both the
original source of the measurement as well as the taproom identifier.

Note: Currently the data set object will assume a default set of buffer conditions (either no buffer, or a buffer of a
salt with a specified ionic strength) rather than reading the buffer from the taproom measurement directory. This is
consistent with previous applications of the data set.

2.11. Taproom 35

https://github.com/slochower/host-guest-benchmarks

OpenFF Evaluator Documentation

2.12 Data Set Curation

The framework offers a full suite of features to facilitate the curation of data sets of physical properties, including:

• a significant amount of data filters, including to filter by state, substance composition and chemical functionali-
ties.

and components to

• easily download and import the full NIST ThermoML and FreeSolv archives .

• select data points which were measured close to a set of target states, and which were measured for a diverse
range of substances which contain specific functionalities.

• convert between different compatible property types (e.g. convert density <-> excess molar volume data).

These features are implemented as CurationComponent objects, which take as input an associated
CurationComponentSchema which controls how the curation components should be applied to a particular
data set (or a data set which is being stored as pandas DataFrame object).

An example of a curation component would be one that filters out data points which were measured outside of a
particular temperature range:

Filter data points measured at less than 290.0 K or greater than 320.0 K
filtered_frame = FilterByTemperature.apply(

data_frame,
FilterByTemperatureSchema(minimum_temperature=290.0, maximum_temperature=320.0),

)

Curation components can be conveniently chained together using a CurationWorkflow and an associated
CurationWorkflowSchema so as to easily curated full training and testing data sets:

curation_schema = WorkflowSchema(
component_schemas=[

Import the ThermoML archive.
thermoml.ImportThermoMLDataSchema()
Filter out any measurements made for systems with more than two components
filtering.FilterByNComponentsSchema(n_components=[1, 2]),
Remove any duplicate data.
filtering.FilterDuplicatesSchema(),
Filter out data points measured away from ambient
and biologically relevant temperatures.
filtering.FilterByTemperatureSchema(

minimum_temperature=298.0, maximum_temperature=320.0
),
Retain only density and enthalpy of mixing data points.
filtering.FilterByPropertyTypesSchema(

property_types=["Density", "EnthalpyOfMixing"],
),
Select data points measured for alcohols, esters or mixtures of both.
selection.SelectSubstancesSchema(

target_environments=[
ChemicalEnvironment.Alcohol,
ChemicalEnvironment.CarboxylicAcidEster,

],
n_per_environment=10,

(continues on next page)

36 Chapter 2. Supported Physical Properties

https://github.com/MobleyLab/FreeSolv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

OpenFF Evaluator Documentation

(continued from previous page)

),
]

)

data_frame = Workflow.apply(pandas.DataFrame(), curation)

2.12.1 Examples

Data Extraction

• ImportFreeSolv: A component which will download the latest, full FreeSolv data set from the GitHub repos-
itory:

from openff.evaluator.datasets.curation.components.freesolv import (
ImportFreeSolv,
ImportFreeSolvSchema,

)

Import the full FreeSolv data set.
data_frame = ImportFreeSolv.apply(pandas.DataFrame(), ImportFreeSolvSchema())

• ImportThermoMLData: A component which will download all supported data from the NIST ThermoML
Archive:

from openff.evaluator.datasets.curation.components.thermoml import (
ImportThermoMLData,
ImportThermoMLDataSchema,

)

Import all data collected from the IJT journal.
data_frame = ImportThermoMLData.apply(

pandas.DataFrame(), ImportThermoMLDataSchema(journal_names=["IJT"])
)

Filtration

• FilterDuplicates: A component to remove duplicate data points (within a specified precision) from a data
set:

from openff.evaluator.datasets.curation.components.filtering import (
FilterDuplicates,
FilterDuplicatesSchema,

)

filtered_frame = FilterDuplicates.apply(data_frame, FilterDuplicatesSchema())

• FilterByTemperature: A component which will filter out data points which were measured outside of a
specified temperature range:

2.12. Data Set Curation 37

OpenFF Evaluator Documentation

from openff.evaluator.datasets.curation.components.filtering import (
FilterByTemperature,
FilterByTemperatureSchema,

)

filtered_frame = FilterByTemperature.apply(
data_frame,
FilterByTemperatureSchema(minimum_temperature=290.0, maximum_temperature=320.0),

)

• FilterByPressure: A component which will filter out data points which were measured outside of a specified
pressure range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPressure,
FilterByPressureSchema,

)

filtered_frame = FilterByPressure.apply(
data_frame,
FilterByPressureSchema(minimum_pressure=100.0, maximum_pressure=140.0),

)

• FilterByMoleFraction: A component which will filter out data points which were measured outside of a
specified mole fraction range:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByMoleFraction,
FilterByMoleFractionSchema,

)

filtered_frame = FilterByMoleFraction.apply(
data_frame, FilterByMoleFractionSchema(mole_fraction_ranges={2: [[(0.1, 0.3)]]})

)

• FilterByRacemic: A component which will filter out data points which were measured for racemic mixtures:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByRacemic,
FilterByRacemicSchema,

)

filtered_frame = FilterByRacemic.apply(data_frame, FilterByRacemicSchema())

• FilterByElements: A component which will filter out data points which were measured for systems which
contain specific elements:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByElements,
FilterByElementsSchema,

)

filtered_frame = FilterByElements.apply(
(continues on next page)

38 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

data_frame,
FilterByElementsSchema(allowed_elements=["C", "O", "H"]),

)

• FilterByPropertyTypes: A component which will apply a filter which only retains properties of specified
types:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByPropertyTypes,
FilterByPropertyTypesSchema,

)

Retain only density measurements made for either pure or binary systems.
filtered_frame = FilterByPropertyTypes.apply(

data_frame,
FilterByPropertyTypesSchema(

property_types=["Density"],
n_components={"Density": [1, 2]},

),
)

• FilterByStereochemistry: A component which filters out data points measured for systems whereby the
stereochemistry of a number of components is undefined:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByStereochemistry,
FilterByStereochemistrySchema,

)

filtered_frame = FilterByStereochemistry.apply(
data_frame, FilterByStereochemistrySchema()

)

• FilterByCharged : A component which filters out data points measured for substance where any of the con-
stituent components have a net non-zero charge.:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByCharged,
FilterByChargedSchema,

)

filtered_frame = FilterByCharged.apply(data_frame, FilterByChargedSchema())

• FilterByIonicLiquid : A component which filters out data points measured for substances which contain or
are classed as an ionic liquids:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByIonicLiquid,
FilterByIonicLiquidSchema,

)

filtered_frame = FilterByIonicLiquid.apply(data_frame, FilterByIonicLiquidSchema())

2.12. Data Set Curation 39

OpenFF Evaluator Documentation

• FilterBySmiles: A component which filters the data set so that it only contains either a specific set of smiles,
or does not contain any of a set of specifically excluded smiles:

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmiles,
FilterBySmilesSchema,

)

filtered_frame = FilterBySmiles.apply(
data_frame, FilterBySmilesSchema(smiles_to_include=["CCCO"]),

)

• FilterBySmirks: A component which filters a data set so that it only contains measurements made for
molecules which contain (or don’t) a set of chemical environments represented by SMIRKS patterns:

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySmirks,
FilterBySmirksSchema,

)

filtered_frame = FilterBySmirks.apply(
data_frame, FilterBySmirksSchema(smirks_to_include=["[#6a]"]),

)

• FilterByNComponents: A component which filters out data points measured for systems with specified number
of components:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByNComponents,
FilterByNComponentsSchema,

)

filtered_frame = FilterByNComponents.apply(
data_frame, FilterByNComponentsSchema(n_components=[1, 2])

)

• FilterBySubstances: A component which filters the data set so that it only contains properties measured for
particular substances:

from openff.evaluator.datasets.curation.components.filtering import (
FilterBySubstances,
FilterBySubstancesSchema,

)

filtered_frame = FilterBySubstances.apply(
data_frame, FilterBySubstancesSchema(substances_to_include=[("CO", "C")])

)

• FilterByEnvironments: A component which filters a data set so that it only contains measurements made for
substances which contain specific chemical environments:

from openff.evaluator.datasets.curation.components.filtering import (
FilterByEnvironments,
FilterByEnvironmentsSchema,

(continues on next page)

40 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

)

filtered_frame = FilterByEnvironments.apply(
data_frame,
FilterByEnvironmentsSchema(

environments=[
ChemicalEnvironment.Aqueous,
ChemicalEnvironment.Alcohol,
ChemicalEnvironment.Amine,

]
),

)

Data Selection

• SelectSubstances: A component for selecting data points which were measured for specified number of
maximally diverse systems containing a specified set of chemical functionalities:

Select (if possible) data points which were measured for 10 different (and
structurally diverse) alcohols.
schema = SelectSubstancesSchema(

target_environments=[ChemicalEnvironment.Alcohol],
n_per_environment=10,

)

data_frame = ConvertExcessDensityData.apply(data_frame, schema)

• SelectDataPoints: A component for selecting a set of data points which are close to a particular set of states:

Select (if possible) density data points which were measured for pure systems
at close to 298.15 K and 308.15K
schema = SelectDataPointsSchema(

target_states=[
TargetState(

property_types=[("Density", 1)],
states=[

State(temperature=298.15, pressure=101.325, mole_fractions=(1.0,),
State(temperature=308.15, pressure=101.325, mole_fractions=(1.0,),

],
)

]
)

data_frame = ConvertExcessDensityData.apply(data_frame, schema)

2.12. Data Set Curation 41

OpenFF Evaluator Documentation

Data Conversion

• ConvertExcessDensityData: A component for converting binary mass density data to excess molar volume
data and vice versa where pure density data measured for the components is available:

from openff.evaluator.datasets.curation.components.conversion import (
ConvertExcessDensityData,
ConvertExcessDensityDataSchema,

)

converted_data_frame = ConvertExcessDensityData.apply(
data_frame, ConvertExcessDensityDataSchema()

)

2.13 Physical Properties

A core philosophy of this framework is that users should be able to seamlessly curate data sets of physical properties
and then estimate that data set using computational methods without significant user intervention and using sensible,
well validated workflows.

This page aims to provide an overview of which physical properties are supported by the framework and how they are
computed using the different calculation layers.

In this document ⟨𝑋⟩ will be used to denote the ensemble average of an observable 𝑋 .

2.13.1 Density

The density (𝜌) is computed according to

𝜌 =

⟨
𝑀

𝑉

⟩
where 𝑀 and 𝑉 are the total molar mass and volume the system respectively.

Direct Simulation

The density is estimated using the default simulation workflow without modification. The estimation of liquid densities
is assumed.

MBAR Reweighting

The density is estimated using the default reweighting workflow without modification. The estimation of liquid densities
is assumed.

42 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

2.13.2 Dielectric Constant

The dielectric constant (𝜀) is computed from the fluctuations in a systems dipole moment (see Equation 7 of [1])
according to:

𝜀 = 1 +

⟨︀
𝜇⃗2
⟩︀
− ⟨𝜇⃗⟩2

3𝜀0 ⟨𝑉 ⟩ 𝑘𝑏𝑇

where 𝜇⃗, 𝑉 are the systems dipole moment and volume respectively, 𝑘𝑏 the Boltzmann constant, 𝑇 the temperature,
and 𝜀0 the permittivity of free space.

Note: In v0.2.2 and earlier of the framework the variance was computed as
⟨

(𝜇⃗− ⟨𝜇⃗⟩)2
⟩

in order to match the mdtraj
implementation which has been used in previous studies by the OpenFF Consortium (see for example [2]). The two
approaches should be numerically indistinguishable however.

Direct Simulation

The dielectric is estimated using the default simulation workflow which has been modified to use the specialized
AverageDielectricConstant protocol in place of the default AverageObservable protocol. The estimation of
liquid dielectric constants is assumed.

MBAR Reweighting

The dielectric is estimated using the default reweighting workflow which has been modified to use the specialized
ReweightDielectricConstant protocol in place of the default ReweightObservable protocol. It should be noted
that the ReweightDielectricConstant protocol employs bootstrapping to compute the uncertainty in the average
dielectric constant, rather than attempting to propagate uncertainties in the average dipole moments and volumes. The
estimation of liquid dielectric constants is assumed.

2.13.3 Enthalpy of Vaporization

The enthalpy of vaporization ∆𝐻𝑣𝑎𝑝 (see [3]) can be computed according to

∆𝐻𝑣𝑎𝑝 = ⟨𝐻𝑔𝑎𝑠⟩ − ⟨𝐻𝑙𝑖𝑞𝑢𝑖𝑑⟩ = ⟨𝐸𝑔𝑎𝑠⟩ − ⟨𝐸𝑙𝑖𝑞𝑢𝑖𝑑⟩ + 𝑝 (⟨𝑉𝑔𝑎𝑠⟩ − ⟨𝑉𝑙𝑖𝑞𝑢𝑖𝑑⟩)

where 𝐻 , 𝐸, and 𝑉 are the enthalpy, total energy and volume respectively.

Under the assumption that 𝑉𝑔𝑎𝑠 >> 𝑉𝑙𝑖𝑞𝑢𝑖𝑑 and that the gas is ideal the above expression can be simplified to

∆𝐻𝑣𝑎𝑝 = ⟨𝑈𝑔𝑎𝑠⟩ − ⟨𝑈𝑙𝑖𝑞𝑢𝑖𝑑⟩ + 𝑅𝑇

where 𝑈 is the potential energy, 𝑇 the temperature and 𝑅 the universal gas constant. This simplified expression is
computed by default by this framework.

2.13. Physical Properties 43

http://mdtraj.org/

OpenFF Evaluator Documentation

Direct Simulation

• Liquid phase: The potential energy of the liquid phase is estimated using the default simulation workflow, and
divided by the number of molecules in the simulation box using the divisor input of the AverageObservable
protocol.

• Gas phase: The potential energy of the gas phase is estimated using the default simulation workflow, which has
been modified so that

– the simulation box only contains a single molecule.

– all periodic boundary conditions have been disabled.

– all simulations are performed in the NVT ensemble.

– the production simulation is run for 15000000 steps at a time (rather than 1000000 steps).

– all simulations are run using the OpenMM reference platform (CPU only) regardless of whether a GPU is
available. This is fastest platform to use when simulating a single molecule in vacuum with OpenMM.

The final enthalpy is then computed by subtracting the gas potential energy from the liquid potential energy
(SubtractValues) and adding the 𝑅𝑇 term (AddValues). Uncertainties are propagated through the subtraction by
the normal means using the uncertainties package.

MBAR Reweighting

• Liquid phase: The potential energy of the liquid phase is estimated using the default reweighting workflow, and
divided by the number of molecules in the simulation box using an extra DivideValue protocol.

• Gas phase: The potential energy of the gas phase is estimated using the default reweighting workflow, which
has been modified so that all periodic boundary conditions have been disabled.

The final enthalpy is then computed by subtracting the gas potential energy from the liquid potential energy
(SubtractValues) and adding the 𝑅𝑇 term (AddValues). Uncertainties are propagated through the subtraction by
the normal means using the uncertainties package.

2.13.4 Enthalpy of Mixing

The enthalpy of mixing ∆𝐻𝑚𝑖𝑥 (𝑥0, · · · , 𝑥𝑀−1) for a system of 𝑀 components is computed according to

∆𝐻𝑚𝑖𝑥 (𝑥0, · · · , 𝑥𝑀−1) =
⟨𝐻𝑚𝑖𝑥⟩
𝑁𝑚𝑖𝑥

−
𝑀∑︁
𝑖

𝑥𝑖
⟨𝐻𝑖⟩
𝑁𝑖

where 𝐻𝑚𝑖𝑥 is the enthalpy of the full mixture, and 𝐻𝑖, 𝑥𝑖 are the enthalpy and the mole fraction of component 𝑖
respectively. 𝑁𝑚𝑖𝑥 and 𝑁𝑖 are the total number of molecules used in the full mixture simulations and the simulations
of each individual component respectively.

When re-weighting cached data to compute 𝐻𝑚𝑖𝑥 we make the approximation that the kinetic energy contributions
cancel out between the mixture and each of the components, and hence can be computed by only re-weighting the NPT
reduced potential:

∆𝐻𝑚𝑖𝑥 (𝑥0, · · · , 𝑥𝑀−1) ≈ 1

𝛽

(︃
⟨𝑢𝑚𝑖𝑥⟩
𝑁𝑚𝑖𝑥

−
𝑀∑︁
𝑖

𝑥𝑖
⟨𝑢𝑖⟩
𝑁𝑖

)︃

where 𝑢 ≡ 𝛽 (𝑈 + 𝑝𝑉) is the NPT reduced potential, 𝑈 the potential energy, 𝑝 the pressure and 𝑉 the volume.

44 Chapter 2. Supported Physical Properties

https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/

OpenFF Evaluator Documentation

Direct Simulation

• Mixture: The enthalpy of the full mixture is estimated using the default simulation workflow and divided by the
number of molecules in the simulation box using the divisor input of the AverageObservable protocol.

• Components: The enthalpy of each of the components is estimated using the default simulation workflow, di-
vided by the number of molecules in the simulation box using the divisor input of the AverageObservable
protocol, and weighted by their mole fraction in the mixture simulation box using the WeightByMoleFraction
protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues) and subtracting these from
the mixture enthalpy (SubtractValues). Uncertainties are propagated through the summation and subtraction by the
normal means using the uncertainties package.

MBAR Reweighting

• Mixture: The reduced potential of the full mixture is estimated using the default reweighting workflow and
divided by the number of molecules in the reweighting box using an extra DivideValue protocol.

• Components: The reduced potential of each of the components is estimated using the default reweighting work-
flow, divided by the number of molecules in the reweighting box using an extra DivideValue protocol, and
weighted by their mole fraction using the WeightByMoleFraction protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues), subtracting these from the
mixture enthalpy (SubtractValues), and multiplying by 1/𝛽 (MultiplyValue). Uncertainties are propagated by the
normal means using the uncertainties package.

2.13.5 Excess Molar Volume

The excess molar volume ∆𝑉𝑒𝑥𝑐𝑒𝑠𝑠 (𝑥0, · · · , 𝑥𝑀−1) for a system of 𝑀 components is computed according to

∆𝑉𝑒𝑥𝑐𝑒𝑠𝑠 (𝑥0, · · · , 𝑥𝑀−1) = 𝑁𝐴

(︃
⟨𝑉𝑚𝑖𝑥⟩
𝑁𝑚𝑖𝑥

−
𝑀∑︁
𝑖

𝑥𝑖
⟨𝑉𝑖⟩
𝑁𝑖

)︃

where 𝑉𝑚𝑖𝑥 is the volume of the full mixture, and 𝑉𝑖, 𝑥𝑖 are the volume and the mole fraction of component 𝑖 respec-
tively. 𝑁𝑚𝑖𝑥 and 𝑁𝑖 are the total number of molecules used in the full mixture simulations and the simulations of each
individual component respectively, and 𝑁𝐴 is the Avogadro constant.

Direct Simulation

• Mixture: The molar volume of the full mixture is estimated using the default simulation workflow and divided
by the molar number of molecules in the simulation box using the divisor input of the AverageObservable
protocol.

• Components: The molar volume of each of the components is estimated using the default simulation work-
flow, divided by the molar number of molecules in the simulation box using the divisor input of the
AverageObservable protocol, and weighted by their mole fraction in the mixture simulation box using the
WeightByMoleFraction protocol.

The final excess molar volume is then computed by summing the component molar volumes (AddValues) and subtract-
ing these from the mixture molar volume (SubtractValues). Uncertainties are propagated through the summation
and subtraction by the normal means using the uncertainties package.

2.13. Physical Properties 45

https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/

OpenFF Evaluator Documentation

MBAR Reweighting

• Mixture: The enthalpy of the full mixture is estimated using the default reweighting workflow and divided by
the molar number of molecules in the reweighting box using an extra DivideValue protocol.

• Components: The enthalpy of each of the components is estimated using the default reweighting workflow,
divided by the molar number of molecules in the reweighting box using an extra DivideValue protocol, and
weighted by their mole fraction using the WeightByMoleFraction protocol.

The final enthalpy is then computed by summing the component enthalpies (AddValues) and subtracting these from
the mixture enthalpy (SubtractValues). Uncertainties are propagated through the summation and subtraction by the
normal means using the uncertainties package.

2.13.6 Solvation Free Energies

Solvation free energies are currently computed using the Yank free energy package using direct molecular simulations.
By default the calculations attempt to use 2000 solvent molecules, and the alchemical lambda spacings are selected
using the built-in ‘trailblazing’ algorithm.

See the Yank documentation for more details.

2.13.7 Host-Guest Binding Free Energy

Warning: The computation of this property is still in beta. Users are heavily recommended to validate any
calculations involving this property.

Host-guest binding free energies are currently computed using the attach-pull-release (APR) method [4] through inte-
gration with the pAPRika framework.

2.14 Common Workflows

As may be expected, most of the workflows used to estimate the physical properties within the framework make use of
very similar workflows. This page aims to document the built-in ‘template’ workflows from which the more complex
physical property estimation workflows are constructed.

2.14.1 Direct Simulation

Properties being estimated using the direct simulation calculation layer typically base their workflows off of the
generate_simulation_protocols() template.

Note: This template currently assumes that a liquid phase property is being computed.

The workflow produced by this template proceeds as follows:

1) 1000 molecules are inserted into a simulation box with an approximate density of 0.95 g / mL using packmol
(BuildCoordinatesPackmol).

46 Chapter 2. Supported Physical Properties

https://pythonhosted.org/uncertainties/
http://getyank.org/
http://getyank.org/latest/
https://github.com/slochower/pAPRika
http://m3g.iqm.unicamp.br/packmol/home.shtml

OpenFF Evaluator Documentation

2) the system is parameterized using either the OpenFF toolkit, TLeap or LigParGen depending on the force field
being employed (BuildSmirnoffSystem , BuildTLeapSystem or BuildLigParGenSystem).

3) an energy minimization is performed using the default OpenMM energy minimizer
(OpenMMEnergyMinimisation).

4) the system is equilibrated by running a short NPT simulation for 100000 steps using a timestep of 2 fs and using
the OpenMM simulation engine (OpenMMSimulation).

5) while the uncertainty in the average observable is greater than the requested tolerance (if specified):

5a) a longer NPT production simulation is run for 1000000 steps with a timestep of 2 fs and using the
OpenMM simulation protocol (OpenMMSimulation) with its default Langevin integrator and Monte
Carlo barostat.

5b) the correlated samples are removed from the simulation outputs and the average value of the
observable of interest and its uncertainty are computed by bootstrapping with replacement for 250
iterations (AverageObservable). See [1] for details of the decorrelation procedure.

5c) steps 5a) and 5b) are repeated until the uncertainty condition (if applicable) is met.

The decorrelated simulation outputs are then made available ready to be cached by a storage backend
(DecorrelateObservables, DecorrelateTrajectory).

2.14.2 MBAR Reweighting

Properties being estimated using the MBAR reweighting calculation layer typically base their workflows off of the
generate_reweighting_protocols() template.

The workflow produced by this template proceeds as follows:

1) for each stored simulation data:

1a) the cached data is retrieved from disk (UnpackStoredSimulationData)

2) the cached data from is concatenated together to form a single trajectory of configurations and observables
(ConcatenateTrajectories, ConcatenateStatistics).

3) for each stored simulation data:

3a) the system is parameterized using the force field parameters which were used when orig-
inally generating the cached data i.e. one of the reference states (BuildSmirnoffSystem ,
BuildTLeapSystem or BuildLigParGenSystem).

3b) the reduced potential of each configuration in the concatenated trajectory is evaluated using the
parameterized system (OpenMMEvaluateEnergies).

4) the system is parameterized using the force field parameters with which the property of interest should be calcu-
lated using i.e. of the target state (BuildSmirnoffSystem , BuildTLeapSystem or BuildLigParGenSystem)
and the reduced potential of each configuration in the concatenated trajectory is evaluated using the parameter-
ized system (OpenMMEvaluateEnergies).

4a) (optional) if the observable of interest is a function of the force field parameters it is recomputed
using the target state parameters. These recomputed values then replace the original concatenated
observables loaded from the cached data.

5) the reference potentials, target potentials and the joined observables are sub-sampled to only retain equilibrated,
uncorrelated samples (AverageObservable, DecorrelateObservables, DecorrelateTrajectory). See
[1] for details of the decorrelation procedure.

2.14. Common Workflows 47

OpenFF Evaluator Documentation

6) the MBAR method is employed to compute the average value of the observable of interest and its uncertainty at
the target state, taking the reference state reduced potentials as input. See [2] for the theory behind this approach.
An exception is raised if there are not enough effective samples to reweight (ReweightObservable).

In more specialised cases the generate_base_reweighting_protocols() template (which
generate_reweighting_protocols() is built off of) is instead used due to its greater flexibility.

2.14.3 References

2.15 Gradients

A most fundamental feature of this framework is its ability to rapidly compute the gradients of physical properties with
respect to the force field parameters used to estimate them.

Note: Prior to v0.3.0 of this framework a combination of re-weighting and the central finite difference was employed
to estimate the gradients of observables. From v0.3.0 onwards the fluctuation method [1] is instead used. The change
was made to, in future, enable better integration with automatic differentiation libraries such as jax, and differentiable
simulation engines such as timemachine.

2.15.1 Theory

The framework currently employs the fluctuation approach [1] to compute gradients of observables with respect to the
force field parameters used to estimate them.

This approach may be derived by direct differentiation of the ensemble average an observable 𝑋:

⟨𝑋 (𝜃)⟩ =
1

𝑄 (𝜃)

∫︁
𝑋 (𝜃) exp [−𝛽 (𝑈 (𝑟⃗, 𝑉 ; 𝜃) + 𝑝𝑉)] d𝑟⃗d𝑉

where

𝑄 (𝜃) =

∫︁
exp [−𝛽 (𝑈 (𝑟⃗, 𝑉 ; 𝜃) + 𝑝𝑉)] d𝑟⃗d𝑉

is the isothermal-isobaric partion function, 𝜃 are the force field parameters being used to estimate the observable, 𝑈 the
systems potential energy, 𝛽 ≡ 𝑘𝑏𝑇 , 𝑘𝑏 the Boltzmann constant, 𝑇 the temperature, 𝑝 the pressure and 𝑉 the volume.

The derivative of the ensemble average defined above with respect to a particular force field parameter of interest 𝜃 is
given by:

d ⟨𝑋⟩
d𝜃𝑖

=

⟨
d𝑋

d𝜃𝑖

⟩
− 𝛽 [⟨

𝑋
d𝑈

d𝜃𝑖

⟩
−
⟨

d𝑈

d𝜃𝑖

⟩
⟨𝑋⟩

48 Chapter 2. Supported Physical Properties

https://github.com/google/jax
https://github.com/proteneer/timemachine

OpenFF Evaluator Documentation

2.15.2 Computing d𝑈/d𝜃𝑖

While future integrations with differentiable simulation engines such as timemachine will allow d𝑈/d𝜃𝑖 to be computed
directly from molecular simulation runs, currently most common simulation engines do not directly support computing
this quantity.

Until such an integration is complete, the framework currently employs a central finite difference approach, whereby

d𝑈

d𝜃𝑖
≈ 𝑈 (𝜃𝑖 + ℎ) − 𝑈 (𝜃𝑖 − ℎ)

2ℎ

Although more expensive than computing either the forward or backwards derivative, the central difference method
should give a more accurate estimate of the gradient at the minima, maxima and transition points. By default a value
of ℎ = 𝜃𝑖 × 10−4 is used. This has been found to yield finite differences which do not suffer from precision issues,
while being sufficiently small so as to yield an accurate estimate.

In practice the derivatives obtained by re-evaluating the energies of each configuration in a trajectory generated by a
molecular simulation (either after a simulation or after loading one from disk) at each of the perturbed parameters.

While there is an expense associated with extra evaluations of the potential energy function for each configuration,
this is mitigated by only computing those terms which depend upon (or may depend upon) 𝜃𝑖. As an example, when
computing derivatives with respect to a bond length the electrostatic and van der Waal contributions are not computed.
This significantly speeds up the computation of these derivatives.

The final derivatives are stored in ObservableArray objects for convenience and for easy propagation of gradients
through workflows. See the observables documentation for more information.

2.15.3 References

2.16 Calculation Layers

A CalculationLayer is an implementation of one calculation approach for estimating a set of physical properties,
such as via molecular simulation or evaluating some QSAR like model.

The framework stacks multiple layers together when estimating a data set of properties.

Fig. 2: A schematic of the layer system. A set of properties to estimate are fed into the first layer. Those which can be
calculated are returned back. Those that can’t are passed to the next layer until no layer are left.

Each layer will in turn attempt to evaluate the properties being estimated using the specific approach the layer represents,
such as by running a set of simulations. If the layer is unable to estimate a given property, for example if a layer does
not yet support a given property, or if the layer has insufficient data to reprocesses, the property will be passed to the
next layer for it to try and evaluate.

In practice, this allows the framework to attempt to estimate a data set using the most rapid calculation layer first, before
moving to successively slower yet more robust layers, and thus enabling as efficient as possible property estimation.

2.16. Calculation Layers 49

https://github.com/proteneer/timemachine
https://en.wikipedia.org/wiki/Quantitative_structure-activity_relationship

OpenFF Evaluator Documentation

2.16.1 Defining a Calculation Layer

A calculation layer is defined by two objects - a CalculationLayer object which implements the main layer logic,
and a CalculationLayerSchema which defines those settings and options exposed required by the layer.

One CalculationLayerSchema will be provided to the for each type of property that the layer is being asked to esti-
mate. The base CalculationLayerSchema currently only exposes options for optionally defining either the relative
or absolute uncertainty that the layer should attempt to estimate the associated property type to within, however custom
schemas can be defined per layer.

The structure of a CalculationLayer is relatively simple and permissive:

@calculation_layer()
class MyCalculationLayer(CalculationLayer):

@classmethod
def required_schema_type(cls):

return CalculationLayerSchema

@classmethod
def _schedule_calculation(

cls,
calculation_backend,
storage_backend,
layer_directory,
batch

):
...

The first thing to note is the calculation_layer() decorator which is being applied to the class. This registers the
calculation layer with the frameworks plug-in system, allowing it to be used in future calculations.

The only other requirements is that the class implement a required_schema_type class method, which returns
the type of CalculationLayerSchema that is associated with this layer, and a _schedule_calculation(). The
_schedule_calculation() is responsible for performing the actual property calculations.

The form of the _schedule_calculation() function is very flexible:

@classmethod
def _schedule_calculation(

cls,
calculation_backend,
storage_backend,
layer_directory,
batch

):

futures = []

for queued_property in batch.queued_properties:

futures.append(
calculation_backend.submit_task(

cls.process_property, queued_property, cls.__name__
)

(continues on next page)

50 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

)

return futures

It takes as arguments:

• a CalculationBackend which is used to asynchronously distribute any calculations across the available compute
resources.

• a StorageBackend which may be used to store / cache any data generated by the calculations.

• the path to the directory within which all of the calculation working files should be stored.

• the Batch of properties which this layer should attempt to estimate. This object includes the properties to
estimate, as well as the CalculationLayerSchema for each property type.

and must return a list of Future objects (which either must be or implement the same API as the asyncio Future object).
The easiest way to generate the futures is to perform any calculations using the calculation_backend which will
automatically return the results of any functions as such.

The future objects returned by _schedule_calculation() must return a CalculationLayerResult object, which
includes

• the estimated property if the calculation was successful (or UNDEFINED otherwise).

• a list of any exceptions (of type EvaluatorException) which were raised during the calculation.

• a list of any data to be stored by the storage backend.

As a minimal example of a method which returns one such object:

@classmethod
def process_property(cls, physical_property, **_):

"""Return a result as if the property had been successfully estimated.
"""

TODO: Do some calculations

Set the property provenance
physical_property.source = CalculationSource(fidelity=cls.__name__)

Return the results object.
results = CalculationLayerResult()
results.physical_property = physical_property
return results

2.16.2 Default Schemas

Default schemas for each pair of a calculation layer and a type of physical property may be registered using the
register_calculation_schema() function:

Register the default schema to use for density measurements being estimated
by the direct simulation calculation layer.
register_calculation_schema(

property_class=Density,
layer_class=SimulationLayer,

(continues on next page)

2.16. Calculation Layers 51

https://docs.python.org/3/library/asyncio-future.html

OpenFF Evaluator Documentation

(continued from previous page)

schema=Density.default_simulation_schema
)

where the schema object should either be an instance of a CalculationLayerSchema, or a function with no required
arguments which returns a CalculationLayerSchema.

A list of the registered schemas is provided by the registered_calculation_schemas module attribute.

2.17 Workflow Layers

The WorkflowCalculationLayer and WorkflowCalculationSchema offer an abstract base implementation for
any calculation layers (and their associated schemas) which will perform their calculations using the built-in workflow
engine.

The WorkflowCalculationLayer takes as input from its calculation schema one WorkflowSchema object for each
type of property to be estimated by this layer. These schemas must at a minimum provide both the schemas of the
protocols in the workflow, and have the final_value_source attribute set to the value of the calculated observable. In
addition, the layer fully supports schemas which provide gradient information (see the gradients_sources attribute),
as well as storing any generated dataclasses (see the outputs_to_store attribute) to the available storage backend.

This layer implements three key methods which are available to be overridden by any subclass implementations:

• _get_workflow_metadata(): a method which returns the dictionary of metadata which will be made available
to the workflow (see the default metadata section for details).

• _build_workflow_graph(): the method which will construct the workflow graph to execute using the input
workflow schemas and the metadata generated by the layer.

• workflow_to_layer_result(): a method which will map any WorkflowResult objects generated by the
workflow graph into the CalculationLayerResult objects which the layer requires.

The workflow layer will by default tag each property estimated using it (or one of its derivatives) with a
CalculationSource with the fidelity attribute set to the name of the layer, and the provenance attribute set
to the schema of the workflow used to generate the property.

52 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

2.17.1 Default Metadata

The metadata provided to the workflows generated by this layer is generated on a per property to estimate basis mainly
using the generate_default_metadata() function. It includes:

Key Type Description

thermodynamic_state ThermodynamicState The state at which the to perform
any calculations .

substance Substance The substance to use in any
calculations.

components [Substance] The components present in the
main substance.

target_uncertainty Quantity The target uncertainty of any
calculations defined by the
calculation schema.

per_component_uncertainty Quantity The target_uncertainty
divided by
sqrt(substance.n_components
+ 1)

force_field_path str A file path to the force field
parameters to use.

parameter_gradient_keys [ParameterGradientKey] The parameters to differentiate any
observables with respect to (if any).

2.17. Workflow Layers 53

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

2.18 The Direct Simulation Layer

The SimulationLayer is a calculation layer which employs molecular simulation to estimate data sets of physical
properties. It inherits the WorkflowCalculationLayer base layer, and primarily makes use of the built-in workflow
engine to perform the required calculations.

The simulation layer is expected to almost always be able to estimate any properties requested of it (with exceptions
being where a workflow schema has not yet been defined for a class of properties, or where an unexpected error occurs),
and can be thought of as a safe ‘fallback’ layer when no other calculation approach are able to estimate particular
properties.

It is expected that workflow schemas passed to the simulation layer should be able to estimate the gradients of the
observable they aim to calculate, as well as specify a set of :doc:` storage/dataclasses <storage/dataclasses>` which
contain the data generated by the molecular simulations.

2.18.1 Default Metadata

The simulation layer makes the same set of metadata available to its workflows as the parent workflow layer.

2.19 The MBAR Reweighting Layer

The ReweightingLayer is a calculation layer which employs the Multistate Bennett Acceptance Ratio (MBAR)
method to calculate observables at states which have not been previously simulated, but for which simulations have
been previously run at similar states and their data cached. It inherits the WorkflowCalculationLayer base layer,
and primarily makes use of the built-in workflow engine to perform the required calculations.

Because MBAR is a technique which reprocesses exisiting simulation data rather than re-running new simulations, it
is typically several fold faster than the simulation layer provided it has cached simulation data (made accessible via a
storage backend) available. Any properties for which the required data (see Calculation Schema) is not available will
be skipped.

2.19.1 Theory

The theory behind applying MBAR to reweighting observables from a simulated state to an unsimulated state is cov-
ered in detail in the publication Configuration-Sampling-Based Surrogate Models for Rapid Parameterization of Non-
Bonded Interactions.

2.19.2 Calculation Schema

The reweighting layer will be provided with one ReweightingSchema per type of property that it is being requested to
estimate. It builds off of the base WorkflowCalculationSchema schema providing an additional storage_queries
attribute.

The storage_queries attribute will contain a dictionary of SimulationDataQuery which will be used by the layer
to access the data required for each property from the storage backend. Each key in this dictionary will correspond to
the key of a piece of metadata made available to the property workflows.

54 Chapter 2. Supported Physical Properties

http://www.alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio
https://pubs.acs.org/doi/10.1021/acs.jctc.8b00223
https://pubs.acs.org/doi/10.1021/acs.jctc.8b00223

OpenFF Evaluator Documentation

2.19.3 Default Metadata

The reweighting layer makes available the default metadata provided by the parent workflow layer in addition to any
cached data retrieved via the schemas storage_queries.

When building the metadata for each property, a copy of the query will be made and any of the supported attributes
(currently only substance) whose values are set as PlaceholderValue objects will have their values updated using
values directly from the property. This query will then be passed to the storage backend to retrieve any matching data.

The matching data will be stored as a list of tuples of the form:

(object_path, data_directory, force_field_path)

where object_path is the file path to the stored dataclass, the data_directory is the file path to the ancillary data
directory and force_field_path is the file path to the force field parameters which were used to generate the data
originally.

This list of tuples will be made available as metadata under the key that was associated with the query.

2.20 Workflows

The framework offers a lightweight workflow engine for executing graphs of tasks using the available calculation
backends. While lightweight, it offers a large amount of extensibility and flexibility, and is currently used by both the
simulation and reweighting layers to perform their required calculations.

A workflow is a wrapper around a collection of tasks that should be executed in succession, and whose outputs should
be made available as the input to others.

Fig. 3: A an example workflow which combines a protocol which will build a set of coordinates for a particular system,
assign parameters to that system, and then perform an energy minimisation.

The workflow engine offers a number of advanced features such as the automatic reduction of redundant tasks, and
looping over parts of a workflow

2.20.1 Building Workflows

At its core a workflow must define the tasks which need to be executed, and where the inputs to those tasks should be
sourced from. Each task to be executed is represented by a protocol object, with each protocol requiring a specific set
of user specified inputs:

Define a protocol which will build some coordinates for a system.
build_coordinates = BuildCoordinatesPackmol("build_coordinates")
build_coordinates.max_molecules = 1000
build_coordinates.mass_density = 1.0 * unit.gram / unit.millilitre
build_coordinates.substance = Substance.from_components("O", "CO")

Define a protocol which will assign force field parameters to the system.
assign_parameters = BuildSmirnoffSystem(f"assign_parameters")
assign_parameters.water_model = BuildSmirnoffSystem.WaterModel.TIP3P
assign_parameters.force_field_path = "openff-1.0.0.offxml"

Set the `coordinate_file_path` input of the `assign_parameters` protocol
(continues on next page)

2.20. Workflows 55

OpenFF Evaluator Documentation

(continued from previous page)

to the `coordinate_file_path` output of the `build_coordinates` protocol.
assign_parameters.coordinate_file_path = ProtocolPath(

"coordinate_file_path", build_coordinates.id
)

The ProtocolPath object is used to reference the output of another protocol in the workflow, and will be replaced by
the value of that output once that protocol has been executed by the workflow engine. It is constructed from two parts:

• the name of the output attribute to reference.

• the unique id of the protocol to take the output from.

To turn these tasks into a valid workflow which can be automatically executed, they must first be converted to a workflow
schema:

Create the schema object.
schema = WorkflowSchema()
Add the individual protocol's schema representations to the workflow schema.
schema.protocol_schemas = [build_coordinates.schema, assign_parameters.schema]

Create the executable workflow object from its schema.
workflow = Workflow.from_schema(schema, metadata=None)

A Workflow may either be synchronously executed in place yielding a WorkflowResult object directly:

workflow_result = workflow.execute()

or asynchronously using a calculation backend yielding a Future like object which will eventually return a
WorkflowResult:

with DaskLocalCluster() as calculation_backend:
result_future = workflow.execute(calculation_backend=calculation_backend)

In addition, a workflow may be add to, and executed as part as a larger workflow graphs.

2.20.2 Workflow Schemas

A WorkflowSchema is a blueprint from which all Workflow objects are constructed. It will predominantly define the
tasks which compose the workflow, but may optionally define:

• final_value_source: A reference to the protocol output which corresponds to the value of the main observ-
able calculated by the workflow.

• gradients_sources: A list of references to the protocol outputs which correspond to the gradients of the main
observable with respect to a set of force field parameters.

• outputs_to_store: A list of data classes whose values will be populated from protocol outputs.

• protocol_replicators: A set of replicators which are used to flag parts of a workflow which should be
replicated.

Each of these attributes will control whether the value, gradients and data_to_store attributes of the
WorkflowResult results object will be populated respectively when executing a workflow.

56 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Metadata

Because a schema is purely a blueprint for a general workflow, it need not define the exact values of all of the inputs of its
constituent tasks. Consider the above example workflow for constructing a set of coordinates and assigning force field
parameters to them. Ideally this one schema could be reused for multiple substances. This is made possible through a
workflows metadata.

Each protocol within a workflow may access a dictionary of values unique to that workflow (termed here metadata)
which is defined when the Workflow object is created from its schema.

This metadata may be accessed by protocols via a fictitious "global" protocol whose outputs map to the metadata
dictionary:

build_coordinates = BuildCoordinatesPackmol("build_coordinates")
build_coordinates.substance = ProtocolPath("substance", "global")

...

substances = [
Substance.from_components("CO"),
Substance.from_components("CCO"),
Substance.from_components("CCCO"),

]

for substance in substances:

Define the metadata to make available to the workflow protocols.
metadata = {"substance": substance}
Create the executable workflow object from its schema.
workflow = Workflow.from_schema(schema, metadata=metadata)

Execute the workflow ...

the created workflow will contain the build_coordinates protocol but with its substance input set to the value
from the metadata dictionary.

2.21 Replicators

A ProtocolReplicator is the workflow equivalent of a for loop. It is statically evaluated when a Workflow is
created from its schema. This is useful when parts of a workflow should be run multiple times but using different
values for certain protocol inputs.

Note: The syntax of replicators is still rather rough around the edges, and will be refined in future versions of the
framework.

Each ProtocolReplicator requires both a unique id and the set of template values which the replicator will ‘loop’
over to be defined. These values must either be a list of constant values or a reference to a list of values provided as
metadata.

The ‘loop variable’ is referenced by protocols in the workflow using the ReplicatorValue placeholder input, where
the value is linked to the replicator through the replicators unique id.

As an example, consider the case where a set of coordinates should be built for each component in a substance:

2.21. Replicators 57

OpenFF Evaluator Documentation

Create the replicator object, and assign it a unique id.
replicator = ProtocolReplicator(replicator_id="component_replicator")
Instruct the replicator to loop over all of the components of the substance
made available by the global metadata
replicator.template_values = ProtocolPath("substance.components", "global")

Define a protocol which will build some coordinates for a system.
build_coords = BuildCoordinatesPackmol("build_coords_" + replicator.placeholder_id})
Instruct the protocol to use the value specified by the replicator.
build_coords.substance = ReplicatorValue(replicator.id)

Build the schema containing the protocol and the replicator
schema = WorkflowSchema()
schema.protocol_schemas = [build_coords.schema]
schema.protocol_replicators = [replicator]

The requirement for a protocol to be replicated by a replicator is that its id must contain the replicators
placeholder_id - this is a simple string which the workflow engine looks for when applying the replicator. The
contents of this schema can be easily inspected by printing its JSON representation:

{
"@type": "openff.evaluator.workflow.schemas.WorkflowSchema",
"protocol_replicators": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolReplicator",
"id": "component_replicator",
"template_values": {

"@type": "openff.evaluator.workflow.utils.ProtocolPath",
"full_path": "global.substance.components"

}
}

],
"protocol_schemas": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coords_$(component_replicator)",
"inputs": {

".substance": {
"@type": "openff.evaluator.workflow.utils.ReplicatorValue",
"replicator_id": "component_replicator"

}
},
"type": "BuildCoordinatesPackmol"

}
]

}

It can be clearly seen that the schema only contains a single protocol entry, with the placeholder id present in its unique
id. Once a workflow is created from this schema however:

Define some metadata
metadata = {"substance": Substance.from_components("O", "CO")}

(continues on next page)

58 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

Build the workflow from the schema.
workflow = Workflow.from_schema(schema, metadata)
Output the contents of the workflow as JSON.
print(workflow.schema.json())

it can be seen that the replicator has been correctly been applied and the workflow now contains one protocol for each
component in the substance passed as metadata:

{
"@type": "openff.evaluator.workflow.schemas.WorkflowSchema",
"protocol_schemas": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coords_0",
"inputs": {

".substance": {
"@type": "openff.evaluator.substances.components.Component",
"smiles": "O"

}
},
"type": "BuildCoordinatesPackmol"

},
{

"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coords_1",
"inputs": {

".substance": {
"@type": "openff.evaluator.substances.components.Component",
"smiles": "CO"

}
},
"type": "BuildCoordinatesPackmol"

}
]

}

In both cases the replicators placeholder_id has been replaced with the index of the value it was replicated for, and
the substance input has been correctly set to the actual array value.

2.21.1 Nested Replicators

Replicators can be applied to other replicators to achieve a result similar to a set of nested for loops. For example the
below loop:

components = [Component("O"), Component("CO")]
n_mols = [[1000], [500]]

for i, component in enumerate(components):

for component_n_mols in n_mols[i]:

...

2.21. Replicators 59

OpenFF Evaluator Documentation

can readily be reproduced using replicators:

Define a replicator which will loop over all components in the substance.
component_replicator = ProtocolReplicator(replicator_id="components")
component_replicator.template_values = ProtocolPath("components", "global")

Define a replicator to loop over the number of each component to add.
n_mols_replicator_id = f"n_mols_{component_replicator.placeholder_id}"

n_mols_replicator = ProtocolReplicator(replicator_id=n_mols_replicator_id)
n_mols_replicator.template_values = ProtocolPath(

f"n_mols[{component_replicator.placeholder_id}]", "global"
)

Define the suffix which must be applied to protocols to be replicated
id_suffix = f"{component_replicator.placeholder_id}_{n_mols_replicator.placeholder_id}"

Define a protocol which will build some coordinates for a system.
build_coordinates = BuildCoordinatesPackmol(f"build_coordinates_{id_suffix}")
build_coordinates.substance = ReplicatorValue(component_replicator.id)
build_coordinates.max_molecules = ReplicatorValue(n_mols_replicator.id)

Build the schema containing the protocol and the replicator
schema = WorkflowSchema()
schema.protocol_schemas = [build_coordinates.schema]
schema.protocol_replicators = [component_replicator, n_mols_replicator]

Define some metadata
metadata = {

"components": [Component("O"), Component("CO")],
"n_mols": [[1000], [500]]

}

Build the workflow from the created schema.
workflow = Workflow.from_schema(schema, metadata)
Print the JSON representation of the workflow.
print(workflow.schema.json(format=True))

Here the component_replicator placeholder id has been appended to the n_mols_replicator id to inform the
workflow engine that the later is a child of the former. The component_replicator placeholder id is then used as an
index into the n_mols array. This results in the following schema as desired:

{
"@type": "openff.evaluator.workflow.schemas.WorkflowSchema",
"protocol_schemas": [

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coordinates_0_0",
"inputs": {

".max_molecules": 1000,
".substance": {

"@type": "openff.evaluator.substances.components.Component",
"smiles": "O"

}
(continues on next page)

60 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

},
"type": "BuildCoordinatesPackmol"

},
{

"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "build_coordinates_1_0",
"inputs": {

".max_molecules": 500,
".substance": {

"@type": "openff.evaluator.substances.components.Component",
"smiles": "CO"

}
},
"type": "BuildCoordinatesPackmol"

}
]

}

2.22 Workflow Graphs

A WorkflowGraph is a collection of Workflow objects which should be executed together. The primary advantage of
executing workflows via the graph object is that the graph will automatically take advantage of the protocols built in
redundancy / merging support to collapse duplicate tasks across multiple workflows.

As an example, consider the case of executing workflows to estimate the density and the dielectric constant at the same
state point, for the same substance, and using the same force field parameters:

density_schema = Density.default_simulation_schema()
dielectric_schema = DielectricConstant.default_simulation_schema()

density_workflow = Workflow.from_schema(density_schema, metadata)
dielectric_workflow = Workflow.from_schema(dielectric_schema, metadata)

print(len(density_workflow.protocols), len(dielectric_workflow.protocols))

workflow_graph = WorkflowGraph()
workflow_graph.add_workflows(density_workflow, dielectric_workflow)

print(len(workflow_graph.protocols))

The final workflow graph has roughly half the total number of density and dielectric protocols to be executed. This is
expected as both the density and dielectric workflows are almost identical, except for the final analysis steps.

Graphs can be executed either in place without using a calculation backend in the same way that workflows can.

2.22. Workflow Graphs 61

OpenFF Evaluator Documentation

2.23 Protocols

The Protocol class represents a single task to be executed, whether that be as a standalone task or as a task which
is part of some larger workflow. The task encoded by a protocol may be as simple as adding two numbers together or
even as complex as performing entire free energy simulations:

from openff.evaluator.protocols.miscellaneous import AddValues

Create the protocol and assign it some unique name.
add_numbers = AddValues(protocol_id="add_values")
Set the numbers to add together
add_numbers.values = [1, 2, 3, 4]

Execute the protocol
add_numbers.execute()

Retrieve the output
result = add_numbers.result

2.23.1 Inputs and Outputs

Each protocol exposes a set of the required inputs as well as the produced outputs. These inputs may either be set as a
constant directly, or if used as part of a workflow, can take their value from one of the outputs of another protocol.

Fig. 4: A selection of the inputs and outputs of the OpenMMSimulation protocol.

A surprisingly rich spectrum of workflows can be constructed by chaining together many relatively simple protocols.

The inputs and outputs of a protocol are defined using the custom InputAttribute and OutputAttribute descrip-
tors:

class AddValues(Protocol):

Define the inputs that the protocol requires
values = InputAttribute(

docstring="The values to add together.",
type_hint=list, default_value=UNDEFINED

)

Define the outputs that the protocol will produce
once it is executed.
result = OutputAttribute(

docstring="The sum of the values.",
type_hint=typing.Union[int, float, unit.Measurement, unit.Quantity],

)

def _execute(self, directory, available_resources):
...

def validate(self, attribute_type=None):
...

62 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Here we have defined a values input to the protocol and a result output. Both descriptors require a docstring and
a type_hint to be provided.

The type_hint will be used by the workflow engine to ensure that a protocol which takes its input as the output of
another protocol is receiving values of the correct type. Currently the type_hint can be any type of python class, or
a Union of multiple types should the protocol allow for that.

In addition, the input attribute must specify a default_value for the attribute. This can either be a constant value, or
a value set by some function such as a lambda statement:

some_input = InputAttribute(
docstring="Takes it's default value from a function.",
type_hint=int,
default_value=lambda: return 1 + 1

)

In the above example we set the default value of values to UNDEFINED in order to specify that this input must be set by
the user. The custom UNDEFINED class is used in place of None as None may be a valid input value for some attributes.

2.23.2 Task Execution

In addition to defining its inputs and outputs, a protocol must also implement an _execute() function which handles
the main logic of the task:

def _execute(self, directory, available_resources):

self.result = self.values[0]

for value in self.values[1:]:
self.result += value

The function is passed the directory in which it should run and create any working files, as well as a ComputeResources
object which describes which compute resources are available to run on. This function must set all of the output
attributes of the protocol before returning.

The private _execute() function which must be implemented should not be confused with the public execute()
function. The public execute() function implements some common protocol logic (such as validating the inputs and
creating the directory to run in if needed) before calling the private _execute() function.

2.23.3 Protocol Validation

The protocols inputs will automatically be validated before _execute() is called - this validation includes making
sure that all of the non-optional inputs have been set, as well as ensuring they have been set to a value of the correct
type. Protocols may implement additional validation logic by implementing a execute() function:

def validate(self, attribute_type=None):

super(AddValues, self).validate(attribute_type)

if len(self.values) < 1:
raise ValueError("There were no values to add together")

2.23. Protocols 63

OpenFF Evaluator Documentation

2.23.4 Schemas

Every protocol has a ProtocolSchema representation which uniquely describes the protocol, and from which the
protocol can be exactly recreated. The schema stores not only the type of protocol which it represents, but also the
values of each of the inputs. Protocol schemas are fully JSON serializable. The following is an example schema for
the above add_numbers protocol:

{
"@type": "openff.evaluator.workflow.schemas.ProtocolSchema",
"id": "add_values",
"inputs": {
".allow_merging": true,
".values": [1, 2, 3, 4]

},
"type": "AddValues"

}

A protocols schema can be accessed via it’s schema attribute. A protocol can be directly created from its schema
representation by calling the schema’s to_protocol() function.

2.23.5 Merging Protocols

When executing multiple workflows together (e.g. executing a workflow to estimate a substances density and potential
energy) there is a large likelihood that some of tasks in those two workflows will be identical. Examples may include
two workflows requiring protocols which build a set of coordinates, or assigning the same set of parameters to those
coordinates.

Protocols have built-in support for comparing whether they are performing the same task / calculation as another
protocol through the can_merge() and merge() functions:

• The can_merge() function checks to see whether two protocols are performing an identical task and hence
whether they should be merged or not.

• The merge() function handles the actual merging of two protocols which can be merged.

The default can_merge() function takes advantage of the merge_behvaiour attribute of the different input descrip-
tors. The merge_behvaiour attribute describes how each input should be considered when checking to see if two
protocols can be merged:

max_molecules = InputAttribute(
docstring="The maximum number of molecules to be added to the system.",
type_hint=int,
default_value=1000,
merge_behavior=MergeBehaviour.ExactlyEqual

)

The most common behavior is to require that the inputs must be ExactlyEqual in order for two protocols two be
considered to be identical. However, for some inputs such as the timestep of a simulation or the number of steps to
simulate for, the exact values of the inputs don’t necessarily need to be equal but rather, we may just wish to take the
larger / smaller of the two inputs:

timestep = InputAttribute(
docstring="The timestep to evolve the system by at each step.",
type_hint=unit.Quantity,
merge_behavior=InequalityMergeBehaviour.SmallestValue,

(continues on next page)

64 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

default_value=2.0 * unit.femtosecond,
)

total_number_of_iterations = InputAttribute(
docstring="The number of times to propogate the system forward by.",
type_hint=int,
merge_behavior=InequalityMergeBehaviour.LargestValue,
default_value=1,

)

This can be accomplished using the InequalityMergeBehaviour enum.

The default merge() function also relies upon the merge_behaviour attributes to determine which values of the
inputs should be retained when merging two protocols.

2.24 Protocol Groups

The ProtocolGroup class represents a collection of protocols which have been grouped together. All protocols within
a group will be executed together on a single compute resources, i.e. there is currently no support for executing protocols
within a group in parallel.

Protocol groups have a specialised ProtocolGroupSchema which is essentially a collection of ProtocolSchema
objects.

2.24.1 Conditional Protocol Groups

A ConditionalGroup is a special class of ProtocolGroup which will execute all of the grouped protocols again and
again until a set of conditions has been met or until a maximum number of iterations (see max_iterations) has been
performed. They can be thought of as being a protocol representation of a while statement.

Each condition to be met is represented by a Condition object:

condition = ConditionalGroup.Condition()

Set the left and right hand values.
condition.left_hand_value = ...
condition.right_hand_value = ...

Choose the type of condition
condition.type = ConditionalGroup.Condition.Type.LessThan

The left and right hand values can either be constants, or come from the output of another protocol (including grouped
protocols) using a ProtocolPath . Currently a condition can either check that a value is less than or greater than
another value.

Conditional groups expose a current_iteration attribute which tracks how many times the grouped protocols have
been executed. This can be used as input by any of the grouped protocols and is useful, for example, to run a simulation
for longer and longer until the groups condition has been met:

conditional_group = ConditionalGroup("conditional_group")

Set up protocols to run a simulation and then to extract the
(continues on next page)

2.24. Protocol Groups 65

OpenFF Evaluator Documentation

(continued from previous page)

value of the density and its uncertainty.
simulation = OpenMMSimulation("simulation")
simulation.input_coordinate_file = "coords.pdb"
simulation.parameterized_system = ...

extract_density = AverageObservable("extract_density")
extract_density.observable = simulation.observables["Density"]

Set the total number of iterations the simulation should perform to be equal
to the current iteration of the group. I.e the simulation should perform a
new iteration at each group iteration.
simulation.total_number_of_iterations = ProtocolPath(

"current_iteration", conditional_group.id
)

Add the protocols to the group.
conditional_group.add_protocols(production_simulation, analysis_protocol)

Set up a condition which will check if the uncertainty is less than
some threshold.
condition = ConditionalGroup.Condition()
condition.condition_type = groups.ConditionalGroup.Condition.Type.LessThan

condition.right_hand_value = 0.5 * unit.gram / unit.millilitre
condition.left_hand_value = ProtocolPath(

"value.error", conditional_group.id, analysis_protocol.id
)

Add the condition.
conditional_group.add_condition(condition)

It is this idea which is used to continue running a molecular simulations until an observable of interest (such as the
density) has been calculated to within a specified uncertainty.

2.25 Observables

A key feature of this framework is its ability to compute the gradients of physical properties with respect to the force
field parameters used to estimate them. This requires the framework be able to, internally, be able to not only track the
gradients of all quantities which combine to yield the final observable of interest, but to also be able to propagate the
gradients of those composite quantities through to the final value.

The framework offers three such objects to this end (Observable, ObservableArray and ObservableFrame objects)
which will be covered in this document.

Note: In future versions of the framework the objects described here will likely be at least in part deprecated in favour
of using full automatic differentiation libraries such as jax. Supporting these libraries will take a large re-write of
the framework however, as well as full support between differentiable simulation engines like timemachine and the
OpenFF toolkit. As such, these objects are implemented as stepping stones which can be gently phased out while
working towards that larger, more modern goal.

66 Chapter 2. Supported Physical Properties

https://github.com/google/jax
https://github.com/proteneer/timemachine

OpenFF Evaluator Documentation

2.25.1 Observable Objects

The base object used to track observables is the Observable object. It stores the average value, the standard error in
the value and the gradient of the value with respect to force field parameters of interest.

Currently the value and error are internally stored in a composite Measurement object, which themselves wrap around
the uncertainties package. This allows uncertainties to be automatically propagated through operations without the
need for user intervention.

Note: Although uncertainties are automatically propagated, it is still up to property estimation workflow authors to
ensure that such propagation (assuming a Gaussian error model) is appropriate. An alternative, which is employed
throughout the framework is to make use of the bootstrapping technique.

Gradients are stored in a list as ParameterGradient gradient objects, which store both the floating value of the
gradient alongside an identifying ParameterGradientKey.

Supported Operations

• + and -: Observable objects can be summed with and subtracted from other Observable objects, Quantity
objects, floats or integers. When two Observable objects are summed / subtracted, their gradients are combined
by summing / subtracting also. When an Observable is summed / subtracted with a Quantity, float or int
object it is assumed that these objects do not depend on any force field parameters.

• *: Observable objects may be multiplied by other Observable objects, Quantity objects, and float or int
objects. When two Observable objects are multiplied their gradients are propagated using the product rule.
When an Observable is multiplied by a Quantity, float or int object it is assumed that these objects do not
depend on any force field parameters.

• /: Observable objects may be divided by other Observable objects, Quantity objects, and float or int
objects. Gradients are propagated through the division using the quotient rule. When an Observable is divided
by a Quantity, float or int object (or when these objects are divided by an Observable object) it is assumed
that these objects do not depend on any force field parameters.

In all cases two Observable objects can only be operated on provided the contain gradient information with respect
to the same set of force field parameters.

2.25.2 Observable Arrays

An extension of the Observable object is the ObservableArray object. Unlike an Observable, an
ObservableArray object does not contain error information, but rather the value it stores and the gradients of that
value should be a numpy array with shape=(n_data_points, n_dimensions). It is designed to store information
such as the potential energy evaluated at each configuration sampled during a simulation, as well as the gradient of the
potential, which can then be ensemble averaged using a fluctuation formula to propagate the gradients through to the
average.

Like with Observable objects, gradients are stored in a list as ParameterGradient gradient objects. The length of
the gradients is required to match the length of the value array.

ObservableArray objects may be concatenated together using their join() method or sub-sampled using their
subset() method.

2.25. Observables 67

https://pythonhosted.org/uncertainties/
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Supported Operations

The ObservableArray object supports the same operations as the Observable object, whereby all operations are
applied elementwise to the stored arrays.

2.25.3 Observable Frames

An ObservableFrame is a wrapper around a collection of ObservableArray which contain the types of observable
specified by the ObservableType enum. It behaves as a dictionary which can take either an ObservableType or a
string value of an ObservableType as an index.

Like an ObservableArray, observable frames may be concatenated together using their join() method or sub-
sampled using their subset() method.

Supported Operations

No operations are supported between observable frames.

submit_task

2.26 Calculation Backends

A CalculationBackend is an object used to distribute calculation tasks across available compute resources. This is
possible through specific backends which integrate with libraries such as multiprocessing, dask, parsl and cerlery.

Each backend is responsible for creating compute workers. A compute worker is an entity which has a set amount of
dedicated compute resources available to it and which can execute python functions using those resources. Calculation
backends may spawn multiple workers such that many tasks and calculations can be performed simultaneously.

A compute worker can be as simple as a new multiprocessing Process or something more complex like a dask worker.
The resources available to a worker are described by the ComputeResources object.

CalculationBackend classes have a relatively simple structure:

class MyCalculationBackend(CalculationBackend):

def __init__(self, number_of_workers, resources_per_worker):
...

def start(self):
...

def stop(self):
...

def submit_task(self, function, *args, **kwargs):
...

By default they implement a constructor which takes as input the number of workers that the backend should initially
spawn as well as the compute resources which are available to each. They must further implement:

• a start() method which spawns the initial set of compute workers.

68 Chapter 2. Supported Physical Properties

https://docs.python.org/3.7/library/multiprocessing.html
https://distributed.dask.org/en/latest/
https://parsl-project.org/
http://www.celeryproject.org/
https://docs.python.org/3.7/library/multiprocessing.html#the-process-class
https://distributed.dask.org/en/latest/worker.html

OpenFF Evaluator Documentation

• a stop()method which should kill all workers spawned by the backend as well as cleanup any temporary worker
files.

• a submit_task() method which takes a function to be execute by a worker, and a set of args and kwargs to
pass to that function.

The submit_task() must run asynchronously and return an asyncio Future object (or an object which implements
the same API) when called, which can then be queried for when the task has completed.

All calculation backends are implemented as context managers such that they can be used as:

with MyCalculationBackend(number_of_workers=..., resources_per_worker...) as backend:
backend.submit_task(...)

where the start() and stop() methods will be called automatically.

2.27 Dask Backends

The framework implements a number of calculation backends which integrate with the dask distributed and job-queue
libraries.

2.27.1 Dask Local Cluster

The DaskLocalCluster backend wraps around the dask LocalCluster class to distribute tasks on a single machine:

worker_resources = ComputeResources(
number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=GPUToolkit.CUDA,

)

with DaskLocalCluster(number_of_workers=1, resources_per_worker=worker_resources) as␣
→˓local_backend:

local_backend.submit_task(logging.info, "Hello World")
...

Its main purpose is for use when debugging calculations locally, or when running calculations on machines with large
numbers of CPUs or GPUs.

2.27.2 Dask HPC Cluster

The DaskLSFBackend and DaskPBSBackend backends wrap around the dask LSFCluster and PBSCluster classes
respectively, and both inherit the BaseDaskJobQueueBackend class which implements the core of their functionality.
They predominantly run in an adaptive mode, whereby the backend will automatically scale up or down the number of
workers based on the current number of tasks that the backend is trying to execute.

These backends integrate with the queueing systems which most HPC cluster use to manage task execution. They work
by submitting jobs into the queueing system which themselves spawn dask workers, which in turn then execute tasks
on the available compute nodes:

Create the object which describes the compute resources each worker should request from
the queueing system.

(continues on next page)

2.27. Dask Backends 69

https://docs.python.org/3/library/asyncio-future.html
https://distributed.dask.org/
https://dask-jobqueue.readthedocs.io
https://distributed.dask.org/en/latest/local-cluster.html
https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.LSFCluster.html#dask_jobqueue.LSFCluster
https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.PBSCluster.html#dask_jobqueue.PBSCluster
https://distributed.dask.org/en/latest/worker.html

OpenFF Evaluator Documentation

(continued from previous page)

worker_resources = QueueWorkerResources(
number_of_threads=1,
number_of_gpus=1,
preferred_gpu_toolkit=QueueWorkerResources.GPUToolkit.CUDA,
per_thread_memory_limit=worker_memory,
wallclock_time_limit="05:59",

)

Create the backend object.
setup_script_commands = [

f"conda activate evaluator",
f"module load cuda/10.1",

]

calculation_backend = DaskLSFBackend(
minimum_number_of_workers=1,
maximum_number_of_workers=max_number_of_workers,
resources_per_worker=queue_resources,
queue_name="gpuqueue",
setup_script_commands=setup_script_commands,

)

Perform some tasks.
with calculation_backend:

calculation_backend.submit_task(logging.info, "Hello World")
...

The setup_script_commands argument takes a list of commands which should be run by the queue job submis-
sion script before spawning the actual worker. This enables setting up custom environments, and setting any required
environmental variables.

Configuration

To ensure optimal behaviour we recommend changing / uncommenting the following settings in the dask distributed
configuration file (this can be found at ~/.config/dask/distributed.yaml):

distributed:

worker:
daemon: False

comm:
timeouts:

connect: 10s
tcp: 30s

deploy:
lost-worker-timeout: 15s

See the dask documentation for more information about changing dask settings.

70 Chapter 2. Supported Physical Properties

https://docs.dask.org/en/latest/configuration.html

OpenFF Evaluator Documentation

2.28 Storage Backends

A StorageBackend is an object used to store data generated as part of property calculations, and to retrieve that data
for use in future calculations.

In general, most data stored in a storage backend is stored in two parts:

• A JSON serialized representation of this class (or a subclass), which contains lightweight information such as
the state and composition of a system.

• A directory like structure (either directly a directory, or some NetCDF like compressed archive) of ancillary files
which do not easily lend themselves to be serialized within a JSON object, such as simulation trajectories, whose
files are referenced by their file name by the data object.

The ancillary directory-like structure is not required if the data may be suitably stored in the data object itself.

2.28.1 Data Storage / Retrieval

Each piece of data which is stored in a backend must inherit from the BaseStoredData class, will be assigned a unique
key. This unique key is both useful for tracking provenance if this data is re-used in future calculations, and also can
be used to retrieve the piece of data from the storage system.

In addition to retrieval using the data keys, each backend offers the ability to perform a ‘query’ to retrieve data which
matches a set of given criteria. Data queries are implemented via BaseDataQuery objects, which expose different
options for querying for specific types of data (such a simulation data, trained models, etc.).

A query may be used for example to match all simulation data that was generated for a given Substance in a particular
phase:

Look for all simulation data generated for liquid water
substance_query = SimulationDataQuery()

substance_query.substance = Substance.from_components("O")
substance_query.property_phase = PropertyPhase.Liquid

found_data = backend.query(substance_query)

The returned found_data will be a dictionary with keys of tuples and values as lists of tuples. Each key will be a tuple
of the values which were matched, for example the matched thermodynamic state, or the matched substance. For each
value tuple in the tuple list, the first item in the tuple is the unique key of the found data object, the second item is the
data object itself, and the final object is the file path to the ancillary data directory (or None if none is present).

See the Data Classes and Queries page for more information about the available data classes, queries and their details.

2.28.2 Implementation

A StorageBackend must at minimum implement a structure of:

class MyStorageBackend(StorageBackend):

def _store_object(self, object_to_store, storage_key=None, ancillary_data_path=None):
...

def _retrieve_object(self, storage_key, expected_type=None):
...

(continues on next page)

2.28. Storage Backends 71

OpenFF Evaluator Documentation

(continued from previous page)

def _object_exists(self, storage_key):
...

where

• _store_object() must store a BaseStoredData object as well as optionally its ancillary data directory, and
return a unique key assigned to that object.

• _retrieve_object() must return the BaseStoredData object which has been assigned a given key if the
object exists in the system, as well as the file path to ancillary data directory if it exists.

• _object_exists() should return whether any object still exists in the storage system with a given key.

All of these methods will be called under a reentrant thread lock and may be considered as thread safe.

2.29 Data Classes and Queries

All data which is to be stored within a StorageBackend must inherit from the BaseStoredData class. More broadly
there are typically two types of data which are expected to be stored:

• HashableStoredData - data which is readily hashable and can be quickly queried for in a storage backend. The
prime examples of such data are ForceFieldData, whose hash can be easily computed from the file represen-
tation of a force field.

• ReplaceableData - data which should be replaced in a storage backend when new data of the same type, but
which has a higher information content, is stored in the backend. An example of this is when storing a piece
of StoredSimulationData in the backend which was generated for a particular Substance and at the same
ThermodynamicState as an existing piece of data, but which stores many more uncorrelated configurations.

Every data class must be paired with a corresponding data query class which inherits from the BaseDataQuery class.
In addition, each data object must implement a to_storage_query() function which returns the data query which
would uniquely match that data object. The to_storage_query() is used heavily by storage backends when checking
if a piece of data already exists within the backend.

2.29.1 Force Field Data

The ForceFieldData class is used to ForceFieldSource objects within the storage backend. It is a hashable storage
object which allows for rapidly checking whether any calculations have been previously been performed for a particular
force field source.

It has a corresponding ForceFieldQuery class which can be used to query for particular force field sources within a
storage backend.

72 Chapter 2. Supported Physical Properties

https://docs.python.org/2/library/threading.html#rlock-objects

OpenFF Evaluator Documentation

2.29.2 Cached Simulation Data

Classes derived from the BaseSimulationData class are used to store the data generated by molecular simulation.
The data object primarily records the Substance, PropertyPhase and ThermodynamicState that the simulation
was run at, as well as provenance about the calculation and the force field parameters used (as the key of the force field
in the storage system).

It has a corresponding BaseSimulationDataQuery class which can be used to query for simulation data which
matches a set of particular criteria within a storage backend, which in part includes querying for data collected:

• at a given thermodynamic_state (i.e temperature and pressure).

• for a given property_phase (e.g. gas, liquid, liquid+gas coexisting, . . .).

• using a given set of force field parameters identified by their unique force_field_id assigned by the storage
system

Additionally included is not only the ability to find data generated for a particular substance (e.g. only data for
methanol), but also the ability to return data for each component of a given substance by setting the substance_query
attribute to a SubstanceQuery which has the components_only attribute set to true:

Load an existing storage backend
storage_backend = LocalFileStorage()

Define a system of 50% water and 50% methanol.
full_substance = Substance.from_components("O", "CO")

Look for all simulation data generated for the full substance
data_query = SimulationDataQuery()

data_query.substance = full_substance
data_query.property_phase = PropertyPhase.Liquid

full_substance_data = storage_backend.query(data_query)

Now look for all of the pure data which has been stored for both pure
water and pure methanol.
pure_substance_query = SubstanceQuery()
pure_substance_query.components_only = True

data_query.substance_query = pure_substance_query
component_data = storage_backend.query(data_query)

This is particularly useful for when retrieving data for use in the calculation of excess properties (such as the enthalpy
of mixing), where such calculations require information about both the full mixture as well as the pure components.

2.29. Data Classes and Queries 73

OpenFF Evaluator Documentation

Single Simulation Data

The StoredSimulationData class is used to store data generated by a single molecular simulation and can be
queried for using its accompanying SimulationDataQuery query class. In addition to the data stored by the par-
ent BaseSimulationData class, this class further stores:

• the number of molecules which were simulated.

• the topology of the simulated system (stored as ancillary data).

• and trajectory of configurations (stored as ancillary data) and observables generated by the simulation.

• the statistic inefficiency of the data.

Data of this kind is considered replaceable, whereby data which has the lowest statistical efficiency is preferred. The
philosophy here is that we should store the maximum amount of samples (i.e the maximum number of uncorrelated
samples for the property which has the shortest correlation time) which will be useful for future calculations, such that
future calaculations can simply discard the data which cannot be used (i.e. is likely correlated).

Free Energy Data

The StoredFreeEnergyData class is used to store data generated by a free energy calculation which computes the free
energy difference between an end and start state. It can be queried for using its accompanying FreeEnergyDataQuery
query class.

In addition to the data stored by the parent BaseSimulationData class, this class further stores:

• the free energy difference between the end and starting state.

• the topology of the system (stored as ancillary data).

• and trajectory of configurations generated in the starting and end states (stored as ancillary data).

Although data of this kind inherits from the ReplaceableData base class, all data deposited in a storage backend will
be retained. At this time no situation can be envisaged that the same free energy data from exactly the same calculation
will be stored, with the exception of operator errors.

2.30 Local File Storage

The LocalFileStorage backend stores and retrieves all data objects to / from the local file system. The root directory
in which all data is to be stored is defined when the object is created:

storage_backend = LocalFileStorage(root_directory="stored_data")

All data objects will be stored within this directory as JSON files, with file names of the storage key assigned to that
object. If the data object has an associated ancillary data directory, this will be moved (not copied) into the root
directory and renamed to the storage key when that object is stored into the system.

An example directory created by a local storage backend will look something similar to:

- root_directory

- 1fe615c5cb48429ab77fd71125dec297
- trajectory.dcd
- statistics.csv

- 3e15d19e0e614d0491a1a0bc9a51534e
(continues on next page)

74 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

(continued from previous page)

- trajectory.dcd
- statistics.csv

- 1fe615c5cb48429ab77fd71125dec297.json
- 3e15d19e0e614d0491a1a0bc9a51534e.json
- 0f71f2b4a22042d89d6f0882406869b6.json

where here the backend contains two data objects with ancillary data directories, and one without.

When retrieving data which has an ancillary data directory from the backend, the returned directory path will be the
full path to the directory in the root storage directory.

2.31 Building the Docs

Although documentation for the OpenFF Evaluator is readily available online, it is sometimes useful to build a local
version such as when

• developing new pages which you wish to preview without having to wait for ReadTheDocs to finish building.

• debugging errors which occur when building on ReadTheDocs.

In these cases, the docs can be built locally by doing the following:

git clone https://github.com/openforcefield/openff-evaluator.git
cd openff-evaluator/docs
conda env create --name openff-evaluator-docs --file environment.yaml
conda activate openff-evaluator-docs
rm -rf api && make clean && make html

The above will yield a new directory named _build which will contain the built html files which can be viewed in your
local browser.

2.32 API

Documentation for each of the classes contained within the openff.evaluator framework.

2.32.1 Client Side API

EvaluatorClient The object responsible for connecting to, and submit-
ting physical property estimation requests to an Evalua-
torServer.

BatchMode The different modes in which a server can batch together
properties to estimate.

ConnectionOptions The options to use when connecting to an Evalua-
torServer

Request An estimation request which has been sent to a Evalua-
torServer instance.

RequestOptions The options to use when requesting a set of physical
properties be estimated by the server.

continues on next page

2.31. Building the Docs 75

https://property-estimator.readthedocs.io/en/latest/

OpenFF Evaluator Documentation

Table 2 – continued from previous page
RequestResult The current results of an estimation request - these re-

sults may be partial if the server hasn't yet completed
the request.

EvaluatorClient

class openff.evaluator.client.EvaluatorClient(connection_options=None)
The object responsible for connecting to, and submitting physical property estimation requests to an Evalua-
torServer.

Examples

These examples assume that an EvaluatorServer has been set up and is running (either synchronously or asyn-
chronously). This server can be connect to be creating an EvaluatorClient:

>>> from openff.evaluator.client import EvaluatorClient
>>> property_estimator = EvaluatorClient()

If the EvaluatorServer is not running on the local machine, you will need to specify its address and the port that
it is listening on:

>>> from openff.evaluator.client import ConnectionOptions
>>>
>>> connection_options = ConnectionOptions(server_address='server_address',
>>> server_port=8000)
>>> property_estimator = EvaluatorClient(connection_options)

To asynchronously submit a request to the running server using the default estimation options:

>>> # Load in the data set of properties which will be used for comparisons
>>> from openff.evaluator.datasets.thermoml import ThermoMLDataSet
>>> data_set = ThermoMLDataSet.from_doi('10.1016/j.jct.2016.10.001')
>>>
>>> # Filter the dataset to only include densities measured between 130-260 K
>>> from openff.evaluator import unit
>>> from openff.evaluator.properties import Density
>>>
>>> data_set.filter_by_property_types(Density)
>>> data_set.filter_by_temperature(
>>> min_temperature=130*unit.kelvin,
>>> max_temperature=260*unit.kelvin
>>>)
>>>
>>> # Load in the force field parameters
>>> from openff.evaluator.forcefield import SmirnoffForceFieldSource
>>> force_field_source = SmirnoffForceFieldSource.from_path('smirnoff99Frosst-1.1.0.
→˓offxml')
>>>
>>> # Submit the estimation request to a running server.
>>> request = property_estimator.request_estimate(data_set, force_field_source)

The status of the request can be asynchronously queried by calling

76 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

>>> results = request.results()

or the main thread can be blocked until the results are available by calling

>>> results = request.results(synchronous=True)

How the property set will be estimated can easily be controlled by passing a RequestOptions object to the estimate
commands.

The calculations layers which will be used to estimate the properties can be controlled for example like so:

>>> from openff.evaluator.layers.reweighting import ReweightingLayer
>>> from openff.evaluator.layers.simulation import SimulationLayer
>>>
>>> options = RequestOptions(calculation_layers=[
>>> "ReweightingLayer",
>>> "SimulationLayer"
>>>])
>>>
>>> request = property_estimator.request_estimate(data_set, force_field_source,␣
→˓options)

Options for how properties should be estimated can be set on a per property, and per layer basis by providing a
calculation schema to the options object.

>>> from openff.evaluator.properties import DielectricConstant
>>>
>>> # Generate a schema to use when estimating densities directly
>>> # from simulations.
>>> density_simulation_schema = Density.default_simulation_schema()
>>> # Generate a schema to use when estimating dielectric constants
>>> # from cached simulation data.
>>> dielectric_reweighting_schema = DielectricConstant.default_reweighting_schema()
>>>
>>> options.workflow_options = {
>>> 'Density': {'SimulationLayer': density_simulation_schema},
>>> 'Dielectric': {'SimulationLayer': dielectric_reweighting_schema}
>>> }
>>>
>>> property_estimator.request_estimate(
>>> data_set,
>>> force_field_source,
>>> options,
>>>)

The gradients of the observables of interest with respect to a number of chosen parameters can be requested by
passing a parameter_gradient_keys parameter. In the below example, gradients will be calculated with respect
to both the bond length parameter for the [#6:1]-[#8:2] chemical environment, and the bond angle parameter for
the [:1]-[#8:2]-[:3] chemical environment:

>>> from openff.evaluator.forcefield import ParameterGradientKey
>>>
>>> parameter_gradient_keys = [
>>> ParameterGradientKey('Bonds', '[#6:1]-[#8:2]', 'length')

(continues on next page)

2.32. API 77

OpenFF Evaluator Documentation

(continued from previous page)

>>> ParameterGradientKey('Angles', '[*:1]-[#8:2]-[*:3]', 'angle')
>>>]
>>>
>>> property_estimator.request_estimate(
>>> data_set,
>>> force_field_source,
>>> options,
>>> parameter_gradient_keys
>>>)

__init__(connection_options=None)

Parameters connection_options (ConnectionOptions, optional) – The options used
when connecting to the calculation server. If None, default options are used.

Methods

__init__([connection_options])
param connection_options The options

used when connecting to the calcula-
tion

default_request_options(data_set, ...) Returns the default RequestOptions options used to
estimate a set of properties if None are provided.

request_estimate(property_set, ...[, ...]) Submits a request for the EvaluatorServer to attempt
to estimate the data set of physical properties using
the specified force field parameters according to the
provided options.

retrieve_results(request_id[, synchronous, ...]) Retrieves the current results of a request from the
server.

Attributes

server_address The address of the server that this client is connected
to.

server_port The port of the server that this client is connected to.

property server_address
The address of the server that this client is connected to.

Type str

property server_port
The port of the server that this client is connected to.

Type int

static default_request_options(data_set, force_field_source)
Returns the default RequestOptions options used to estimate a set of properties if None are provided.

Parameters

78 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• data_set (PhysicalPropertyDataSet) – The data set which would be estimated.

• force_field_source (ForceFieldSource) – The force field parameters which will be
used by the request.

Returns The default options.

Return type RequestOptions

request_estimate(property_set, force_field_source, options=None, parameter_gradient_keys=None)
Submits a request for the EvaluatorServer to attempt to estimate the data set of physical properties using
the specified force field parameters according to the provided options.

Parameters
• property_set (PhysicalPropertyDataSet) – The set of properties to estimate.

• force_field_source (ForceFieldSource or openff.toolkit.typing.
engines.smirnoff.ForceField) – The force field parameters to estimate the
properties using.

• options (RequestOptions, optional) – A set of estimator options. If None default
options will be used (see default_request_options).

• parameter_gradient_keys (list of ParameterGradientKey, optional) – A
list of the parameters that the physical properties should be differentiated with respect to.

Returns
• Request – An object which will provide access to the results of this request.

• EvaluatorException, optional – Any exceptions raised while attempting the submit the re-
quest.

retrieve_results(request_id, synchronous=False, polling_interval=5)
Retrieves the current results of a request from the server.

Parameters
• request_id (str) – The server assigned id of the request.

• synchronous (bool) – If true, this method will block the main thread until the server
either returns a result or an error.

• polling_interval (float) – If running synchronously, this is the time interval (sec-
onds) between checking if the request has completed.

Returns
• RequestResult, optional – Returns the current results of the request. This may be None if

any unexpected exceptions occurred while retrieving the estimate.

• EvaluatorException, optional – The exception raised will trying to retrieve the result, if
any.

2.32. API 79

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

BatchMode

class openff.evaluator.client.BatchMode(value)
The different modes in which a server can batch together properties to estimate.

This enum may take values of

• SameComponents: All properties measured for substances containing exactly the same components will
be placed into a single batch. E.g. The density of a 80:20 and a 20:80 mix of ethanol and water would be
batched together, but the density of pure ethanol and the density of pure water would be placed into separate
batches.

• SharedComponents: All properties measured for substances containing at least common component will
be batched together. E.g.The densities of 80:20 and 20:80 mixtures of ethanol and water, and the pure
densities of ethanol and water would be batched together.

Properties will only be marked as estimated by the server when all properties in a single batch are completed.

__init__()

Attributes

SameComponents

SharedComponents

ConnectionOptions

class openff.evaluator.client.ConnectionOptions(server_address=None, server_port=None)
The options to use when connecting to an EvaluatorServer

__init__(server_address=None, server_port=None)

Parameters
• server_address (str) – The address of the server to connect to.

• server_port (int) – The port of the server to connect to.

Methods

__init__([server_address, server_port])
param server_address The address of

the server to connect to.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

80 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Attributes

server_address The address of the server to connect to.
server_port The port of the server to connect to.

server_address
The address of the server to connect to. The default value of this attribute is localhost.

Type str

server_port
The port of the server to connect to. The default value of this attribute is 8000.

Type int

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

2.32. API 81

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Request

class openff.evaluator.client.Request(client=None)
An estimation request which has been sent to a EvaluatorServer instance.

This object can be used to query and retrieve the results of the request when finished, or be stored to retrieve the
request at some point in the future.

__init__(client=None)

Parameters client (EvaluatorClient, optional) – The client which submitted this re-
quest.

Methods

__init__([client])
param client The client which submitted

this request.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

results([synchronous, polling_interval]) Attempt to retrieve the results of the request from the
server.

validate([attribute_type]) Validate the values of the attributes.

Attributes

connection_options The options used to connect to the server handling
the request.

id The unique id assigned to this request by the server.

id
The unique id assigned to this request by the server. The default value of this attribute is not set and must
be set by the user..

Type str

connection_options
The options used to connect to the server handling the request. The default value of this attribute is not set
and must be set by the user..

Type ConnectionOptions

results(synchronous=False, polling_interval=5)
Attempt to retrieve the results of the request from the server.

If the method is run synchronously it will block the main thread either all of the requested properties have
been estimated, or an exception is returned.

Parameters

82 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• synchronous (bool) – If True, this method will block the main thread until the server
either returns a result or an error.

• polling_interval (float) – If running synchronously, this is the time interval (sec-
onds) between checking if the calculation has finished. This will be ignored if running
asynchronously.

Returns
• RequestResult, optional – Returns the current results of the request. This may be None if

any unexpected exceptions occurred while retrieving the estimate.

• EvaluatorException, optional – The exception raised will trying to retrieve the result if any.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

2.32. API 83

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

RequestOptions

class openff.evaluator.client.RequestOptions
The options to use when requesting a set of physical properties be estimated by the server.

__init__()

Methods

__init__()

add_schema(layer_type, property_type, schema) A convenience function for adding a calculation
schema to the schema dictionary.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

batch_mode The way in which the server should batch together
properties to estimate.

calculation_layers The calculation layers which may be used to estimate
the set of physical properties.

calculation_schemas The schemas that each calculation layer should use
when estimating the set of physical properties.

calculation_layers
The calculation layers which may be used to estimate the set of physical properties. The order in which the
layers appears in this list determines the order in which the layers will attempt to estimate the data set. The
default value of this attribute is ['ReweightingLayer', 'SimulationLayer'].

Type list

calculation_schemas
The schemas that each calculation layer should use when estimating the set of physical properties. The
dictionary should be of the form [property_type][layer_type]. The default value of this attribute is not set.
This attribute is optional.

Type dict

batch_mode
The way in which the server should batch together properties to estimate. Properties will only be marked
as finished when all properties in a single batch are completed. The default value of this attribute is
BatchMode.SharedComponents. This attribute is optional.

Type BatchMode

add_schema(layer_type, property_type, schema)
A convenience function for adding a calculation schema to the schema dictionary.

Parameters

84 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

OpenFF Evaluator Documentation

• layer_type (str or type of CalculationLayer) – The layer to associate the
schema with.

• property_type (str or type of PhysicalProperty) – The class of property to as-
sociate the schema with.

• schema (CalculationSchema) – The schema to add.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

RequestResult

class openff.evaluator.client.RequestResult
The current results of an estimation request - these results may be partial if the server hasn’t yet completed the
request.

__init__()

2.32. API 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

estimated_properties The set of properties which have been successfully
estimated.

exceptions The set of properties which have yet to be, or are cur-
rently being estimated.

queued_properties The set of properties which have yet to be, or are cur-
rently being estimated.

unsuccessful_properties The set of properties which could not be successfully
estimated.

queued_properties
The set of properties which have yet to be, or are currently being estimated.

Type PhysicalPropertyDataSet

estimated_properties
The set of properties which have been successfully estimated.

Type PhysicalPropertyDataSet

unsuccessful_properties
The set of properties which could not be successfully estimated.

Type PhysicalPropertyDataSet

exceptions
The set of properties which have yet to be, or are currently being estimated. The default value of this
attribute is [].

Type list

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

86 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

Exceptions

EvaluatorException A serializable wrapper around an Exception.

EvaluatorException

exception openff.evaluator.utils.exceptions.EvaluatorException(message=None)
A serializable wrapper around an Exception.

classmethod from_exception(exception)
Initialize this class from an existing exception.

Parameters exception (Exception) – The existing exception

Returns The initialized exception object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

2.32. API 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.32.2 Server Side API

EvaluatorServer The object responsible for coordinating all properties
estimations to be ran using the openff-evaluator frame-
work.

Batch Represents a batch of physical properties which are be-
ing estimated by the server for a given set of force field
parameters.

EvaluatorServer

class openff.evaluator.server.EvaluatorServer(calculation_backend, storage_backend=None,
port=8000, working_directory='working-data',
enable_data_caching=True, delete_working_files=True)

The object responsible for coordinating all properties estimations to be ran using the openff-evaluator framework.

This server is responsible for receiving estimation requests from the client, determining which calculation layer
to use to launch the request, and distributing that estimation across the available compute resources.

Notes

Every client request is split into logical chunk batches. This enables batches of related properties (e.g. all
properties for CO) to be estimated in one go (or one task graph in the case of workflow based layers) and returned
when ready, rather than waiting for the full data set to complete.

Examples

Setting up a general server instance using a dask based calculation backend, and a local file storage backend:

>>> # Create the backend which will be responsible for distributing the calculations
>>> from openff.evaluator.backends.dask import DaskLocalCluster
>>> calculation_backend = DaskLocalCluster()
>>> calculation_backend.start()
>>>
>>> # Create the server to which all estimation requests will be submitted
>>> from openff.evaluator.server import EvaluatorServer
>>> property_server = EvaluatorServer(calculation_backend)
>>>
>>> # Instruct the server to listen for incoming requests

(continues on next page)

88 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

(continued from previous page)

>>> # This command will run until killed.
>>> property_server.start()

__init__(calculation_backend, storage_backend=None, port=8000, working_directory='working-data',
enable_data_caching=True, delete_working_files=True)

Constructs a new EvaluatorServer object.

Parameters
• calculation_backend (CalculationBackend) – The backend to use for executing cal-

culations.

• storage_backend (StorageBackend, optional) – The backend to use for storing in-
formation from any calculations. If None, a default LocalFileStorage backend will be used.

• port (int) – The port on which to listen for incoming client requests.

• working_directory (str) – The local directory in which to store all local, temporary
calculation data.

• enable_data_caching (bool) – Whether the server should attempt to cache any data,
mainly the output of simulations, produced by estimation requests for future re-processing
(e.g for reweighting).

• delete_working_files (bool) – Whether to delete the working files produced while
estimated a batch of properties using a specific calculation layer.

Methods

__init__(calculation_backend[, ...]) Constructs a new EvaluatorServer object.
start([asynchronous]) Instructs the server to begin listening for incoming

requests from any EvaluatorClients.
stop() Stops the property calculation server and it's provided

backend.

start(asynchronous=False)
Instructs the server to begin listening for incoming requests from any EvaluatorClients.

Parameters asynchronous (bool) – If True the server will run on a separate thread in the back-
ground, returning control back to the main thread. Otherwise, this function will block the
main thread until this server is killed.

stop()
Stops the property calculation server and it’s provided backend.

2.32. API 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Batch

class openff.evaluator.server.Batch
Represents a batch of physical properties which are being estimated by the server for a given set of force field
parameters.

The expectation is that this object will be passed between calculation layers, whereby each layer will attempt
to estimate each of the queued_properties. Those properties which can be estimated will be moved to the esti-
mated_properties set, while those that couldn’t will remain in the queued_properties set ready for the next layer.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

enable_data_caching Whether the server should attempt to cache any data,
mainly the output of simulations, produced by this
batch for future re-processing (e.g for reweighting).

estimated_properties The set of properties which have been successfully
estimated.

exceptions The set of properties which have yet to be, or are cur-
rently being estimated.

force_field_id The id of the force field being used to estimatethis
batch of properties.

id The unique id of this batch.
options The options being used to estimate this batch.
parameter_gradient_keys The parameters that this batch of physical properties

should be differentiated with respect to.
queued_properties The set of properties which have yet to be estimated.
unsuccessful_properties The set of properties which have been could not be

estimated.

id
The unique id of this batch.

Type str

force_field_id
The id of the force field being used to estimatethis batch of properties. The default value of this attribute is
not set and must be set by the user..

90 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

options
The options being used to estimate this batch. The default value of this attribute is not set and must be set
by the user..

Type RequestOptions

parameter_gradient_keys
The parameters that this batch of physical properties should be differentiated with respect to. The default
value of this attribute is not set and must be set by the user..

Type list

enable_data_caching
Whether the server should attempt to cache any data, mainly the output of simulations, produced by this
batch for future re-processing (e.g for reweighting). The default value of this attribute is True.

Type bool

queued_properties
The set of properties which have yet to be estimated. The default value of this attribute is [].

Type list

estimated_properties
The set of properties which have been successfully estimated. The default value of this attribute is [].

Type list

unsuccessful_properties
The set of properties which have been could not be estimated. The default value of this attribute is [].

Type list

exceptions
The set of properties which have yet to be, or are currently being estimated. The default value of this
attribute is [].

Type list

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

2.32. API 91

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

2.32.3 Physical Property API

PhysicalProperty Represents the value of any physical property and it's
uncertainty if provided.

PropertyPhase An enum describing the phase that a property was col-
lected in.

Source Container class for information about how a property
was measured / calculated.

CalculationSource Contains any metadata about how a physical property
was calculated.

MeasurementSource Contains any metadata about how a physical property
was measured by experiment.

PhysicalProperty

class openff.evaluator.datasets.PhysicalProperty(thermodynamic_state=None,
phase=PropertyPhase.Undefined, substance=None,
value=None, uncertainty=None, source=None)

Represents the value of any physical property and it’s uncertainty if provided.

It additionally stores the thermodynamic state at which the property was collected, the phase it was collected in,
information about the composition of the observed system, and metadata about how the property was collected.

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

92 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_unit() openff.evaluator.unit.Unit: The default unit (e.g.
from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

abstract classmethod default_unit()
openff.evaluator.unit.Unit: The default unit (e.g. g / mol) associated with this class of property.

id
A unique identifier string assigned to this property

Type str

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

2.32. API 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

OpenFF Evaluator Documentation

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

94 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

PropertyPhase

class openff.evaluator.datasets.PropertyPhase(value)
An enum describing the phase that a property was collected in.

Examples

Properties measured in multiple phases (e.g. enthalpies of vaporization) can be defined be concatenating Prop-
ertyPhase enums:

>>> gas_liquid_phase = PropertyPhase.Gas | PropertyPhase.Liquid

__init__()

Methods

from_string(enum_string) Parses a phase enum from its string representation.

Attributes

Undefined

Solid

Liquid

Gas

classmethod from_string(enum_string)
Parses a phase enum from its string representation.

Parameters enum_string (str) – The str representation of a PropertyPhase

Returns The created enum

Return type PropertyPhase

2.32. API 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Examples

To round-trip convert a phase enum: >>> phase = PropertyPhase.Liquid | PropertyPhase.Gas >>> phase_str
= str(phase) >>> parsed_phase = PropertyPhase.from_string(phase_str)

Source

class openff.evaluator.datasets.Source
Container class for information about how a property was measured / calculated.

Todo: Swap this out with a more general provenance class.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

96 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

CalculationSource

class openff.evaluator.datasets.CalculationSource(fidelity=None, provenance=None)
Contains any metadata about how a physical property was calculated.

This includes at which fidelity the property was calculated at (e.g Direct simulation, reweighting, . . .) in addition
to the parameters which were used as part of the calculations.

fidelity
The fidelity at which the property was calculated

Type str

provenance
A dictionary containing information about how the property was calculated.

Type dict of str and Any

__init__(fidelity=None, provenance=None)
Constructs a new CalculationSource object.

Parameters
• fidelity (str) – The fidelity at which the property was calculated

• provenance (dict of str and Any) – A dictionary containing information about how
the property was calculated.

Methods

__init__([fidelity, provenance]) Constructs a new CalculationSource object.
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

2.32. API 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

Returns The parsed class.

Return type Any

MeasurementSource

class openff.evaluator.datasets.MeasurementSource(doi='', reference='')
Contains any metadata about how a physical property was measured by experiment.

This class contains either the DOI and/or the reference, but must contain at least one as the observable must have
a source, even if it was measured in lab.

doi
The DOI for the source, preferred way to identify for source

Type str or None, default None

reference
The long form description of the source if no DOI is available, or more information is needed or wanted.

Type str

__init__(doi='', reference='')
Constructs a new MeasurementSource object.

Parameters
• doi (str or None, default None) – The DOI for the source, preferred way to identify

for source

• reference (str) – The long form description of the source if no DOI is available, or more
information is needed or wanted.

Methods

__init__([doi, reference]) Constructs a new MeasurementSource object.
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

98 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

Built-in Properties

Density A class representation of a density property
ExcessMolarVolume A class representation of an excess molar volume prop-

erty
DielectricConstant A class representation of a dielectric property
EnthalpyOfMixing A class representation of an enthalpy of mixing property
EnthalpyOfVaporization A class representation of an enthalpy of vaporization

property
SolvationFreeEnergy A class representation of a solvation free energy prop-

erty.
HostGuestBindingAffinity A class representation of a host-guest binding affinity

property

Density

class openff.evaluator.properties.Density(thermodynamic_state=None,
phase=PropertyPhase.Undefined, substance=None,
value=None, uncertainty=None, source=None)

A class representation of a density property

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

2.32. API 99

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_reweighting_schema([...]) Returns the default calculation schema to use when

estimating this property by reweighting existing data.
default_simulation_schema([...]) Returns the default calculation schema to use when

estimating this class of property from direct simula-
tions.

default_unit()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

static default_simulation_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_molecules=1000)→
openff.evaluator.layers.simulation.SimulationSchema

Returns the default calculation schema to use when estimating this class of property from direct simulations.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_molecules (int) – The number of molecules to use in the simulation.

Returns The schema to follow when estimating this property.

100 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Return type SimulationSchema

static default_reweighting_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_effective_samples=50)→
openff.evaluator.layers.reweighting.ReweightingSchema

Returns the default calculation schema to use when estimating this property by reweighting existing data.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_effective_samples (int) – The minimum number of effective samples to require
when reweighting the cached simulation data.

Returns The schema to follow when estimating this property.

Return type ReweightingSchema

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

id
A unique identifier string assigned to this property

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

2.32. API 101

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

ExcessMolarVolume

class openff.evaluator.properties.ExcessMolarVolume(thermodynamic_state=None,
phase=PropertyPhase.Undefined,
substance=None, value=None,
uncertainty=None, source=None)

A class representation of an excess molar volume property

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

102 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_reweighting_schema([...]) Returns the default calculation schema to use when

estimating this class of property by re-weighting
cached simulation data.

default_simulation_schema([...]) Returns the default calculation schema to use when
estimating this class of property from direct simula-
tions.

default_unit()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

2.32. API 103

OpenFF Evaluator Documentation

classmethod default_reweighting_schema(absolute_tolerance: openff.evaluator.utils.units.Quantity =
<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, relative_tolerance: float =
<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_effective_samples: int = 50)→
openff.evaluator.layers.reweighting.ReweightingSchema

Returns the default calculation schema to use when estimating this class of property by re-weighting cached
simulation data.

Parameters
• absolute_tolerance – The absolute tolerance to estimate the property to within.

• relative_tolerance – The tolerance (as a fraction of the properties reported uncer-
tainty) to estimate the property to within.

• n_effective_samples – The minimum number of effective samples to require when
reweighting the cached simulation data.

Returns
Return type The default re-weighting calculation schema.

classmethod default_simulation_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_molecules=1000)→
openff.evaluator.layers.simulation.SimulationSchema

Returns the default calculation schema to use when estimating this class of property from direct simulations.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_molecules (int) – The number of molecules to use in the simulation.

Returns The schema to follow when estimating this property.

Return type SimulationSchema

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

104 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

id
A unique identifier string assigned to this property

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

2.32. API 105

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

OpenFF Evaluator Documentation

Raises ValueError or AssertionError –

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

DielectricConstant

class openff.evaluator.properties.DielectricConstant(thermodynamic_state=None,
phase=PropertyPhase.Undefined,
substance=None, value=None,
uncertainty=None, source=None)

A class representation of a dielectric property

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_reweighting_schema([...]) Returns the default calculation schema to use when

estimating this property by reweighting existing data.
default_simulation_schema([...]) Returns the default calculation schema to use when

estimating this class of property from direct simula-
tions.

default_unit()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

106 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

static default_simulation_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_molecules=1000)

Returns the default calculation schema to use when estimating this class of property from direct simulations.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_molecules (int) – The number of molecules to use in the simulation.

Returns The schema to follow when estimating this property.

Return type SimulationSchema

static default_reweighting_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_effective_samples=50)

Returns the default calculation schema to use when estimating this property by reweighting existing data.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_effective_samples (int) – The minimum number of effective samples to require
when reweighting the cached simulation data.

Returns The schema to follow when estimating this property.

Return type ReweightingSchema

2.32. API 107

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

id
A unique identifier string assigned to this property

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

108 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

OpenFF Evaluator Documentation

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

EnthalpyOfMixing

class openff.evaluator.properties.EnthalpyOfMixing(thermodynamic_state=None,
phase=PropertyPhase.Undefined,
substance=None, value=None, uncertainty=None,
source=None)

A class representation of an enthalpy of mixing property

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

2.32. API 109

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_reweighting_schema([...])

default_simulation_schema([...]) Returns the default calculation schema to use when
estimating this class of property from direct simula-
tions.

default_unit()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

classmethod default_simulation_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_molecules=1000)→
openff.evaluator.layers.simulation.SimulationSchema

Returns the default calculation schema to use when estimating this class of property from direct simulations.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_molecules (int) – The number of molecules to use in the simulation.

Returns The schema to follow when estimating this property.

110 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Return type SimulationSchema

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

id
A unique identifier string assigned to this property

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

2.32. API 111

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

OpenFF Evaluator Documentation

Type Substance

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

EnthalpyOfVaporization

class openff.evaluator.properties.EnthalpyOfVaporization(thermodynamic_state=None,
phase=PropertyPhase.Undefined,
substance=None, value=None,
uncertainty=None, source=None)

A class representation of an enthalpy of vaporization property

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

112 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_reweighting_schema([...]) Returns the default calculation schema to use when

estimating this property by reweighting existing data.
default_simulation_schema([...]) Returns the default calculation schema to use when

estimating this class of property from direct simula-
tions.

default_unit()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

static default_simulation_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_molecules=1000)

Returns the default calculation schema to use when estimating this class of property from direct simulations.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_molecules (int) – The number of molecules to use in the simulation.

Returns The schema to follow when estimating this property.

Return type SimulationSchema

2.32. API 113

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

classmethod default_reweighting_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_effective_samples=50)

Returns the default calculation schema to use when estimating this property by reweighting existing data.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_effective_samples (int) – The minimum number of effective samples to require
when reweighting the cached simulation data.

Returns The schema to follow when estimating this property.

Return type ReweightingSchema

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

id
A unique identifier string assigned to this property

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

114 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

SolvationFreeEnergy

class openff.evaluator.properties.SolvationFreeEnergy(thermodynamic_state=None,
phase=PropertyPhase.Undefined,
substance=None, value=None,
uncertainty=None, source=None)

A class representation of a solvation free energy property.

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

2.32. API 115

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_simulation_schema([...]) Returns the default calculation schema to use when

estimating this class of property from direct simula-
tions.

default_unit()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

116 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

static default_simulation_schema(absolute_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, rela-
tive_tolerance=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, n_molecules=2000)

Returns the default calculation schema to use when estimating this class of property from direct simulations.

Parameters
• absolute_tolerance (openff.evaluator.unit.Quantity, optional) – The ab-

solute tolerance to estimate the property to within.

• relative_tolerance (float) – The tolerance (as a fraction of the properties reported
uncertainty) to estimate the property to within.

• n_molecules (int) – The number of molecules to use in the simulation.

Returns The schema to follow when estimating this property.

Return type SimulationSchema

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

id
A unique identifier string assigned to this property

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

2.32. API 117

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type dict

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

HostGuestBindingAffinity

class openff.evaluator.properties.HostGuestBindingAffinity(thermodynamic_state=None,
phase=PropertyPhase.Undefined,
substance=None, value=None,
uncertainty=None, source=None)

A class representation of a host-guest binding affinity property

__init__(thermodynamic_state=None, phase=PropertyPhase.Undefined, substance=None, value=None,
uncertainty=None, source=None)

Constructs a new PhysicalProperty object.

Parameters
• thermodynamic_state (ThermodynamicState) – The thermodynamic state that the

property was measured in.

118 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

• phase (PropertyPhase) – The phase that the property was measured in.

• substance (Substance) – The composition of the substance that was measured.

• value (openff.evaluator.unit.Quantity) – The value of the measured physical
property.

• uncertainty (openff.evaluator.unit.Quantity) – The uncertainty in the measured
value.

• source (Source) – The source of this property.

Methods

__init__([thermodynamic_state, phase, ...]) Constructs a new PhysicalProperty object.
default_paprika_schema([existing_schema, ...]) Returns the default calculation schema to use when

estimating a host-guest binding affinity measurement
with an APR calculation using the paprika package.

default_unit()

default_yank_schema([existing_schema]) Returns the default calculation schema to use when
estimating this class of property from direct simula-
tions.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

gradients The gradients of this property with respect to differ-
ent force field parameters.

id A unique identifier string assigned to this property
metadata Additional metadata associated with this property.
phase The phase / phases that this property was measured

in.
source The original source of this physical property.
substance The substance that this property was measured esti-

mated for.
thermodynamic_state The thermodynamic state that this propertywas mea-

sured / estimated at.
uncertainty The uncertainty in measured / estimated value of this

property.
value The measured / estimated value of this property.

static default_yank_schema(existing_schema=None)
Returns the default calculation schema to use when estimating this class of property from direct simulations.

Parameters existing_schema (SimulationSchema, optional) – An existing schema
whose settings to use. If set, the schema’s workflow_schema will be overwritten by this

2.32. API 119

OpenFF Evaluator Documentation

method.

Returns The schema to follow when estimating this property.

Return type SimulationSchema

classmethod default_paprika_schema(existing_schema:
Optional[openff.evaluator.layers.simulation.SimulationSchema]
= None, n_solvent_molecules: int = 2500,
n_thermalization_steps: int = 50000, n_equilibration_steps: int
= 200000, n_production_steps: int = 2500000,
dt_thermalization: openff.evaluator.utils.units.Quantity =
<Quantity(1.0, 'femtosecond')>, dt_equilibration:
openff.evaluator.utils.units.Quantity = <Quantity(2.0,
'femtosecond')>, dt_production:
openff.evaluator.utils.units.Quantity = <Quantity(2.0,
'femtosecond')>, debug: bool = False)

Returns the default calculation schema to use when estimating a host-guest binding affinity measurement
with an APR calculation using the paprika package.

Notes

• This schema requires additional metadata to be able to estimate each metadata. This metadata is au-
tomatically generated for properties loaded from the taproom package using the TaproomDataSet
object.

Parameters
• existing_schema (SimulationSchema, optional) – An existing schema whose set-

tings to use. If set, the schema’s workflow_schema will be overwritten by this method.

• n_solvent_molecules – The number of solvent molecules to add to the box.

• n_thermalization_steps – The number of thermalization simulations steps to perform.
Sample generated during this step will be discarded.

• n_equilibration_steps – The number of equilibration simulations steps to perform.
Sample generated during this step will be discarded.

• n_production_steps – The number of production simulations steps to perform. Sample
generated during this step will be used in the final free energy calculation.

• dt_thermalization – The integration timestep during thermalization

• dt_equilibration – The integration timestep during equilibration

• dt_production – The integration timestep during production

• debug – Whether to return a debug schema. This is nearly identical to the default schema,
albeit with significantly less solvent molecules (10), all simulations run in NVT and much
shorter simulation runs (500 steps). If True, the other input arguments will be ignored.

Returns The schema to follow when estimating this property.

Return type SimulationSchema

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

120 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

gradients
The gradients of this property with respect to different force field parameters. The default value of this
attribute is not set. This attribute is optional.

Type list

id
A unique identifier string assigned to this property

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

metadata
Additional metadata associated with this property. All property metadata will be made accessible to esti-
mation workflows. The default value of this attribute is not set. This attribute is optional.

Type dict

phase
The phase / phases that this property was measured in. The default value of this attribute is not set and
must be set by the user..

Type PropertyPhase

source
The original source of this physical property. The default value of this attribute is not set. This attribute is
optional.

Type Source

substance
The substance that this property was measured estimated for. The default value of this attribute is not set
and must be set by the user..

Type Substance

thermodynamic_state
The thermodynamic state that this propertywas measured / estimated at. The default value of this attribute
is not set and must be set by the user..

2.32. API 121

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

OpenFF Evaluator Documentation

Type ThermodynamicState

uncertainty
The uncertainty in measured / estimated value of this property. The default value of this attribute is not set.
This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
The measured / estimated value of this property. The default value of this attribute is not set and must be
set by the user..

Type Quantity

Substance Definition

Substance Defines the components, their amounts, and their roles
in a system.

Component Defines a single component in a chemical system, as well
as it's role within the system (if any).

Amount A representation of the amount of a given component in
a Substance.

ExactAmount The exact number of instances of a Component in a Sub-
stance.

MoleFraction The mole fraction of a Component in a Substance.

Substance

class openff.evaluator.substances.Substance
Defines the components, their amounts, and their roles in a system.

Examples

A neat liquid containing only a single component:

>>> from openff.evaluator.substances import Component, ExactAmount, MoleFraction
>>> liquid = Substance()
>>> liquid.add_component(Component(smiles='O'), MoleFraction(1.0))

A binary mixture containing two components, where the mole fractions are explicitly stated:

>>> binary_mixture = Substance()
>>> binary_mixture.add_component(Component(smiles='O'), MoleFraction(0.2))
>>> binary_mixture.add_component(Component(smiles='CO'), MoleFraction(0.8))

The infinite dilution of one molecule within a bulk solvent or mixture may also be specified by defining the exact
number of copies of that molecule, rather than a mole fraction:

122 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

>>> benzene = Component(smiles='C1=CC=CC=C1', role=Component.Role.Solute)
>>> water = Component(smiles='O', role=Component.Role.Solvent)
>>>
>>> infinite_dilution = Substance()
>>> infinite_dilution.add_component(component=benzene, amount=ExactAmount(1)) #␣
→˓Infinite dilution.
>>> infinite_dilution.add_component(component=water, amount=MoleFraction(1.0))

In this example we explicitly flag benzene as being the solute and the water component the solvent. This enables
workflow’s to easily identify key molecules of interest, such as the molecule which should be ‘grown’ into solution
during solvation free energy calculations.

__init__()

Methods

__init__()

add_component(component, amount) Add a component to the Substance.
calculate_aqueous_ionic_mole_fraction(...) Determines what mole fraction of ions is needed to

yield
from_components(*components) Creates a new Substance object from a list of compo-

nents.
from_json(file_path) Create this object from a JSON file.
get_amounts(component) Returns the amounts of the component in this sub-

stance.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_molecules_per_component(maximum_molecules)Returns the number of molecules for each component

in this substance, given a maximum total number of
molecules.

json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

amounts the amounts of the component in this substance This
attribute is read-only.

components A list of all of the components in this substance.
identifier A unique str representation of this substance, which

encodes all components and their amounts in the sub-
stance.

number_of_components The number of different components in this sub-
stance.

components
A list of all of the components in this substance. The default value of this attribute is (). This attribute is
read-only.

2.32. API 123

OpenFF Evaluator Documentation

Type tuple

amounts
the amounts of the component in this substance This attribute is read-only.

Type dict

property identifier
A unique str representation of this substance, which encodes all components and their amounts in the
substance.

Type str

property number_of_components
The number of different components in this substance.

Type int

classmethod from_components(*components)
Creates a new Substance object from a list of components. This method assumes that all components should
be present with equal mole fractions.

Parameters components (Component or str) – The components to add to the substance.
These may either be full Component objects or just the smiles representation of the com-
ponent.

Returns The substance containing the requested components in equal amounts.

Return type Substance

add_component(component, amount)
Add a component to the Substance. If the component is already present in the substance, then the mole
fraction will be added to the current mole fraction of that component.

Parameters
• component (Component) – The component to add to the system.

• amount (Amount) – The amount of this component in the substance.

get_amounts(component)
Returns the amounts of the component in this substance.

Parameters component (str or Component) – The component (or it’s identifier) to retrieve
the amount of.

Returns The amounts of the component in this substance.

Return type tuple of Amount

get_molecules_per_component(maximum_molecules, tolerance=None, count_exact_amount=True,
truncate_n_molecules=True)

Returns the number of molecules for each component in this substance, given a maximum total number of
molecules.

Parameters
• maximum_molecules (int) – The maximum number of molecules.

• tolerance (float, optional) – The tolerance within which this amount should be rep-
resented. As an example, when converting a mole fraction into a number of molecules, the
total number of molecules may not be sufficiently large enough to reproduce this amount.

• count_exact_amount (bool) – Whether components present in an exact amount (i.e.
defined with an ExactAmount) should be considered when apply the maximum number

124 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

of molecules constraint. This may be set false, for example, when building a separate
solvated protein (n = 1) and solvated protein + ligand complex (n = 2) system but wish
for both systems to have the same number of solvent molecules.

• truncate_n_molecules (bool) – Whether or not to attempt to truncate the number of
molecules in the substance if the total number is over the specified maximum. If False, an
exception will be raised in this case.

The truncation works by iteratively removing one molecule of the predominant component
up to a limit of removing a total number of molecules equal to the number of components in
the substance (e.g. for a binary substance a maximum of two molecules can be removed).
An exception is raised if the number of molecules cannot be sensibly truncated.

Returns A dictionary of molecule counts per component, where each key is a component iden-
tifier.

Return type dict of str and int

static calculate_aqueous_ionic_mole_fraction(ionic_strength)

Determines what mole fraction of ions is needed to yield an aqueous system of a given ionic strength.

Parameters ionic_strength (openff.evaluator.unit.Quantity) – The ionic string in
units of molar.

Returns The mole fraction of ions.

Return type float

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 125

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

Component

class openff.evaluator.substances.Component(smiles=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, role=Role.Solvent)

Defines a single component in a chemical system, as well as it’s role within the system (if any).

__init__(smiles=<openff.evaluator.attributes.attributes.UndefinedAttribute object>, role=Role.Solvent)
Constructs a new Component object with either a label or a smiles string, but not both.

Notes

The label and smiles arguments are mutually exclusive, and only one can be passed while the other should
be None.

Parameters
• smiles (str) – A SMILES descriptor of the component

• role (Component.Role) – The role of this component in the system.

Methods

__init__([smiles, role]) Constructs a new Component object with either a la-
bel or a smiles string, but not both.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

identifier A unique identifier for this component.
role The role of this component in the system.
smiles The SMILES pattern which describes this compo-

nent.

class Role(value)
An enum which describes the role of a component in the system, such as whether the component is a solvent,
a solute, a receptor etc.

These roles are mainly used by workflow to identify the correct species in a system, such as when doing
docking or performing solvation free energy calculations.

smiles
The SMILES pattern which describes this component. The default value of this attribute is not set and must
be set by the user.. This attribute is read-only.

126 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

role
The role of this component in the system. The default value of this attribute is Role.Solvent. This
attribute is read-only.

Type Component.Role

property identifier
A unique identifier for this component.

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Amount

class openff.evaluator.substances.Amount(value=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>)

A representation of the amount of a given component in a Substance.

__init__(value=<openff.evaluator.attributes.attributes.UndefinedAttribute object>)

Parameters value (float or int) – The value of this amount.

2.32. API 127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Methods

__init__([value])
param value The value of this amount.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_number_of_molecules(total_substance_molecules)Converts this amount to an exact number of
molecules

validate([attribute_type]) Validate the values of the attributes.

Attributes

identifier A string identifier for this amount.
value The value of this amount.

value
The value of this amount. The default value of this attribute is not set and must be set by the user.. This
attribute is read-only.

Type typing.Union[float, int]

property identifier
A string identifier for this amount.

abstract to_number_of_molecules(total_substance_molecules, tolerance=None)
Converts this amount to an exact number of molecules

Parameters
• total_substance_molecules (int) – The total number of molecules in the whole sub-

stance. This amount will contribute to a portion of this total number.

• tolerance (float, optional) – The tolerance with which this amount should be in. As
an example, when converting a mole fraction into a number of molecules, the total number
of molecules may not be sufficiently large enough to reproduce this amount.

Returns The number of molecules which this amount represents, given the to-
tal_substance_molecules.

Return type int

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

128 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ExactAmount

class openff.evaluator.substances.ExactAmount(value=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>)

The exact number of instances of a Component in a Substance.

An assumption is made that this amount is for a component which is infinitely dilute (such as ligands in binding
calculations), and hence do not contribute to the total mole fraction of a Substance.

__init__(value=<openff.evaluator.attributes.attributes.UndefinedAttribute object>)

Parameters value (float or int) – The value of this amount.

Methods

__init__([value])
param value The value of this amount.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_number_of_molecules(total_substance_molecules)Converts this amount to an exact number of
molecules

validate([attribute_type]) Validate the values of the attributes.

2.32. API 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Attributes

identifier A string identifier for this amount.
value The value of this amount.

value
The value of this amount. The default value of this attribute is not set and must be set by the user..

Type int

property identifier
A string identifier for this amount.

to_number_of_molecules(total_substance_molecules, tolerance=None)
Converts this amount to an exact number of molecules

Parameters
• total_substance_molecules (int) – The total number of molecules in the whole sub-

stance. This amount will contribute to a portion of this total number.

• tolerance (float, optional) – The tolerance with which this amount should be in. As
an example, when converting a mole fraction into a number of molecules, the total number
of molecules may not be sufficiently large enough to reproduce this amount.

Returns The number of molecules which this amount represents, given the to-
tal_substance_molecules.

Return type int

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

130 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

MoleFraction

class openff.evaluator.substances.MoleFraction(value=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>)

The mole fraction of a Component in a Substance.

__init__(value=<openff.evaluator.attributes.attributes.UndefinedAttribute object>)

Parameters value (float or int) – The value of this amount.

Methods

__init__([value])
param value The value of this amount.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_number_of_molecules(total_substance_molecules)Converts this amount to an exact number of
molecules

validate([attribute_type]) Validate the values of the attributes.

Attributes

identifier A string identifier for this amount.
value The value of this amount.

value
The value of this amount. The default value of this attribute is not set and must be set by the user..

Type float

property identifier
A string identifier for this amount.

to_number_of_molecules(total_substance_molecules, tolerance=None)
Converts this amount to an exact number of molecules

Parameters
• total_substance_molecules (int) – The total number of molecules in the whole sub-

stance. This amount will contribute to a portion of this total number.

• tolerance (float, optional) – The tolerance with which this amount should be in. As
an example, when converting a mole fraction into a number of molecules, the total number
of molecules may not be sufficiently large enough to reproduce this amount.

2.32. API 131

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

Returns The number of molecules which this amount represents, given the to-
tal_substance_molecules.

Return type int

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

State Definition

ThermodynamicState Data specifying a physical thermodynamic state obeying
Boltzmann statistics.

ThermodynamicState

class openff.evaluator.thermodynamics.ThermodynamicState(temperature=None, pressure=None)
Data specifying a physical thermodynamic state obeying Boltzmann statistics.

132 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

Equality of two thermodynamic states is determined by comparing the temperature in kelvin to within 3 decimal
places, and comparing the pressure (if defined) in pascals to within 3 decimal places.

Examples

Specify an NPT state at 298 K and 1 atm pressure.

>>> state = ThermodynamicState(temperature=298.0*unit.kelvin, pressure=1.0*unit.
→˓atmospheres)

Note that the pressure is only relevant for periodic systems.

__init__(temperature=None, pressure=None)
Constructs a new ThermodynamicState object.

Parameters
• temperature (openff.evaluator.unit.Quantity) – The external temperature

• pressure (openff.evaluator.unit.Quantity) – The external pressure

Methods

__init__([temperature, pressure]) Constructs a new ThermodynamicState object.
from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

beta Returns one divided by the temperature multiplied by
the molar gas constant

inverse_beta Returns the temperature multiplied by the molar gas
constant

pressure The external pressure.
temperature The external temperature.

property inverse_beta
Returns the temperature multiplied by the molar gas constant

property beta
Returns one divided by the temperature multiplied by the molar gas constant

temperature
The external temperature. The default value of this attribute is not set and must be set by the user..

Type Quantity

2.32. API 133

OpenFF Evaluator Documentation

pressure
The external pressure. The default value of this attribute is not set. This attribute is optional.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

2.32.4 Data Set API

PhysicalPropertyDataSet An object for storing and curating data sets of both phys-
ical property measurements and estimated.

PhysicalPropertyDataSet

class openff.evaluator.datasets.PhysicalPropertyDataSet
An object for storing and curating data sets of both physical property measurements and estimated. This class
defines a number of convenience functions for filtering out unwanted properties, and for generating general
statistics (such as the number of properties per substance) about the set.

__init__()
Constructs a new PhysicalPropertyDataSet object.

134 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Methods

__init__() Constructs a new PhysicalPropertyDataSet object.
add_properties(*physical_properties[, validate]) Adds a physical property to the data set.
from_json(file_path) Create this object from a JSON file.
from_pandas(data_frame) Constructs a data set object from a pandas

DataFrame object.
json([file_path, format]) Creates a JSON representation of this class.
merge(data_set[, validate]) Merge another data set into the current one.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
properties_by_substance(substance) A generator which may be used to loop over all of

the properties which were measured for a particular
substance.

properties_by_type(property_type) A generator which may be used to loop over all of
properties of a particular type, e.g.

to_pandas() Converts a PhysicalPropertyDataSet to a pan-
das.DataFrame object with columns of

validate() Checks to ensure that all properties within the set are
valid physical property object.

Attributes

properties A list of all of the properties within this set.
property_types The types of property within this data set.
sources The sources from which the properties in this data set

were gathered.
substances The substances for which the properties in this data

set were collected for.

property properties
A list of all of the properties within this set.

Type tuple of PhysicalProperty

property property_types
The types of property within this data set.

Type set of str

property substances
The substances for which the properties in this data set were collected for.

Type set of Substance

property sources
The sources from which the properties in this data set were gathered.

Type set of Source

merge(data_set, validate=True)
Merge another data set into the current one.

Parameters
• data_set (PhysicalPropertyDataSet) – The secondary data set to merge into this one.

2.32. API 135

OpenFF Evaluator Documentation

• validate (bool) – Whether to validate the other data set before merging.

add_properties(*physical_properties, validate=True)
Adds a physical property to the data set.

Parameters
• physical_properties (PhysicalProperty) – The physical property to add.

• validate (bool) – Whether to validate the properties before adding them to the set.

properties_by_substance(substance)
A generator which may be used to loop over all of the properties which were measured for a particular
substance.

Parameters substance (Substance) – The substance of interest.

Returns
Return type generator of PhysicalProperty

properties_by_type(property_type)
A generator which may be used to loop over all of properties of a particular type, e.g. all “Density” prop-
erties.

Parameters property_type (str or type of PhysicalProperty) – The type of property
of interest. This may either be the string class name of the property or the class type.

Returns
Return type generator of PhysicalProperty

validate()
Checks to ensure that all properties within the set are valid physical property object.

to_pandas()
Converts a PhysicalPropertyDataSet to a pandas.DataFrame object with columns of

• ‘Id’

• ‘Temperature (K)’

• ‘Pressure (kPa)’

• ‘Phase’

• ‘N Components’

• ‘Component 1’

• ‘Role 1’

• ‘Mole Fraction 1’

• ‘Exact Amount 1’

• . . .

• ‘Component N’

• ‘Role N’

• ‘Mole Fraction N’

• ‘Exact Amount N’

• ‘<Property 1> Value (<default unit>)’

• ‘<Property 1> Uncertainty / (<default unit>)’

136 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• . . .

• ‘<Property N> Value / (<default unit>)’

• ‘<Property N> Uncertainty / (<default unit>)’

• ‘Source’

where ‘Component X’ is a column containing the smiles representation of component X.

Returns The create data frame.

Return type pandas.DataFrame

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_pandas(data_frame: pandas.core.frame.DataFrame)→
openff.evaluator.datasets.datasets.PhysicalPropertyDataSet

Constructs a data set object from a pandas DataFrame object.

Notes

• All physical properties are assumed to be source from experimental measurements.

• Currently this method onlu supports data frames containing properties which are built-in to the frame-
work (e.g. Density).

• This method assumes the data frame has a structure identical to that produced by the
PhysicalPropertyDataSet.to_pandas function.

Parameters data_frame – The data frame to construct the data set from.

Returns
Return type The constructed data set.

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

2.32. API 137

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

NIST ThermoML Archive

ThermoMLDataSet A dataset of physical property measurements created
from a ThermoML dataset.

register_thermoml_property A function used to map a property from the ThermoML
archive to an internal PhysicalProperty object of the cor-
rect type.

thermoml_property A decorator which wraps around the regis-
ter_thermoml_property method.

ThermoMLDataSet

class openff.evaluator.datasets.thermoml.ThermoMLDataSet
A dataset of physical property measurements created from a ThermoML dataset.

Examples

For example, we can use the DOI 10.1016/j.jct.2005.03.012 as a key for retrieving the dataset from the Ther-
moML Archive:

>>> dataset = ThermoMLDataSet.from_doi('10.1016/j.jct.2005.03.012')

You can also specify multiple ThermoML Archive keys to create a dataset from multiple ThermoML files:

>>> thermoml_keys = ['10.1021/acs.jced.5b00365', '10.1021/acs.jced.5b00474']
>>> dataset = ThermoMLDataSet.from_doi(*thermoml_keys)

__init__()
Constructs a new ThermoMLDataSet object.

Methods

__init__() Constructs a new ThermoMLDataSet object.
add_properties(*physical_properties[, validate]) Adds a physical property to the data set.
from_doi(*doi_list) Load a ThermoML data set from a list of DOIs
from_file(*file_list) Load a ThermoML data set from a list of files
from_json(file_path) Create this object from a JSON file.
from_pandas(data_frame) Constructs a data set object from a pandas

DataFrame object.
from_url(*url_list) Load a ThermoML data set from a list of URLs
from_xml(xml, default_source) Load a ThermoML data set from an xml object.
json([file_path, format]) Creates a JSON representation of this class.
merge(data_set[, validate]) Merge another data set into the current one.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
properties_by_substance(substance) A generator which may be used to loop over all of

the properties which were measured for a particular
substance.

properties_by_type(property_type) A generator which may be used to loop over all of
properties of a particular type, e.g.

continues on next page

138 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 60 – continued from previous page
to_pandas() Converts a PhysicalPropertyDataSet to a pan-

das.DataFrame object with columns of
validate() Checks to ensure that all properties within the set are

valid physical property object.

Attributes

properties A list of all of the properties within this set.
property_types The types of property within this data set.
registered_properties

sources The sources from which the properties in this data set
were gathered.

substances The substances for which the properties in this data
set were collected for.

classmethod from_doi(*doi_list)
Load a ThermoML data set from a list of DOIs

Parameters doi_list (str) – The list of DOIs to pull data from

Returns The loaded data set.

Return type ThermoMLDataSet

classmethod from_url(*url_list)
Load a ThermoML data set from a list of URLs

Parameters url_list (str) – The list of URLs to pull data from

Returns The loaded data set.

Return type ThermoMLDataSet

classmethod from_file(*file_list)
Load a ThermoML data set from a list of files

Parameters file_list (str) – The list of files to pull data from

Returns The loaded data set.

Return type ThermoMLDataSet

add_properties(*physical_properties, validate=True)
Adds a physical property to the data set.

Parameters
• physical_properties (PhysicalProperty) – The physical property to add.

• validate (bool) – Whether to validate the properties before adding them to the set.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

2.32. API 139

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_pandas(data_frame: pandas.core.frame.DataFrame)→
openff.evaluator.datasets.datasets.PhysicalPropertyDataSet

Constructs a data set object from a pandas DataFrame object.

Notes

• All physical properties are assumed to be source from experimental measurements.

• Currently this method onlu supports data frames containing properties which are built-in to the frame-
work (e.g. Density).

• This method assumes the data frame has a structure identical to that produced by the
PhysicalPropertyDataSet.to_pandas function.

Parameters data_frame – The data frame to construct the data set from.

Returns
Return type The constructed data set.

classmethod from_xml(xml, default_source)
Load a ThermoML data set from an xml object.

Parameters
• xml (str) – The xml string to parse.

• default_source (Source) – The source to use if one cannot be parsed from the archive
itself.

Returns The loaded ThermoML data set.

Return type ThermoMLDataSet

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(data_set, validate=True)
Merge another data set into the current one.

Parameters
• data_set (PhysicalPropertyDataSet) – The secondary data set to merge into this one.

• validate (bool) – Whether to validate the other data set before merging.

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

140 Chapter 2. Supported Physical Properties

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

property properties
A list of all of the properties within this set.

Type tuple of PhysicalProperty

properties_by_substance(substance)
A generator which may be used to loop over all of the properties which were measured for a particular
substance.

Parameters substance (Substance) – The substance of interest.

Returns
Return type generator of PhysicalProperty

properties_by_type(property_type)
A generator which may be used to loop over all of properties of a particular type, e.g. all “Density” prop-
erties.

Parameters property_type (str or type of PhysicalProperty) – The type of property
of interest. This may either be the string class name of the property or the class type.

Returns
Return type generator of PhysicalProperty

property property_types
The types of property within this data set.

Type set of str

property sources
The sources from which the properties in this data set were gathered.

Type set of Source

property substances
The substances for which the properties in this data set were collected for.

Type set of Substance

to_pandas()
Converts a PhysicalPropertyDataSet to a pandas.DataFrame object with columns of

• ‘Id’

• ‘Temperature (K)’

• ‘Pressure (kPa)’

• ‘Phase’

• ‘N Components’

• ‘Component 1’

• ‘Role 1’

• ‘Mole Fraction 1’

• ‘Exact Amount 1’

• . . .

• ‘Component N’

• ‘Role N’

2.32. API 141

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• ‘Mole Fraction N’

• ‘Exact Amount N’

• ‘<Property 1> Value (<default unit>)’

• ‘<Property 1> Uncertainty / (<default unit>)’

• . . .

• ‘<Property N> Value / (<default unit>)’

• ‘<Property N> Uncertainty / (<default unit>)’

• ‘Source’

where ‘Component X’ is a column containing the smiles representation of component X.

Returns The create data frame.

Return type pandas.DataFrame

validate()
Checks to ensure that all properties within the set are valid physical property object.

register_thermoml_property

openff.evaluator.datasets.thermoml.register_thermoml_property(thermoml_string,
supported_phases,
property_class=None,
conversion_function=None)

A function used to map a property from the ThermoML archive to an internal PhysicalProperty object of the
correct type.

This function takes either a specific class (e.g. Density) which maps directly to the specified thermoml_string,
or a a function which maps a ThermoMLProperty into a PhysicalProperty allowing fuller control.

Parameters
• thermoml_string (str) – The ThermoML string identifier (ePropName) for this property.

• supported_phases (PropertyPhase:) – An enum which encodes all of the phases for
which this property supports being estimated in.

• property_class (type of PhysicalProperty, optional) – The class associated
with this physical property. This argument is mutually exclusive with the conver-
sion_function argument.

• conversion_function (function) – A function which maps a ThermoMLProperty into
a PhysicalProperty. This argument is mutually exclusive with the property_class argument.

thermoml_property

openff.evaluator.datasets.thermoml.thermoml_property(thermoml_string, supported_phases)
A decorator which wraps around the register_thermoml_property method.

Parameters
• thermoml_string (str) – The ThermoML string identifier (ePropName) for this property.

• supported_phases (PropertyPhase:) – An enum which encodes all of the phases for
which this property supports being estimated in.

142 Chapter 2. Supported Physical Properties

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Taproom

TaproomDataSet A dataset of host-guest binding affinity measurements
which sources its data from the taproom package.

TaproomSource Contains metadata about the source of a host-guest bind-
ing affinity measurement which was pulled from the
taproom package.

TaproomDataSet

class openff.evaluator.datasets.taproom.TaproomDataSet(host_codes: Optional[List[str]] = None,
guest_codes: Optional[List[str]] = None,
default_ionic_strength: Op-
tional[openff.evaluator.utils.units.Quantity]
= <Quantity(150, 'millimolar')>,
negative_buffer_ion: str = '[Cl-]',
positive_buffer_ion: str = '[Na+]',
attach_apr_meta_data: bool = True)

A dataset of host-guest binding affinity measurements which sources its data from the taproom package.

The loaded HostGuestBindingAffinity properties will also be optionally (enabled by default) initialized with
the metadata required by the APR estimation workflow.

__init__(host_codes: Optional[List[str]] = None, guest_codes: Optional[List[str]] = None,
default_ionic_strength: Optional[openff.evaluator.utils.units.Quantity] = <Quantity(150,
'millimolar')>, negative_buffer_ion: str = '[Cl-]', positive_buffer_ion: str = '[Na+]',
attach_apr_meta_data: bool = True)

Parameters
• host_codes – The three letter codes of the host molecules to load from taproom If no list

is provided, all hosts will be loaded.

• guest_codes – The three letter codes of the guest molecules to load from taproom. If no
list is provided, all guests will be loaded.

• default_ionic_strength – The default ionic strength to use for measurements. The
value specified in taproom will be ignored and this value used instead. If no value is
provided, no buffer will be included.

• negative_buffer_ion – The SMILES pattern of the negative buffer ion to use. The
value specified in taproom will be ignored and this value used instead.

• positive_buffer_ion – The SMILES pattern of the positive buffer ion to use. The value
specified in taproom will be ignored and this value used instead.

• attach_apr_meta_data – Whether to add the metadata required for an APR based cal-
culation using the paprika based workflow.

2.32. API 143

https://github.com/slochower/host-guest-benchmarks
https://github.com/slochower/host-guest-benchmarks

OpenFF Evaluator Documentation

Methods

__init__([host_codes, guest_codes, ...])
param host_codes The three letter

codes of the host molecules to load
from taproom

add_properties(*physical_properties[, validate]) Adds a physical property to the data set.
from_json(file_path) Create this object from a JSON file.
from_pandas(data_frame) Constructs a data set object from a pandas

DataFrame object.
json([file_path, format]) Creates a JSON representation of this class.
merge(data_set[, validate]) Merge another data set into the current one.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
properties_by_substance(substance) A generator which may be used to loop over all of

the properties which were measured for a particular
substance.

properties_by_type(property_type) A generator which may be used to loop over all of
properties of a particular type, e.g.

to_pandas() Converts a PhysicalPropertyDataSet to a pan-
das.DataFrame object with columns of

validate() Checks to ensure that all properties within the set are
valid physical property object.

Attributes

properties A list of all of the properties within this set.
property_types The types of property within this data set.
sources The sources from which the properties in this data set

were gathered.
substances The substances for which the properties in this data

set were collected for.

add_properties(*physical_properties, validate=True)
Adds a physical property to the data set.

Parameters
• physical_properties (PhysicalProperty) – The physical property to add.

• validate (bool) – Whether to validate the properties before adding them to the set.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_pandas(data_frame: pandas.core.frame.DataFrame)→
openff.evaluator.datasets.datasets.PhysicalPropertyDataSet

Constructs a data set object from a pandas DataFrame object.

144 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

OpenFF Evaluator Documentation

Notes

• All physical properties are assumed to be source from experimental measurements.

• Currently this method onlu supports data frames containing properties which are built-in to the frame-
work (e.g. Density).

• This method assumes the data frame has a structure identical to that produced by the
PhysicalPropertyDataSet.to_pandas function.

Parameters data_frame – The data frame to construct the data set from.

Returns
Return type The constructed data set.

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(data_set, validate=True)
Merge another data set into the current one.

Parameters
• data_set (PhysicalPropertyDataSet) – The secondary data set to merge into this one.

• validate (bool) – Whether to validate the other data set before merging.

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

property properties
A list of all of the properties within this set.

Type tuple of PhysicalProperty

properties_by_substance(substance)
A generator which may be used to loop over all of the properties which were measured for a particular
substance.

Parameters substance (Substance) – The substance of interest.

Returns
Return type generator of PhysicalProperty

properties_by_type(property_type)
A generator which may be used to loop over all of properties of a particular type, e.g. all “Density” prop-
erties.

2.32. API 145

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

Parameters property_type (str or type of PhysicalProperty) – The type of property
of interest. This may either be the string class name of the property or the class type.

Returns
Return type generator of PhysicalProperty

property property_types
The types of property within this data set.

Type set of str

property sources
The sources from which the properties in this data set were gathered.

Type set of Source

property substances
The substances for which the properties in this data set were collected for.

Type set of Substance

to_pandas()
Converts a PhysicalPropertyDataSet to a pandas.DataFrame object with columns of

• ‘Id’

• ‘Temperature (K)’

• ‘Pressure (kPa)’

• ‘Phase’

• ‘N Components’

• ‘Component 1’

• ‘Role 1’

• ‘Mole Fraction 1’

• ‘Exact Amount 1’

• . . .

• ‘Component N’

• ‘Role N’

• ‘Mole Fraction N’

• ‘Exact Amount N’

• ‘<Property 1> Value (<default unit>)’

• ‘<Property 1> Uncertainty / (<default unit>)’

• . . .

• ‘<Property N> Value / (<default unit>)’

• ‘<Property N> Uncertainty / (<default unit>)’

• ‘Source’

where ‘Component X’ is a column containing the smiles representation of component X.

Returns The create data frame.

Return type pandas.DataFrame

146 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

OpenFF Evaluator Documentation

validate()
Checks to ensure that all properties within the set are valid physical property object.

TaproomSource

class openff.evaluator.datasets.taproom.TaproomSource(doi='', comment='', technique='',
host_identifier='', guest_identifier='')

Contains metadata about the source of a host-guest binding affinity measurement which was pulled from the
taproom package.

__init__(doi='', comment='', technique='', host_identifier='', guest_identifier='')
Constructs a new MeasurementSource object.

Parameters
• doi (str) – The DOI for the source

• comment (str) – A description of where the value came from in the source.

• technique (str) – The technique used to measure this value.

• host_identifier (str) – The unique three letter host identifier

• guest_identifier (str) – The unique three letter guest identifier

Methods

__init__([doi, comment, technique, ...]) Constructs a new MeasurementSource object.
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

2.32. API 147

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

Return type Any

Data Set Curation

CurationComponent A base component for curation components which apply
a particular operation (such as filtering or data conver-
sion) to a data set.

CurationComponentSchema A base class for schemas which specify how particular
curation components should be applied to a data set.

CurationComponent

class openff.evaluator.datasets.curation.components.CurationComponent
A base component for curation components which apply a particular operation (such as filtering or data conver-
sion) to a data set.

__init__()

Methods

__init__()

apply() Apply this curation component to a data set.

classmethod apply(data_set: openff.evaluator.datasets.datasets.PhysicalPropertyDataSet, schema:
openff.evaluator.datasets.curation.components.components.CurationComponentSchema,
n_processes: int = 1)→ openff.evaluator.datasets.datasets.PhysicalPropertyDataSet

classmethod apply(data_set: pandas.core.frame.DataFrame, schema:
openff.evaluator.datasets.curation.components.components.CurationComponentSchema,
n_processes: int = 1)→ pandas.core.frame.DataFrame

Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

148 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

OpenFF Evaluator Documentation

CurationComponentSchema

class openff.evaluator.datasets.curation.components.CurationComponentSchema(*args: Any,
**kwargs: Any)

A base class for schemas which specify how particular curation components should be applied to a data set.

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

CurationWorkflow A convenience class for applying a set of curation com-
ponents sequentially to a data set.

CurationWorkflowSchema A schemas which encodes how a set of curation compo-
nents should be applied sequentially to a data set.

CurationWorkflow

class openff.evaluator.datasets.curation.workflow.CurationWorkflow
A convenience class for applying a set of curation components sequentially to a data set.

__init__()

Methods

__init__()

apply() Apply each component of this curation workflow to
an initial data set in sequence.

classmethod apply(data_set: openff.evaluator.datasets.datasets.PhysicalPropertyDataSet, schema:
openff.evaluator.datasets.curation.workflow.CurationWorkflowSchema, n_processes:
int = 1)→ openff.evaluator.datasets.datasets.PhysicalPropertyDataSet

classmethod apply(data_set: pandas.core.frame.DataFrame, schema:
openff.evaluator.datasets.curation.workflow.CurationWorkflowSchema, n_processes:
int = 1)→ pandas.core.frame.DataFrame

Apply each component of this curation workflow to an initial data set in sequence.

Parameters
• data_set – The data set to apply the workflow to. This may either be a data set object or

it’s pandas representation.

• schema – The schema which defines the components to apply.

• n_processes – The number of processes that each component is allowed to parallelize
across.

Returns

2.32. API 149

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

OpenFF Evaluator Documentation

Return type The data set which has had the curation workflow applied to it.

CurationWorkflowSchema

class openff.evaluator.datasets.curation.workflow.CurationWorkflowSchema(*args: Any,
**kwargs: Any)

A schemas which encodes how a set of curation components should be applied sequentially to a data set.

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

component_schemas

Filtering

FilterDuplicatesSchema

FilterDuplicates A component to remove duplicate data points (within a
specified precision) from a data set.

FilterByTemperatureSchema

FilterByTemperature A component which will filter out data points which
were measured outside of a specified temperature range

FilterByPressureSchema

FilterByPressure A component which will filter out data points which
were measured outside of a specified pressure range.

FilterByMoleFractionSchema

FilterByMoleFraction A component which will filter out data points which
were measured outside of a specified mole fraction
range.

FilterByRacemicSchema

FilterByRacemic A component which will filter out data points which
were measured for racemic mixtures.

FilterByElementsSchema

FilterByElements A component which will filter out data points which
were measured for systems which contain specific ele-
ments.

continues on next page

150 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Table 73 – continued from previous page
FilterByPropertyTypesSchema

FilterByPropertyTypes A component which will apply a filter which only retains
properties of specified types.

FilterByStereochemistrySchema

FilterByStereochemistry A component which filters out data points measured for
systems whereby the stereochemistry of a number of
components is undefined.

FilterByChargedSchema

FilterByCharged A component which filters out data points measured
for substances where any of the constituent components
have a net non-zero charge.

FilterByIonicLiquidSchema

FilterByIonicLiquid A component which filters out data points measured for
substances which contain or are classed as an ionic liq-
uids.

FilterBySmilesSchema

FilterBySmiles A component which filters the data set so that it only con-
tains either a specific set of smiles, or does not contain
any of a set of specifically excluded smiles.

FilterBySmirksSchema

FilterBySmirks A component which filters a data set so that it only con-
tains measurements made for molecules which contain
(or don't) a set of chemical environments represented by
SMIRKS patterns.

FilterByNComponentsSchema

FilterByNComponents A component which filters out data points measured for
systems with specified number of components.

FilterBySubstancesSchema

FilterBySubstances A component which filters the data set so that it only
contains properties measured for particular substances.

FilterByEnvironmentsSchema

FilterByEnvironments A component which filters a data set so that it only con-
tains measurements made for substances which contain
specific chemical environments.

2.32. API 151

OpenFF Evaluator Documentation

FilterDuplicatesSchema

class openff.evaluator.datasets.curation.components.filtering.FilterDuplicatesSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

mole_fraction_precision

pressure_precision

temperature_precision

type

FilterDuplicates

class openff.evaluator.datasets.curation.components.filtering.FilterDuplicates
A component to remove duplicate data points (within a specified precision) from a data set.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

152 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Returns
Return type The data set which has had the component applied to it.

FilterByTemperatureSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByTemperatureSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

maximum_temperature

minimum_temperature

type

FilterByTemperature

class openff.evaluator.datasets.curation.components.filtering.FilterByTemperature
A component which will filter out data points which were measured outside of a specified temperature range

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize

2.32. API 153

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

across.

Returns
Return type The data set which has had the component applied to it.

FilterByPressureSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByPressureSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

maximum_pressure

minimum_pressure

type

FilterByPressure

class openff.evaluator.datasets.curation.components.filtering.FilterByPressure
A component which will filter out data points which were measured outside of a specified pressure range.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

154 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByMoleFractionSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByMoleFractionSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

mole_fraction_ranges

type

FilterByMoleFraction

class openff.evaluator.datasets.curation.components.filtering.FilterByMoleFraction
A component which will filter out data points which were measured outside of a specified mole fraction range.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

2.32. API 155

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByRacemicSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByRacemicSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

type

FilterByRacemic

class openff.evaluator.datasets.curation.components.filtering.FilterByRacemic
A component which will filter out data points which were measured for racemic mixtures.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

156 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Returns
Return type The data set which has had the component applied to it.

FilterByElementsSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByElementsSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

allowed_elements

forbidden_elements

type

FilterByElements

class openff.evaluator.datasets.curation.components.filtering.FilterByElements
A component which will filter out data points which were measured for systems which contain specific elements.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

2.32. API 157

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByPropertyTypesSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByPropertyTypesSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

n_components

property_types

strict

type

FilterByPropertyTypes

class openff.evaluator.datasets.curation.components.filtering.FilterByPropertyTypes
A component which will apply a filter which only retains properties of specified types.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters

158 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByStereochemistrySchema

class openff.evaluator.datasets.curation.components.filtering.FilterByStereochemistrySchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

type

FilterByStereochemistry

class openff.evaluator.datasets.curation.components.filtering.FilterByStereochemistry
A component which filters out data points measured for systems whereby the stereochemistry of a number of
components is undefined.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

2.32. API 159

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByChargedSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByChargedSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

type

FilterByCharged

class openff.evaluator.datasets.curation.components.filtering.FilterByCharged
A component which filters out data points measured for substances where any of the constituent components
have a net non-zero charge.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

160 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByIonicLiquidSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByIonicLiquidSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

type

FilterByIonicLiquid

class openff.evaluator.datasets.curation.components.filtering.FilterByIonicLiquid
A component which filters out data points measured for substances which contain or are classed as an ionic
liquids.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize

2.32. API 161

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

across.

Returns
Return type The data set which has had the component applied to it.

FilterBySmilesSchema

class openff.evaluator.datasets.curation.components.filtering.FilterBySmilesSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

allow_partial_inclusion

smiles_to_exclude

smiles_to_include

type

FilterBySmiles

class openff.evaluator.datasets.curation.components.filtering.FilterBySmiles
A component which filters the data set so that it only contains either a specific set of smiles, or does not contain
any of a set of specifically excluded smiles.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters

162 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterBySmirksSchema

class openff.evaluator.datasets.curation.components.filtering.FilterBySmirksSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

allow_partial_inclusion

smirks_to_exclude

smirks_to_include

type

FilterBySmirks

class openff.evaluator.datasets.curation.components.filtering.FilterBySmirks
A component which filters a data set so that it only contains measurements made for molecules which contain
(or don’t) a set of chemical environments represented by SMIRKS patterns.

__init__()

2.32. API 163

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByNComponentsSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByNComponentsSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

n_components

type

164 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

FilterByNComponents

class openff.evaluator.datasets.curation.components.filtering.FilterByNComponents
A component which filters out data points measured for systems with specified number of components.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterBySubstancesSchema

class openff.evaluator.datasets.curation.components.filtering.FilterBySubstancesSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

2.32. API 165

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Attributes

substances_to_exclude

substances_to_include

type

FilterBySubstances

class openff.evaluator.datasets.curation.components.filtering.FilterBySubstances
A component which filters the data set so that it only contains properties measured for particular substances.

This method is similar to filter_by_smiles, however here we explicitly define the full substances compositions,
rather than individual smiles which should either be included or excluded.

Examples

To filter the data set to only include measurements for pure methanol, pure benzene or an aqueous ethanol mix:

>>> schema = FilterBySubstancesSchema(
>>> substances_to_include=[
>>> ('CO',),
>>> ('C1=CC=CC=C1',),
>>> ('CCO', 'O')
>>>]
>>>)

To filter out measurements made for an aqueous mix of benzene:

>>> schema = FilterBySubstancesSchema(
>>> substances_to_exclude=[('O', 'C1=CC=CC=C1')]
>>>)

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

166 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FilterByEnvironmentsSchema

class openff.evaluator.datasets.curation.components.filtering.FilterByEnvironmentsSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

at_least_one_environment

environments

per_component_environments

strictly_specified_environments

type

FilterByEnvironments

class openff.evaluator.datasets.curation.components.filtering.FilterByEnvironments
A component which filters a data set so that it only contains measurements made for substances which contain
specific chemical environments.

__init__()

2.32. API 167

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

FreeSolv

ImportFreeSolvSchema

ImportFreeSolv A component which will import the latest version of the
FreeSolv data set from the GitHub repository where it is
stored.

ImportFreeSolvSchema

class openff.evaluator.datasets.curation.components.freesolv.ImportFreeSolvSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

168 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Attributes

type

ImportFreeSolv

class openff.evaluator.datasets.curation.components.freesolv.ImportFreeSolv
A component which will import the latest version of the FreeSolv data set from the GitHub repository where it
is stored.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

ThermoML

ImportThermoMLDataSchema

ImportThermoMLData A component which will import all supported data from
the NIST ThermoML archive for (optionally) specified
journals.

ImportThermoMLDataSchema

class openff.evaluator.datasets.curation.components.thermoml.ImportThermoMLDataSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

2.32. API 169

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Methods

__init__(*args, **kwargs)

Attributes

cache_file_name

journal_names

retain_uncertainties

root_archive_url

type

ImportThermoMLData

class openff.evaluator.datasets.curation.components.thermoml.ImportThermoMLData
A component which will import all supported data from the NIST ThermoML archive for (optionally) specified
journals.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

Data Point Selection

170 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

SelectSubstancesSchema

SelectSubstances A component for selecting a specified number data
points which were measured for systems containing a
specified set of chemical functionalities.

SelectDataPointsSchema

SelectDataPoints A component for selecting a set of data points which are
measured as close as possible to a particular set of states.

State

TargetState

FingerPrintType An enumeration.

SelectSubstancesSchema

class openff.evaluator.datasets.curation.components.selection.SelectSubstancesSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

finger_print_type

n_per_environment

per_property

substances_to_exclude

target_environments

type

2.32. API 171

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

SelectSubstances

class openff.evaluator.datasets.curation.components.selection.SelectSubstances
A component for selecting a specified number data points which were measured for systems containing a specified
set of chemical functionalities.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

SelectDataPointsSchema

class openff.evaluator.datasets.curation.components.selection.SelectDataPointsSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

172 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Attributes

target_states

type

SelectDataPoints

class openff.evaluator.datasets.curation.components.selection.SelectDataPoints
A component for selecting a set of data points which are measured as close as possible to a particular set of states.

The points will be chosen so as to try and maximise the number of properties measured at the same condition
(e.g. ideally we would have a data point for each property at T=298.15 and p=1atm) as this will maximise the
chances that we can extract all properties from a single simulation.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

State

class openff.evaluator.datasets.curation.components.selection.State(*args: Any, **kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

2.32. API 173

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Methods

__init__(*args, **kwargs)

Attributes

mole_fractions

pressure

temperature

TargetState

class openff.evaluator.datasets.curation.components.selection.TargetState(*args: Any,
**kwargs: Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

property_types

property_types_validator

states

174 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

FingerPrintType

class openff.evaluator.datasets.curation.components.selection.FingerPrintType(value)
An enumeration.

__init__()

Attributes

Tree

MACCS166

Data Conversion

ConvertExcessDensityDataSchema

ConvertExcessDensityData A component for converting binary mass density data
to excess molar volume data and vice versa where pure
density data measured for the components is available.

ConvertExcessDensityDataSchema

class openff.evaluator.datasets.curation.components.conversion.ConvertExcessDensityDataSchema(*args:
Any,
**kwargs:
Any)

__init__(*args: Any, **kwargs: Any)→ None

Methods

__init__(*args, **kwargs)

Attributes

pressure_precision

temperature_precision

type

2.32. API 175

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

ConvertExcessDensityData

class openff.evaluator.datasets.curation.components.conversion.ConvertExcessDensityData
A component for converting binary mass density data to excess molar volume data and vice versa where pure
density data measured for the components is available.

Notes

This protocol may result in duplicate data points being generated. It is recommended to apply the de-duplication
filter after this component has been applied.

__init__()

Methods

__init__()

apply(data_set, schema[, n_processes]) Apply this curation component to a data set.

classmethod apply(data_set, schema, n_processes=1)
Apply this curation component to a data set.

Parameters
• data_set – The data frame to apply the component to.

• schema – The schema which defines how this component should be applied.

• n_processes – The number of processes that this component is allowed to parallelize
across.

Returns
Return type The data set which has had the component applied to it.

2.32.5 Force Field API

ForceFieldSource A helper object to define the source of a force field and
any associated meta data, such as version, file paths, or
generation options.

SmirnoffForceFieldSource A wrapper around force fields based on the SMIRks Na-
tive Open Force Field (SMIRNOFF) specification.

TLeapForceFieldSource A wrapper around Amber force fields which may be ap-
plied via the tleap software package.

LigParGenForceFieldSource A wrapper and the OPLSAAM force field which can be
applied via the LigParGen server.

176 Chapter 2. Supported Physical Properties

https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html
https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html
http://zarbi.chem.yale.edu/ligpargen/

OpenFF Evaluator Documentation

ForceFieldSource

class openff.evaluator.forcefield.ForceFieldSource
A helper object to define the source of a force field and any associated meta data, such as version, file paths, or
generation options.

Notes

It is likely that this class and classes based off of it will not be permanent fixtures of the framework, but rather
will exist until the force fields can be stored in a uniform format / object model.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

2.32. API 177

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

SmirnoffForceFieldSource

class openff.evaluator.forcefield.SmirnoffForceFieldSource(inner_xml=None)
A wrapper around force fields based on the SMIRks Native Open Force Field (SMIRNOFF) specification.

__init__(inner_xml=None)
Constructs a new SmirnoffForceFieldSource object

Parameters inner_xml (str, optional) – A string containing the xml representation of the
force field.

Methods

__init__([inner_xml]) Constructs a new SmirnoffForceFieldSource object
from_json(file_path) Create this object from a JSON file.
from_object(force_field) Creates a new SmirnoffForceFieldSource from an ex-

isting ForceField object
from_path (file_path) Creates a new SmirnoffForceFieldSource from the

file path to a ForceField object.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
to_force_field() Returns the SMIRNOFF force field created from this

source.

to_force_field()
Returns the SMIRNOFF force field created from this source.

Returns The created force field.

Return type openff.toolkit.typing.engines.smirnoff.ForceField

classmethod from_object(force_field)
Creates a new SmirnoffForceFieldSource from an existing ForceField object

Notes

All cosmetic attributes will be discarded.

Parameters force_field (openff.toolkit.typing.engines.smirnoff.ForceField) –
The existing force field.

Returns The created object.

Return type SmirnoffForceFieldSource

classmethod from_path(file_path)
Creates a new SmirnoffForceFieldSource from the file path to a ForceField object.

178 Chapter 2. Supported Physical Properties

https://open-forcefield-toolkit.readthedocs.io/en/latest/smirnoff.html
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

All cosmetic attributes will be discarded.

Parameters file_path (str) – The file path to the force field object. This may also be the
name of a file which can be loaded via an entry point.

Returns The created object.

Return type SmirnoffForceFieldSource

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

TLeapForceFieldSource

class openff.evaluator.forcefield.TLeapForceFieldSource(leap_source='leaprc.gaff2',
cutoff=<Quantity(9.0, 'angstrom')>)

A wrapper around Amber force fields which may be applied via the tleap software package.

Notes

Currently this only supports force fields which are installed alongside tleap.

__init__(leap_source='leaprc.gaff2', cutoff=<Quantity(9.0, 'angstrom')>)
Constructs a new TLeapForceFieldSource object

Parameters
• leap_source (str) – The parameter file which should be sourced by leap when applying

the force field. Currently only ‘leaprc.gaff’ and ‘leaprc.gaff2’ are supported.

• cutoff (openff.evaluator.unit.Quantity) – The non-bonded interaction cutoff.

2.32. API 179

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Examples

To create a source for the GAFF force field with tip3p water:

>>> amber_gaff_source = TLeapForceFieldSource('leaprc.gaff')

To create a source for the GAFF 2 force field with tip3p water:

>>> amber_gaff_2_source = TLeapForceFieldSource('leaprc.gaff2')

Methods

__init__([leap_source, cutoff]) Constructs a new TLeapForceFieldSource object
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

Attributes

cutoff The non-bonded interaction cutoff.
leap_source The parameter file which should be sourced by leap

when applying the force field.

property leap_source
The parameter file which should be sourced by leap when applying the force field.

Type list of str

property cutoff
The non-bonded interaction cutoff.

Type openff.evaluator.unit.Quantity

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

180 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

LigParGenForceFieldSource

class openff.evaluator.forcefield.LigParGenForceFieldSource(preferred_charge_model=ChargeModel.CM1A_1_14_LBCC,
cutoff=<Quantity(9.0, 'angstrom')>,
request_url='', download_url='')

A wrapper and the OPLSAAM force field which can be applied via the LigParGen server.

References

[1] Potential energy functions for atomic-level simulations of water and organic and biomolecular sys-
tems. Jorgensen, W. L.; Tirado-Rives, J. Proc. Nat. Acad. Sci. USA 2005, 102, 6665-6670

[2] 1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simu-
lations. Dodda, L. S.; Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B, 2017, 121 (15),
pp 3864-3870

[3] LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Dodda, L.
S.;Cabeza de Vaca, I.; Tirado-Rives, J.; Jorgensen, W. L. Nucleic Acids Research, Volume 45, Issue W1, 3
July 2017, Pages W331-W336

__init__(preferred_charge_model=ChargeModel.CM1A_1_14_LBCC, cutoff=<Quantity(9.0, 'angstrom')>,
request_url='', download_url='')

Constructs a new LigParGenForceFieldSource object

Parameters
• preferred_charge_model (ChargeModel) – The preferred charge model to apply. In

some cases the preferred charge model may not be applicable (e.g. 1.14*CM1A-LBCC
may only be applied to neutral molecules) and so another model may be applied in its
place.

• cutoff (openff.evaluator.unit.Quantity) – The non-bonded interaction cutoff.

• request_url (str) – The URL of the LIGPARGEN server file to send the parametrization
to request to.

• download_url (str) – The URL of the LIGPARGEN server file to download the results
of a request from.

2.32. API 181

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
http://zarbi.chem.yale.edu/ligpargen/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Methods

__init__([preferred_charge_model, cutoff, ...]) Constructs a new LigParGenForceFieldSource object
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.

Attributes

cutoff The non-bonded interaction cutoff.
download_url The URL of the LIGPARGEN server file to download

the results of a request from.
preferred_charge_model The preferred charge model to apply.
request_url The URL of the LIGPARGEN server file to send the

parametrization to request to.

class ChargeModel(value)
An enumeration.

property preferred_charge_model
The preferred charge model to apply. In some cases the preferred charge model may not be applicable (e.g.
1.14*CM1A-LBCC may only be applied to neutral molecules) and so another model may be applied in its
place.

Type ChargeModel

property cutoff
The non-bonded interaction cutoff.

Type openff.evaluator.unit.Quantity

property request_url
The URL of the LIGPARGEN server file to send the parametrization to request to.

Type str

property download_url
The URL of the LIGPARGEN server file to download the results of a request from.

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

182 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

Gradient Estimation

ParameterGradientKey

ParameterGradient

ParameterGradientKey

class openff.evaluator.forcefield.ParameterGradientKey(tag=None, smirks=None, attribute=None)

__init__(tag=None, smirks=None, attribute=None)

Methods

__init__([tag, smirks, attribute])

Attributes

attribute

smirks

tag

2.32. API 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

ParameterGradient

class openff.evaluator.forcefield.ParameterGradient(key=None, value=None)

__init__(key=None, value=None)

Methods

__init__([key, value])

Attributes

key

value

2.32.6 Calculation Layers API

CalculationLayer An abstract representation of a calculation layer whose
goal is to estimate a set of physical properties using a sin-
gle approach, such as a layer which employs direct sim-
ulations to estimate properties, or one which reweights
cached simulation data to the same end.

CalculationLayerResult The result of attempting to estimate a property using a
CalculationLayer.

CalculationLayerSchema A schema which encodes the options that a Calculation-
Layer should use when estimating a given class of phys-
ical properties.

calculation_layer A decorator which registers a class as being a calculation
layer which may be used in property calculations.

register_calculation_layer Registers a class as being a calculation layer which may
be used in property calculations.

register_calculation_schema Registers the default calculation schema to use when es-
timating a class of properties (e.g.

CalculationLayer

class openff.evaluator.layers.CalculationLayer
An abstract representation of a calculation layer whose goal is to estimate a set of physical properties using a
single approach, such as a layer which employs direct simulations to estimate properties, or one which reweights
cached simulation data to the same end.

__init__()

184 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Methods

__init__()

required_schema_type() Returns the type of CalculationLayerSchema re-
quired by this layer.

schedule_calculation(calculation_backend, ...) Submit the proposed calculation to the backend of
choice.

abstract classmethod required_schema_type()
Returns the type of CalculationLayerSchema required by this layer.

Returns The required schema type.

Return type type of CalculationLayerSchema

classmethod schedule_calculation(calculation_backend, storage_backend, layer_directory, batch,
callback, synchronous=False)

Submit the proposed calculation to the backend of choice.

Parameters
• calculation_backend (CalculationBackend) – The backend to the submit the calcu-

lations to.

• storage_backend (StorageBackend) – The backend used to store / retrieve data from
previous calculations.

• layer_directory (str) – The directory in which to store all temporary calculation data
from this layer.

• batch (Batch) – The batch of properties to estimate with the layer.

• callback (function) – The function to call when the backend returns the results (or an
error).

• synchronous (bool) – If true, this function will block until the calculation has completed.
This is mainly intended for debugging purposes.

CalculationLayerResult

class openff.evaluator.layers.CalculationLayerResult
The result of attempting to estimate a property using a CalculationLayer.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

continues on next page

2.32. API 185

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Table 157 – continued from previous page
validate([attribute_type]) Validate the values of the attributes.

Attributes

data_to_store Paths to the data objects to store.
exceptions Any exceptions raised by the layer while estimating

the property.
physical_property The estimated property (if the layer was successful).

physical_property
The estimated property (if the layer was successful). The default value of this attribute is not set. This
attribute is optional.

Type PhysicalProperty

data_to_store
Paths to the data objects to store. The default value of this attribute is [].

Type list

exceptions
Any exceptions raised by the layer while estimating the property. The default value of this attribute is [].

Type list

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

186 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

CalculationLayerSchema

class openff.evaluator.layers.CalculationLayerSchema
A schema which encodes the options that a CalculationLayer should use when estimating a given class of physical
properties.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

absolute_tolerance The absolute uncertainty that the property should be
estimated to within.

relative_tolerance The relative uncertainty that the property should be
estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty.

absolute_tolerance
The absolute uncertainty that the property should be estimated to within. This attribute is mutually exclusive
with the relative_tolerance attribute. The default value of this attribute is not set. This attribute is optional.

Type Quantity

relative_tolerance
The relative uncertainty that the property should be estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty. This attribute is mutually exclusive with the absolute_tolerance attribute. The
default value of this attribute is not set. This attribute is optional.

Type float

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

2.32. API 187

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

calculation_layer

openff.evaluator.layers.calculation_layer()
A decorator which registers a class as being a calculation layer which may be used in property calculations.

register_calculation_layer

openff.evaluator.layers.register_calculation_layer(layer_class)
Registers a class as being a calculation layer which may be used in property calculations.

Parameters layer_class (type of CalculationLayer) – The calculation layer to register.

register_calculation_schema

openff.evaluator.layers.register_calculation_schema(property_class, layer_class, schema)
Registers the default calculation schema to use when estimating a class of properties (e.g. Density) with a specific
calculation layer (e.g. the SimulationLayer).

Parameters
• property_class (type of PhysicalProperty) – The class of properties to associate

with the specified calculation_layer and property_class.

• layer_class (type of CalculationLayer) – The calculation layer to associate the
schema with.

• schema (CalculationLayerSchema or Callable[[CalculationLayerSchema],
CalculationLayerSchema]) – Either the calculation schema to use, or a function which
will create the schema from an existing CalculationLayerSchema.

188 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Built-in Calculation Layers

WorkflowCalculationLayer An calculation layer which uses the built-in workflow
framework to estimate sets of physical properties.

WorkflowCalculationSchema A schema which encodes the options and the workflow
schema that a CalculationLayer should use when es-
timating a given class of physical properties using the
built-in workflow framework.

WorkflowCalculationLayer

class openff.evaluator.layers.workflow.WorkflowCalculationLayer
An calculation layer which uses the built-in workflow framework to estimate sets of physical properties.

__init__()

Methods

__init__()

required_schema_type() Returns the type of CalculationLayerSchema re-
quired by this layer.

schedule_calculation(calculation_backend, ...) Submit the proposed calculation to the backend of
choice.

workflow_to_layer_result(queued_properties,
...)

Converts a list of WorkflowResult to a list of Calcu-
lationLayerResult objects.

static workflow_to_layer_result(queued_properties, provenance, workflow_results, **_)
Converts a list of WorkflowResult to a list of CalculationLayerResult objects.

Parameters
• queued_properties (list of PhysicalProperty) – The properties being estimated

by this layer

• provenance (dict of str and str) – The provenance of each property.

• workflow_results (list of WorkflowResult) – The results of each workflow.

Returns The calculation layer result objects.

Return type list of CalculationLayerResult

abstract classmethod required_schema_type()
Returns the type of CalculationLayerSchema required by this layer.

Returns The required schema type.

Return type type of CalculationLayerSchema

classmethod schedule_calculation(calculation_backend, storage_backend, layer_directory, batch,
callback, synchronous=False)

Submit the proposed calculation to the backend of choice.

Parameters

2.32. API 189

OpenFF Evaluator Documentation

• calculation_backend (CalculationBackend) – The backend to the submit the calcu-
lations to.

• storage_backend (StorageBackend) – The backend used to store / retrieve data from
previous calculations.

• layer_directory (str) – The directory in which to store all temporary calculation data
from this layer.

• batch (Batch) – The batch of properties to estimate with the layer.

• callback (function) – The function to call when the backend returns the results (or an
error).

• synchronous (bool) – If true, this function will block until the calculation has completed.
This is mainly intended for debugging purposes.

WorkflowCalculationSchema

class openff.evaluator.layers.workflow.WorkflowCalculationSchema
A schema which encodes the options and the workflow schema that a CalculationLayer should use when esti-
mating a given class of physical properties using the built-in workflow framework.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

absolute_tolerance The absolute uncertainty that the property should be
estimated to within.

relative_tolerance The relative uncertainty that the property should be
estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty.

workflow_schema The workflow schema to use when estimating prop-
erties.

workflow_schema
The workflow schema to use when estimating properties. The default value of this attribute is not set and
must be set by the user..

Type WorkflowSchema

190 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

absolute_tolerance
The absolute uncertainty that the property should be estimated to within. This attribute is mutually exclusive
with the relative_tolerance attribute. The default value of this attribute is not set. This attribute is optional.

Type Quantity

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

relative_tolerance
The relative uncertainty that the property should be estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty. This attribute is mutually exclusive with the absolute_tolerance attribute. The
default value of this attribute is not set. This attribute is optional.

Type float

SimulationLayer A calculation layer which employs molecular simulation
to estimate sets of physical properties.

SimulationSchema A schema which encodes the options and the workflow
schema that the SimulationLayer should use when es-
timating a given class of physical properties using the
built-in workflow framework.

2.32. API 191

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

SimulationLayer

class openff.evaluator.layers.simulation.SimulationLayer
A calculation layer which employs molecular simulation to estimate sets of physical properties.

__init__()

Methods

__init__()

required_schema_type()

schedule_calculation(calculation_backend, ...) Submit the proposed calculation to the backend of
choice.

workflow_to_layer_result(queued_properties,
...)

Converts a list of WorkflowResult to a list of Calcu-
lationLayerResult objects.

classmethod schedule_calculation(calculation_backend, storage_backend, layer_directory, batch,
callback, synchronous=False)

Submit the proposed calculation to the backend of choice.

Parameters
• calculation_backend (CalculationBackend) – The backend to the submit the calcu-

lations to.

• storage_backend (StorageBackend) – The backend used to store / retrieve data from
previous calculations.

• layer_directory (str) – The directory in which to store all temporary calculation data
from this layer.

• batch (Batch) – The batch of properties to estimate with the layer.

• callback (function) – The function to call when the backend returns the results (or an
error).

• synchronous (bool) – If true, this function will block until the calculation has completed.
This is mainly intended for debugging purposes.

static workflow_to_layer_result(queued_properties, provenance, workflow_results, **_)
Converts a list of WorkflowResult to a list of CalculationLayerResult objects.

Parameters
• queued_properties (list of PhysicalProperty) – The properties being estimated

by this layer

• provenance (dict of str and str) – The provenance of each property.

• workflow_results (list of WorkflowResult) – The results of each workflow.

Returns The calculation layer result objects.

Return type list of CalculationLayerResult

192 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

SimulationSchema

class openff.evaluator.layers.simulation.SimulationSchema
A schema which encodes the options and the workflow schema that the SimulationLayer should use when esti-
mating a given class of physical properties using the built-in workflow framework.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

absolute_tolerance The absolute uncertainty that the property should be
estimated to within.

relative_tolerance The relative uncertainty that the property should be
estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty.

workflow_schema The workflow schema to use when estimating prop-
erties.

absolute_tolerance
The absolute uncertainty that the property should be estimated to within. This attribute is mutually exclusive
with the relative_tolerance attribute. The default value of this attribute is not set. This attribute is optional.

Type Quantity

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

2.32. API 193

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

relative_tolerance
The relative uncertainty that the property should be estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty. This attribute is mutually exclusive with the absolute_tolerance attribute. The
default value of this attribute is not set. This attribute is optional.

Type float

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

workflow_schema
The workflow schema to use when estimating properties. The default value of this attribute is not set and
must be set by the user..

Type WorkflowSchema

ReweightingLayer A CalculationLayer which attempts to 'reweight' cached
simulation data to evaluate the values of properties at
states which have not previously been simulated directly,
but where simulations at similar states have been run pre-
viously.

ReweightingSchema A schema which encodes the options and the workflow
schema that the SimulationLayer should use when es-
timating a given class of physical properties using the
built-in workflow framework.

default_storage_query Return the default query to use when retrieving cached
simulation

ReweightingLayer

class openff.evaluator.layers.reweighting.ReweightingLayer
A CalculationLayer which attempts to ‘reweight’ cached simulation data to evaluate the values of properties at
states which have not previously been simulated directly, but where simulations at similar states have been run
previously.

__init__()

194 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__()

required_schema_type()

schedule_calculation(calculation_backend, ...) Submit the proposed calculation to the backend of
choice.

workflow_to_layer_result(queued_properties,
...)

Converts a list of WorkflowResult to a list of Calcu-
lationLayerResult objects.

classmethod schedule_calculation(calculation_backend, storage_backend, layer_directory, batch,
callback, synchronous=False)

Submit the proposed calculation to the backend of choice.

Parameters
• calculation_backend (CalculationBackend) – The backend to the submit the calcu-

lations to.

• storage_backend (StorageBackend) – The backend used to store / retrieve data from
previous calculations.

• layer_directory (str) – The directory in which to store all temporary calculation data
from this layer.

• batch (Batch) – The batch of properties to estimate with the layer.

• callback (function) – The function to call when the backend returns the results (or an
error).

• synchronous (bool) – If true, this function will block until the calculation has completed.
This is mainly intended for debugging purposes.

static workflow_to_layer_result(queued_properties, provenance, workflow_results, **_)
Converts a list of WorkflowResult to a list of CalculationLayerResult objects.

Parameters
• queued_properties (list of PhysicalProperty) – The properties being estimated

by this layer

• provenance (dict of str and str) – The provenance of each property.

• workflow_results (list of WorkflowResult) – The results of each workflow.

Returns The calculation layer result objects.

Return type list of CalculationLayerResult

2.32. API 195

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

ReweightingSchema

class openff.evaluator.layers.reweighting.ReweightingSchema
A schema which encodes the options and the workflow schema that the SimulationLayer should use when esti-
mating a given class of physical properties using the built-in workflow framework.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

absolute_tolerance The absolute uncertainty that the property should be
estimated to within.

maximum_data_points The maximum number of data points to include as
part of the multi-state reweighting calculations.

relative_tolerance The relative uncertainty that the property should be
estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty.

storage_queries The queries to perform when retrieving data for each
of the components in the system from the storage
backend.

temperature_cutoff The maximum difference between the target temper-
ature and the temperature at which cached data was
collected to.

workflow_schema The workflow schema to use when estimating prop-
erties.

storage_queries
The queries to perform when retrieving data for each of the components in the system from the storage
backend. The keys of this dictionary will correspond to the metadata keys made available to the workflow
system.

Type dict

maximum_data_points
The maximum number of data points to include as part of the multi-state reweighting calculations. If zero,
no cap will be applied. The default value of this attribute is 4.

Type int

temperature_cutoff
The maximum difference between the target temperature and the temperature at which cached data was

196 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

collected to. Data collected for temperatures outside of this cutoff will be ignored. The default value of this
attribute is 5.0 K.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

absolute_tolerance
The absolute uncertainty that the property should be estimated to within. This attribute is mutually exclusive
with the relative_tolerance attribute. The default value of this attribute is not set. This attribute is optional.

Type Quantity

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

relative_tolerance
The relative uncertainty that the property should be estimated to within, i.e relative_tolerance * mea-
sured_property.uncertainty. This attribute is mutually exclusive with the absolute_tolerance attribute. The
default value of this attribute is not set. This attribute is optional.

Type float

workflow_schema
The workflow schema to use when estimating properties. The default value of this attribute is not set and
must be set by the user..

Type WorkflowSchema

2.32. API 197

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

default_storage_query

openff.evaluator.layers.reweighting.default_storage_query()

Return the default query to use when retrieving cached simulation data from the storage backend.

Currently this query will search for data for the full substance of interest in the liquid phase.

Returns A single query with a key of “full_system_data”.

Return type dict of str and SimulationDataQuery

2.32.7 Calculation Backends API

CalculationBackend An abstract base representation of an openff-evaluator
calculation backend.

ComputeResources An object which stores how many of each type of com-
putational resource (threads or gpu's) is available to a
calculation worker.

QueueWorkerResources An extended resource object with properties specific to
calculations which will run on queue based resources,
such as LSF, PBS or SLURM.

CalculationBackend

class openff.evaluator.backends.CalculationBackend(number_of_workers=1,
resources_per_worker=None)

An abstract base representation of an openff-evaluator calculation backend. A backend is responsible for coordi-
nating, distributing and running calculations on the available hardware. This may range from a single machine
to a multinode cluster, but not across multiple cluster or physical locations.

Notes

All estimator backend classes must inherit from this class, and must implement the start, stop, and submit_task
method.

__init__(number_of_workers=1, resources_per_worker=None)
Constructs a new CalculationBackend object.

Parameters
• number_of_workers (int) – The number of works to run the calculations on. One worker

can perform a single task (e.g run a simulation) at once.

• resources_per_worker (ComputeResources, optional) – The number of resources
to request per worker.

198 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Methods

__init__([number_of_workers, ...]) Constructs a new CalculationBackend object.
start() Start the calculation backend.
stop() Stop the calculation backend.
submit_task(function, *args, **kwargs) Submit a task to the compute resources managed by

this backend.

Attributes

started Returns whether this backend has been started yet.

property started
Returns whether this backend has been started yet.

Type bool

start()
Start the calculation backend.

abstract stop()
Stop the calculation backend.

abstract submit_task(function, *args, **kwargs)
Submit a task to the compute resources managed by this backend.

Parameters function (function) – The function to run.

Returns Returns a future object which will eventually point to the results of the submitted task.

Return type Future

ComputeResources

class openff.evaluator.backends.ComputeResources(number_of_threads=1, number_of_gpus=0,
preferred_gpu_toolkit=GPUToolkit.CUDA)

An object which stores how many of each type of computational resource (threads or gpu’s) is available to a
calculation worker.

__init__(number_of_threads=1, number_of_gpus=0, preferred_gpu_toolkit=GPUToolkit.CUDA)
Constructs a new ComputeResources object.

Parameters
• number_of_threads (int) – The number of threads available to a calculation worker.

• number_of_gpus (int) – The number of GPUs available to a calculation worker.

• preferred_gpu_toolkit (ComputeResources.GPUToolkit, optional) – The pre-
ferred toolkit to use when running on GPUs.

2.32. API 199

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Methods

__init__([number_of_threads, ...]) Constructs a new ComputeResources object.

Attributes

gpu_device_indices The indices of the GPUs to run on.
number_of_gpus The number of GPUs available to a calculation

worker.
number_of_threads The number of threads available to a calculation

worker.
preferred_gpu_toolkit The preferred toolkit to use when running on GPUs.

class GPUToolkit(value)
An enumeration of the different GPU toolkits to make available to different calculations.

property number_of_threads
The number of threads available to a calculation worker.

Type int

property number_of_gpus
The number of GPUs available to a calculation worker.

Type int

property preferred_gpu_toolkit
The preferred toolkit to use when running on GPUs.

Type ComputeResources.GPUToolkit

property gpu_device_indices
The indices of the GPUs to run on. This is purely an internal implementation detail and should not be relied
upon externally.

Type str

QueueWorkerResources

class openff.evaluator.backends.QueueWorkerResources(number_of_threads=1, number_of_gpus=0,
preferred_gpu_toolkit=None,
per_thread_memory_limit=<Quantity(1,
'gigabyte')>, wallclock_time_limit='01:00')

An extended resource object with properties specific to calculations which will run on queue based resources,
such as LSF, PBS or SLURM.

__init__(number_of_threads=1, number_of_gpus=0, preferred_gpu_toolkit=None,
per_thread_memory_limit=<Quantity(1, 'gigabyte')>, wallclock_time_limit='01:00')

Constructs a new ComputeResources object.

200 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

Both the requested number_of_threads and the number_of_gpus must be less than or equal to the number
of threads (/cpus/cores) and GPUs available to each compute node in the cluster respectively, such that a
single worker is able to be accommodated by a single compute node.

Parameters
• per_thread_memory_limit (openmm.unit.Quantity) – The maximum amount of

memory available to each thread.

• wallclock_time_limit (str) – The maximum amount of wall clock time that a worker
can run for. This should be a string of the form HH:MM where HH is the number of hours
and MM the number of minutes

Methods

__init__([number_of_threads, ...]) Constructs a new ComputeResources object.

Attributes

gpu_device_indices The indices of the GPUs to run on.
number_of_gpus The number of GPUs available to a calculation

worker.
number_of_threads The number of threads available to a calculation

worker.
per_thread_memory_limit The maximum amount of memory available to each

thread, such that the total memory limit will be
per_cpu_memory_limit * number_of_threads.

preferred_gpu_toolkit The preferred toolkit to use when running on GPUs.
wallclock_time_limit The maximum amount of wall clock time that a

worker can run for.

property per_thread_memory_limit
The maximum amount of memory available to each thread, such that the total memory limit will be
per_cpu_memory_limit * number_of_threads.

Type openmm.unit.Quantity

property wallclock_time_limit
The maximum amount of wall clock time that a worker can run for. This should be a string of the form
HH:MM where HH is the number of hours and MM the number of minutes

Type str

class GPUToolkit(value)
An enumeration of the different GPU toolkits to make available to different calculations.

property gpu_device_indices
The indices of the GPUs to run on. This is purely an internal implementation detail and should not be relied
upon externally.

Type str

2.32. API 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

property number_of_gpus
The number of GPUs available to a calculation worker.

Type int

property number_of_threads
The number of threads available to a calculation worker.

Type int

property preferred_gpu_toolkit
The preferred toolkit to use when running on GPUs.

Type ComputeResources.GPUToolkit

Dask Backends

BaseDaskBackend A base dask backend class, which implements function-
ality which is common to all other dask based backends.

BaseDaskJobQueueBackend An openff-evaluator backend which uses a
dask_jobqueue.JobQueueCluster object to run cal-
culations within an existing HPC queuing system.

DaskLocalCluster An openff-evaluator backend which uses a dask Local-
Cluster object to run calculations on a single machine.

DaskLSFBackend An openff-evaluator backend which uses a
dask_jobqueue.LSFCluster object to run calcula-
tions within an existing LSF queue.

DaskPBSBackend An openff-evaluator backend which uses a
dask_jobqueue.PBSCluster object to run calcula-
tions within an existing PBS queue.

BaseDaskBackend

class openff.evaluator.backends.dask.BaseDaskBackend(number_of_workers=1, re-
sources_per_worker=<openff.evaluator.backends.backends.ComputeResources
object>)

A base dask backend class, which implements functionality which is common to all other dask based backends.

__init__(number_of_workers=1,
resources_per_worker=<openff.evaluator.backends.backends.ComputeResources object>)

Constructs a new BaseDaskBackend object.

Methods

__init__([number_of_workers, ...]) Constructs a new BaseDaskBackend object.
start() Start the calculation backend.
stop() Stop the calculation backend.
submit_task(function, *args, **kwargs) Submit a task to the compute resources managed by

this backend.

202 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Attributes

started Returns whether this backend has been started yet.

start()
Start the calculation backend.

stop()
Stop the calculation backend.

property started
Returns whether this backend has been started yet.

Type bool

abstract submit_task(function, *args, **kwargs)
Submit a task to the compute resources managed by this backend.

Parameters function (function) – The function to run.

Returns Returns a future object which will eventually point to the results of the submitted task.

Return type Future

BaseDaskJobQueueBackend

class openff.evaluator.backends.dask.BaseDaskJobQueueBackend(minimum_number_of_workers=1,
maximum_number_of_workers=1,
re-
sources_per_worker=<openff.evaluator.backends.backends.QueueWorkerResources
object>, queue_name='default',
setup_script_commands=None,
extra_script_options=None,
adaptive_interval='10000ms',
disable_nanny_process=False,
cluster_type=None,
adaptive_class=None)

An openff-evaluator backend which uses a dask_jobqueue.JobQueueCluster object to run calculations within an
existing HPC queuing system.

See also:
dask_jobqueue.JobQueueCluster

__init__(minimum_number_of_workers=1, maximum_number_of_workers=1,
resources_per_worker=<openff.evaluator.backends.backends.QueueWorkerResources object>,
queue_name='default', setup_script_commands=None, extra_script_options=None,
adaptive_interval='10000ms', disable_nanny_process=False, cluster_type=None,
adaptive_class=None)

Constructs a new BaseDaskJobQueueBackend object

Parameters
• minimum_number_of_workers (int) – The minimum number of workers to request from

the queue system.

• maximum_number_of_workers (int) – The maximum number of workers to request from
the queue system.

2.32. API 203

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• resources_per_worker (QueueWorkerResources) – The resources to request per
worker.

• queue_name (str) – The name of the queue which the workers will be requested from.

• setup_script_commands (list of str) – A list of bash script commands to call within
the queue submission script before the call to launch the dask worker.

This may include activating a python environment, or loading an environment module

• extra_script_options (list of str) – A list of extra job specific options to include
in the queue submission script. These will get added to the script header in the form

#BSUB <extra_script_options[x]>

• adaptive_interval (str) – The interval between attempting to either scale up or down
the cluster, of of the from ‘XXXms’.

• disable_nanny_process (bool) – If true, dask workers will be started in –no-nanny
mode. This is required if using multiprocessing code within submitted tasks.

This has not been fully tested yet and my lead to stability issues with the workers.

• adaptive_class (class of type distributed.deploy.AdaptiveCore, optional) – An optional
class to pass to dask to use for its adaptive scaling handling. This is mainly exposed to
allow easily working around certain dask bugs / quirks.

Methods

__init__([minimum_number_of_workers, ...]) Constructs a new BaseDaskJobQueueBackend object
job_script() Returns the job script that dask will use to submit

workers.
start() Start the calculation backend.
stop() Stop the calculation backend.
submit_task(function, *args, **kwargs) Submit a task to the compute resources managed by

this backend.

Attributes

started Returns whether this backend has been started yet.

job_script()
Returns the job script that dask will use to submit workers. The backend must be started before calling this
function.

Returns
Return type str

start()
Start the calculation backend.

submit_task(function, *args, **kwargs)
Submit a task to the compute resources managed by this backend.

Parameters function (function) – The function to run.

Returns Returns a future object which will eventually point to the results of the submitted task.

204 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type Future

property started
Returns whether this backend has been started yet.

Type bool

stop()
Stop the calculation backend.

DaskLocalCluster

class openff.evaluator.backends.dask.DaskLocalCluster(number_of_workers=1, re-
sources_per_worker=<openff.evaluator.backends.backends.ComputeResources
object>)

An openff-evaluator backend which uses a dask LocalCluster object to run calculations on a single machine.

See also:
dask.LocalCluster

__init__(number_of_workers=1,
resources_per_worker=<openff.evaluator.backends.backends.ComputeResources object>)

Constructs a new DaskLocalCluster

Methods

__init__([number_of_workers, ...]) Constructs a new DaskLocalCluster
start() Start the calculation backend.
stop() Stop the calculation backend.
submit_task(function, *args, **kwargs) Submit a task to the compute resources managed by

this backend.

Attributes

started Returns whether this backend has been started yet.

start()
Start the calculation backend.

submit_task(function, *args, **kwargs)
Submit a task to the compute resources managed by this backend.

Parameters function (function) – The function to run.

Returns Returns a future object which will eventually point to the results of the submitted task.

Return type Future

property started
Returns whether this backend has been started yet.

Type bool

stop()
Stop the calculation backend.

2.32. API 205

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

DaskLSFBackend

class openff.evaluator.backends.dask.DaskLSFBackend(minimum_number_of_workers=1,
maximum_number_of_workers=1, re-
sources_per_worker=<openff.evaluator.backends.backends.QueueWorkerResources
object>, queue_name='default',
setup_script_commands=None,
extra_script_options=None,
adaptive_interval='10000ms',
disable_nanny_process=False,
adaptive_class=None)

An openff-evaluator backend which uses a dask_jobqueue.LSFCluster object to run calculations within an exist-
ing LSF queue.

See also:
dask_jobqueue.LSFCluster, DaskPBSBackend

__init__(minimum_number_of_workers=1, maximum_number_of_workers=1,
resources_per_worker=<openff.evaluator.backends.backends.QueueWorkerResources object>,
queue_name='default', setup_script_commands=None, extra_script_options=None,
adaptive_interval='10000ms', disable_nanny_process=False, adaptive_class=None)

Constructs a new DaskLSFBackend object

Examples

To create an LSF queueing compute backend which will attempt to spin up workers which have access to a
single GPU.

>>> # Create a resource object which will request a worker with
>>> # one gpu which will stay alive for five hours.
>>> from openff.evaluator.backends import QueueWorkerResources
>>>
>>> resources = QueueWorkerResources(number_of_threads=1,
>>> number_of_gpus=1,
>>> preferred_gpu_toolkit=QueueWorkerResources.
→˓GPUToolkit.CUDA,
>>> wallclock_time_limit='05:00')
>>>
>>> # Define the set of commands which will set up the correct environment
>>> # for each of the workers.
>>> setup_script_commands = [
>>> 'module load cuda/9.2',
>>>]
>>>
>>> # Define extra options to only run on certain node groups
>>> extra_script_options = [
>>> '-m "ls-gpu lt-gpu"'
>>>]
>>>
>>>
>>> # Create the backend which will adaptively try to spin up between one and
>>> # ten workers with the requested resources depending on the calculation␣
→˓load.

(continues on next page)

206 Chapter 2. Supported Physical Properties

https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.LSFCluster.html#dask_jobqueue.LSFCluster

OpenFF Evaluator Documentation

(continued from previous page)

>>> from openff.evaluator.backends.dask import DaskLSFBackend
>>>
>>> lsf_backend = DaskLSFBackend(minimum_number_of_workers=1,
>>> maximum_number_of_workers=10,
>>> resources_per_worker=resources,
>>> queue_name='gpuqueue',
>>> setup_script_commands=setup_script_commands,
>>> extra_script_options=extra_script_options)

Methods

__init__([minimum_number_of_workers, ...]) Constructs a new DaskLSFBackend object
job_script() Returns the job script that dask will use to submit

workers.
start() Start the calculation backend.
stop() Stop the calculation backend.
submit_task(function, *args, **kwargs) Submit a task to the compute resources managed by

this backend.

Attributes

started Returns whether this backend has been started yet.

job_script()
Returns the job script that dask will use to submit workers. The backend must be started before calling this
function.

Returns
Return type str

start()
Start the calculation backend.

property started
Returns whether this backend has been started yet.

Type bool

stop()
Stop the calculation backend.

submit_task(function, *args, **kwargs)
Submit a task to the compute resources managed by this backend.

Parameters function (function) – The function to run.

Returns Returns a future object which will eventually point to the results of the submitted task.

Return type Future

2.32. API 207

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

DaskPBSBackend

class openff.evaluator.backends.dask.DaskPBSBackend(minimum_number_of_workers=1,
maximum_number_of_workers=1, re-
sources_per_worker=<openff.evaluator.backends.backends.QueueWorkerResources
object>, queue_name='default',
setup_script_commands=None,
extra_script_options=None,
adaptive_interval='10000ms',
disable_nanny_process=False,
resource_line=None, adaptive_class=None)

An openff-evaluator backend which uses a dask_jobqueue.PBSCluster object to run calculations within an ex-
isting PBS queue.

See also:
dask_jobqueue.LSFCluster, DaskLSFBackend

__init__(minimum_number_of_workers=1, maximum_number_of_workers=1,
resources_per_worker=<openff.evaluator.backends.backends.QueueWorkerResources object>,
queue_name='default', setup_script_commands=None, extra_script_options=None,
adaptive_interval='10000ms', disable_nanny_process=False, resource_line=None,
adaptive_class=None)

Constructs a new DaskLSFBackend object

Parameters resource_line (str) – The string to pass to the #PBS -l line.

Examples

To create a PBS queueing compute backend which will attempt to spin up workers which have access to a
single GPU.

>>> # Create a resource object which will request a worker with
>>> # one gpu which will stay alive for five hours.
>>> from openff.evaluator.backends import QueueWorkerResources
>>>
>>> resources = QueueWorkerResources(number_of_threads=1,
>>> number_of_gpus=1,
>>> preferred_gpu_toolkit=QueueWorkerResources.
→˓GPUToolkit.CUDA,
>>> wallclock_time_limit='05:00')
>>>
>>> # Define the set of commands which will set up the correct environment
>>> # for each of the workers.
>>> setup_script_commands = [
>>> 'module load cuda/9.2',
>>>]
>>>
>>> # Create the backend which will adaptively try to spin up between one and
>>> # ten workers with the requested resources depending on the calculation␣
→˓load.
>>> from openff.evaluator.backends.dask import DaskPBSBackend
>>>
>>> pbs_backend = DaskPBSBackend(minimum_number_of_workers=1,
>>> maximum_number_of_workers=10,

(continues on next page)

208 Chapter 2. Supported Physical Properties

https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.LSFCluster.html#dask_jobqueue.LSFCluster
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

(continued from previous page)

>>> resources_per_worker=resources,
>>> queue_name='gpuqueue',
>>> setup_script_commands=setup_script_commands)

Methods

__init__([minimum_number_of_workers, ...]) Constructs a new DaskLSFBackend object
job_script() Returns the job script that dask will use to submit

workers.
start() Start the calculation backend.
stop() Stop the calculation backend.
submit_task(function, *args, **kwargs) Submit a task to the compute resources managed by

this backend.

Attributes

started Returns whether this backend has been started yet.

job_script()
Returns the job script that dask will use to submit workers. The backend must be started before calling this
function.

Returns
Return type str

start()
Start the calculation backend.

property started
Returns whether this backend has been started yet.

Type bool

stop()
Stop the calculation backend.

submit_task(function, *args, **kwargs)
Submit a task to the compute resources managed by this backend.

Parameters function (function) – The function to run.

Returns Returns a future object which will eventually point to the results of the submitted task.

Return type Future

2.32. API 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

2.32.8 Storage API

StorageBackend An abstract base representation of how the openff-
evaluator will interact with and store simulation data.

StorageBackend

class openff.evaluator.storage.StorageBackend
An abstract base representation of how the openff-evaluator will interact with and store simulation data.

Notes

When implementing this class, only private methods should be overridden as the public methods only mainly
implement thread locks, while their private version perform their actual function.

__init__()
Constructs a new StorageBackend object.

Methods

__init__() Constructs a new StorageBackend object.
has_force_field(force_field) A convenience method for checking whether the

specified ForceFieldSource object is stored in the
backend.

has_object(storage_object) Checks whether a given hashable object exists in the
storage system.

query(data_query) Query the storage backend for data matching the
query criteria.

retrieve_force_field(storage_key) A convenience method for retrieving ForceField-
Source objects.

retrieve_object(storage_key[, expected_type]) Retrieves a stored object for the estimators storage
system.

store_force_field(force_field) A convenience method for storing ForceFieldSource
objects.

store_object(object_to_store[, ...]) Store an object in the storage system, returning the
key of the stored object.

store_object(object_to_store, ancillary_data_path=None)
Store an object in the storage system, returning the key of the stored object. This may be different to
storage_key depending on whether the same or a similar object was already present in the system.

Parameters
• object_to_store (BaseStoredData) – The object to store.

• ancillary_data_path (str, optional) – The data path to the ancillary directory-like
data to store alongside the object if the data type requires one.

Returns The unique key assigned to the stored object.

Return type str

210 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

store_force_field(force_field)
A convenience method for storing ForceFieldSource objects.

Parameters force_field (ForceFieldSource) – The force field to store.

Returns The unique id of the stored force field.

Return type str

retrieve_object(storage_key, expected_type=None)
Retrieves a stored object for the estimators storage system.

Parameters
• storage_key (str) – A unique key that describes where the stored object can be found

within the storage system.

• expected_type (type of BaseStoredData, optional) – The expected data type.
An exception is raised if the retrieved data doesn’t match the type.

Returns
• BaseStoredData, optional – The stored object if the object key is found, otherwise None.

• str, optional – The path to the ancillary data if present.

retrieve_force_field(storage_key)
A convenience method for retrieving ForceFieldSource objects.

Parameters storage_key (str) – The key of the force field to retrieve.

Returns The retrieved force field source.

Return type ForceFieldSource

has_object(storage_object)
Checks whether a given hashable object exists in the storage system.

Parameters storage_object (BaseStoredData) – The object to check for.

Returns The unique key of the object if it is in the system, None otherwise.

Return type str, optional

has_force_field(force_field)
A convenience method for checking whether the specified ForceFieldSource object is stored in the backend.

Parameters force_field (ForceFieldSource) – The force field to look for.

Returns The unique key of the object if it is in the system, None otherwise.

Return type str, optional

query(data_query)
Query the storage backend for data matching the query criteria.

Parameters data_query (BaseDataQuery) – The query to perform.

Returns The data that matches the query partitioned by the matched values. The list values take
the form (storage_key, data_object, data_directory_path).

Return type dict of tuple and list of tuple of str, BaseStoredData and str

Built-in Storage Backends

2.32. API 211

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

LocalFileStorage A storage backend which stores files in directories on the
local disk.

LocalFileStorage

class openff.evaluator.storage.LocalFileStorage(root_directory='stored_data')
A storage backend which stores files in directories on the local disk.

__init__(root_directory='stored_data')
Constructs a new StorageBackend object.

Methods

__init__([root_directory]) Constructs a new StorageBackend object.
has_force_field(force_field) A convenience method for checking whether the

specified ForceFieldSource object is stored in the
backend.

has_object(storage_object) Checks whether a given hashable object exists in the
storage system.

query(data_query) Query the storage backend for data matching the
query criteria.

retrieve_force_field(storage_key) A convenience method for retrieving ForceField-
Source objects.

retrieve_object(storage_key[, expected_type]) Retrieves a stored object for the estimators storage
system.

store_force_field(force_field) A convenience method for storing ForceFieldSource
objects.

store_object(object_to_store[, ...]) Store an object in the storage system, returning the
key of the stored object.

Attributes

root_directory Returns the directory in which all stored objects are
located.

property root_directory
Returns the directory in which all stored objects are located.

Type str

has_force_field(force_field)
A convenience method for checking whether the specified ForceFieldSource object is stored in the backend.

Parameters force_field (ForceFieldSource) – The force field to look for.

Returns The unique key of the object if it is in the system, None otherwise.

Return type str, optional

has_object(storage_object)
Checks whether a given hashable object exists in the storage system.

212 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters storage_object (BaseStoredData) – The object to check for.

Returns The unique key of the object if it is in the system, None otherwise.

Return type str, optional

query(data_query)
Query the storage backend for data matching the query criteria.

Parameters data_query (BaseDataQuery) – The query to perform.

Returns The data that matches the query partitioned by the matched values. The list values take
the form (storage_key, data_object, data_directory_path).

Return type dict of tuple and list of tuple of str, BaseStoredData and str

retrieve_force_field(storage_key)
A convenience method for retrieving ForceFieldSource objects.

Parameters storage_key (str) – The key of the force field to retrieve.

Returns The retrieved force field source.

Return type ForceFieldSource

retrieve_object(storage_key, expected_type=None)
Retrieves a stored object for the estimators storage system.

Parameters
• storage_key (str) – A unique key that describes where the stored object can be found

within the storage system.

• expected_type (type of BaseStoredData, optional) – The expected data type.
An exception is raised if the retrieved data doesn’t match the type.

Returns
• BaseStoredData, optional – The stored object if the object key is found, otherwise None.

• str, optional – The path to the ancillary data if present.

store_force_field(force_field)
A convenience method for storing ForceFieldSource objects.

Parameters force_field (ForceFieldSource) – The force field to store.

Returns The unique id of the stored force field.

Return type str

store_object(object_to_store, ancillary_data_path=None)
Store an object in the storage system, returning the key of the stored object. This may be different to
storage_key depending on whether the same or a similar object was already present in the system.

Parameters
• object_to_store (BaseStoredData) – The object to store.

• ancillary_data_path (str, optional) – The data path to the ancillary directory-like
data to store alongside the object if the data type requires one.

Returns The unique key assigned to the stored object.

Return type str

2.32. API 213

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Data Classes

BaseStoredData A base representation of cached data to be stored by a
storage backend.

HashableStoredData Represents a class of data objects which can be rapidly
compared / indexed by their hash values.

ForceFieldData A data container for force field objects which will be
saved to disk.

ReplaceableData Represents a piece of stored data which can be replaced
in a StorageBackend by another piece of data of the same
type.

BaseSimulationData A base class for classes which will store the outputs of a
molecular simulation

StoredSimulationData A representation of data which has been cached from a
single previous simulation.

StoredFreeEnergyData A representation of data which has been cached from an
free energy calculation which computed the free energy
difference between a start and end state.

BaseStoredData

class openff.evaluator.storage.data.BaseStoredData
A base representation of cached data to be stored by a storage backend.

The expectation is that stored data may exist in storage as two parts:

1) A JSON serialized representation of this class (or a subclass), which contains lightweight information such
as the state and composition of the system. Any larger pieces of data, such as coordinates or trajectories,
should be referenced as a file name.

2) A directory like structure (either directly a directory, or some NetCDF like compressed archive) of ancillary
files which do not easily lend themselves to be serialized within a JSON object, whose files are referenced
by their file name by the data object.

The ancillary directory-like structure is not required if the data may be suitably stored in the data object itself.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
has_ancillary_data() Returns whether this data object requires an accom-

panying data directory-like structure.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_storage_query() Returns the storage query which would match this
data object.

validate([attribute_type]) Validate the values of the attributes.

214 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

abstract classmethod has_ancillary_data()
Returns whether this data object requires an accompanying data directory-like structure.

Returns True if this class requires an accompanying data directory-like structure.

Return type bool

to_storage_query()
Returns the storage query which would match this data object.

Returns The storage query which would match this data object.

Return type BaseDataQuery

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

HashableStoredData

class openff.evaluator.storage.data.HashableStoredData
Represents a class of data objects which can be rapidly compared / indexed by their hash values.

__init__()

2.32. API 215

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
has_ancillary_data() Returns whether this data object requires an accom-

panying data directory-like structure.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_storage_query() Returns the storage query which would match this
data object.

validate([attribute_type]) Validate the values of the attributes.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

abstract classmethod has_ancillary_data()
Returns whether this data object requires an accompanying data directory-like structure.

Returns True if this class requires an accompanying data directory-like structure.

Return type bool

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

to_storage_query()
Returns the storage query which would match this data object.

Returns The storage query which would match this data object.

Return type BaseDataQuery

216 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ForceFieldData

class openff.evaluator.storage.data.ForceFieldData
A data container for force field objects which will be saved to disk.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
has_ancillary_data()

json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_storage_query()
returns The storage query which would

match this

validate([attribute_type]) Validate the values of the attributes.

Attributes

force_field_source The force field source object.

force_field_source
The force field source object. The default value of this attribute is not set and must be set by the user..

Type ForceFieldSource

to_storage_query()

Returns The storage query which would match this data object.

Return type SimulationDataQuery

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

2.32. API 217

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ReplaceableData

class openff.evaluator.storage.data.ReplaceableData
Represents a piece of stored data which can be replaced in a StorageBackend by another piece of data of the same
type.

This may be the case for example when attempting to store a piece of StoredSimulationData, but another piece
of data measured from the same calculation and for the same system already exists in the system, but stores less
configurations.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
has_ancillary_data() Returns whether this data object requires an accom-

panying data directory-like structure.
json([file_path, format]) Creates a JSON representation of this class.
most_information(stored_data_1, stored_data_2) Returns the data object with the highest information

content.
parse_json(string_contents)

continues on next page

218 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 201 – continued from previous page
to_storage_query() Returns the storage query which would match this

data object.
validate([attribute_type]) Validate the values of the attributes.

abstract classmethod most_information(stored_data_1, stored_data_2)
Returns the data object with the highest information content.

Parameters
• stored_data_1 (ReplaceableData) – The first piece of data to compare.

• stored_data_2 (ReplaceableData) – The second piece of data to compare.

Returns The data object with the highest information content, or None if the two pieces of infor-
mation are incompatible with one another.

Return type ReplaceableData, optional

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

abstract classmethod has_ancillary_data()
Returns whether this data object requires an accompanying data directory-like structure.

Returns True if this class requires an accompanying data directory-like structure.

Return type bool

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

to_storage_query()
Returns the storage query which would match this data object.

Returns The storage query which would match this data object.

Return type BaseDataQuery

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

2.32. API 219

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

BaseSimulationData

class openff.evaluator.storage.data.BaseSimulationData
A base class for classes which will store the outputs of a molecular simulation

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
has_ancillary_data()

json([file_path, format]) Creates a JSON representation of this class.
most_information(stored_data_1, stored_data_2) Returns the data object with the highest information

content.
parse_json(string_contents)

to_storage_query() Returns the storage query which would match this
data object.

validate([attribute_type]) Validate the values of the attributes.

Attributes

force_field_id The id of the force field parameters used to generate
the data.

property_phase The phase of the system (e.g.
source_calculation_id The server id of the calculation which yielded this

data.
substance A description of the composition of the stored sys-

tem.
thermodynamic_state The state at which the data was collected.

substance
A description of the composition of the stored system. The default value of this attribute is not set and must
be set by the user..

Type Substance

thermodynamic_state
The state at which the data was collected. The default value of this attribute is not set and must be set by
the user..

Type ThermodynamicState

220 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

property_phase
The phase of the system (e.g. liquid, gas). The default value of this attribute is not set and must be set by
the user..

Type PropertyPhase

source_calculation_id
The server id of the calculation which yielded this data. The default value of this attribute is not set and
must be set by the user..

Type str

force_field_id
The id of the force field parameters used to generate the data. The default value of this attribute is not set
and must be set by the user..

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

abstract classmethod most_information(stored_data_1, stored_data_2)
Returns the data object with the highest information content.

Parameters
• stored_data_1 (ReplaceableData) – The first piece of data to compare.

• stored_data_2 (ReplaceableData) – The second piece of data to compare.

Returns The data object with the highest information content, or None if the two pieces of infor-
mation are incompatible with one another.

Return type ReplaceableData, optional

to_storage_query()
Returns the storage query which would match this data object.

2.32. API 221

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns The storage query which would match this data object.

Return type BaseDataQuery

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

StoredSimulationData

class openff.evaluator.storage.data.StoredSimulationData
A representation of data which has been cached from a single previous simulation.

Notes

The ancillary directory which stores larger information such as trajectories should be of the form:

|--- data_object.json
|--- data_directory

|--- coordinate_file_name.pdb
|--- trajectory_file_name.dcd

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
has_ancillary_data()

json([file_path, format]) Creates a JSON representation of this class.
most_information(stored_data_1, stored_data_2) Returns the data object with the lowest statisti-

cal_inefficiency.
parse_json(string_contents)

to_storage_query()
returns The storage query which would

match this

validate([attribute_type]) Validate the values of the attributes.

222 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

coordinate_file_name The name of a coordinate file which encodes the
topology information of the system.

force_field_id The id of the force field parameters used to generate
the data.

number_of_molecules The total number of molecules in the system.
observables A frame of observables collected over the duration of

the simulation.
property_phase The phase of the system (e.g.
source_calculation_id The server id of the calculation which yielded this

data.
statistical_inefficiency The statistical inefficiency of the collected data.
substance A description of the composition of the stored sys-

tem.
thermodynamic_state The state at which the data was collected.
trajectory_file_name The name of a .dcd trajectory file containing config-

urations generated by the simulation.

coordinate_file_name
The name of a coordinate file which encodes the topology information of the system. The default value of
this attribute is not set and must be set by the user..

Type FilePath

trajectory_file_name
The name of a .dcd trajectory file containing configurations generated by the simulation. The default value
of this attribute is not set and must be set by the user..

Type FilePath

observables
A frame of observables collected over the duration of the simulation. The default value of this attribute is
not set and must be set by the user..

Type ObservableFrame

statistical_inefficiency
The statistical inefficiency of the collected data. The default value of this attribute is not set and must be
set by the user..

Type float

number_of_molecules
The total number of molecules in the system. The default value of this attribute is not set and must be set
by the user..

Type int

classmethod most_information(stored_data_1, stored_data_2)
Returns the data object with the lowest statistical_inefficiency.

Parameters
• stored_data_1 (StoredSimulationData) – The first piece of data to compare.

• stored_data_2 (StoredSimulationData) – The second piece of data to compare.

Returns

2.32. API 223

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Return type StoredSimulationData

to_storage_query()

Returns The storage query which would match this data object.

Return type SimulationDataQuery

force_field_id
The id of the force field parameters used to generate the data. The default value of this attribute is not set
and must be set by the user..

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

property_phase
The phase of the system (e.g. liquid, gas). The default value of this attribute is not set and must be set by
the user..

Type PropertyPhase

source_calculation_id
The server id of the calculation which yielded this data. The default value of this attribute is not set and
must be set by the user..

Type str

substance
A description of the composition of the stored system. The default value of this attribute is not set and must
be set by the user..

Type Substance

224 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

thermodynamic_state
The state at which the data was collected. The default value of this attribute is not set and must be set by
the user..

Type ThermodynamicState

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

StoredFreeEnergyData

class openff.evaluator.storage.data.StoredFreeEnergyData
A representation of data which has been cached from an free energy calculation which computed the free energy
difference between a start and end state.

Notes

The ancillary directory which stores larger information such as trajectories should be of the form:

|--- data_object.json
|--- data_directory

|--- topology_file_name.pdb
|--- start_state_trajectory.dcd
|--- end_state_trajectory.dcd

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
has_ancillary_data()

json([file_path, format]) Creates a JSON representation of this class.
most_information(stored_data_1, stored_data_2) A comparison function which will always retain both

pieces of free energy data.
parse_json(string_contents)

to_storage_query()
returns The storage query which would

match this data object.

validate([attribute_type]) Validate the values of the attributes.

2.32. API 225

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

end_state_trajectory The name of a .dcd trajectory file containing config-
urations generated by the simulation of the end state
of the system.

force_field_id The id of the force field parameters used to generate
the data.

free_energy_difference The free energy difference between the end state and
the start state.

property_phase The phase of the system (e.g.
source_calculation_id The server id of the calculation which yielded this

data.
start_state_trajectory The name of a .dcd trajectory file containing config-

urations generated by the simulation of the start state
of the system.

substance A description of the composition of the stored sys-
tem.

thermodynamic_state The state at which the data was collected.
topology_file_name The name of a coordinate file which encodes the

topology of the system.

free_energy_difference
The free energy difference between the end state and the start state. The default value of this attribute is
not set and must be set by the user..

Type Observable

topology_file_name
The name of a coordinate file which encodes the topology of the system. The default value of this attribute
is not set and must be set by the user..

Type FilePath

start_state_trajectory
The name of a .dcd trajectory file containing configurations generated by the simulation of the start state of
the system. The default value of this attribute is not set and must be set by the user..

Type FilePath

end_state_trajectory
The name of a .dcd trajectory file containing configurations generated by the simulation of the end state of
the system. The default value of this attribute is not set and must be set by the user..

Type FilePath

classmethod most_information(stored_data_1: openff.evaluator.storage.data.StoredFreeEnergyData,
stored_data_2: openff.evaluator.storage.data.StoredFreeEnergyData)→
Optional[openff.evaluator.storage.data.StoredFreeEnergyData]

A comparison function which will always retain both pieces of free energy data. At this time no situation
can be envisaged that the same free energy data from exactly the same calculation will be store.

Parameters
• stored_data_1 – The first piece of data to compare.

• stored_data_2 – The second piece of data to compare.

to_storage_query()

226 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Returns The storage query which would match this data object.

Return type FreeEnergyDataQuery

force_field_id
The id of the force field parameters used to generate the data. The default value of this attribute is not set
and must be set by the user..

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

property_phase
The phase of the system (e.g. liquid, gas). The default value of this attribute is not set and must be set by
the user..

Type PropertyPhase

source_calculation_id
The server id of the calculation which yielded this data. The default value of this attribute is not set and
must be set by the user..

Type str

substance
A description of the composition of the stored system. The default value of this attribute is not set and must
be set by the user..

Type Substance

thermodynamic_state
The state at which the data was collected. The default value of this attribute is not set and must be set by
the user..

Type ThermodynamicState

2.32. API 227

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Data Queries

BaseDataQuery A base class for queries which can be made to a Storage-
Backend.

SubstanceQuery A query which focuses on finding data which was col-
lected for substances with specific traits, e.g which con-
tains both a solute and solvent, or only a solvent etc.

ForceFieldQuery A class used to query a StorageBackend for ForceField-
Data which meet the specified criteria.

BaseSimulationDataQuery The base class for queries which will retrieve
BaseSimulationData derived data.

SimulationDataQuery A class used to query a StorageBackend for
StoredSimulationData objects which meet the
specified set of criteria.

FreeEnergyDataQuery A class used to query a StorageBackend for
FreeEnergyData objects which meet the specified set
of criteria.

BaseDataQuery

class openff.evaluator.storage.query.BaseDataQuery
A base class for queries which can be made to a StorageBackend.

__init__()

Methods

__init__()

apply(data_object) Apply this query to a data object.
data_class() The type of data class that this query can be applied

to.
from_data_object(data_object) Returns the query which would match this data ob-

ject.
from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

abstract classmethod data_class()
The type of data class that this query can be applied to.

Returns

228 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Return type type of BaseStoredData

apply(data_object)
Apply this query to a data object.

Parameters data_object (BaseStoredData) – The data object to apply the query to.

Returns The values of the matched parameters of the data object fully matched this query, oth-
erwise None.

Return type tuple of Any, optional

classmethod from_data_object(data_object)
Returns the query which would match this data object.

Parameters data_object (BaseStoredData) – The data object to construct the query for.

Returns The query which would match this data object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

2.32. API 229

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

SubstanceQuery

class openff.evaluator.storage.query.SubstanceQuery
A query which focuses on finding data which was collected for substances with specific traits, e.g which contains
both a solute and solvent, or only a solvent etc.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

components_only Only match pure data which was collected for one of
the components in the query substance.

components_only
Only match pure data which was collected for one of the components in the query substance. The default
value of this attribute is False.

Type bool

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

230 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

ForceFieldQuery

class openff.evaluator.storage.query.ForceFieldQuery
A class used to query a StorageBackend for ForceFieldData which meet the specified criteria.

__init__()

Methods

__init__()

apply(data_object) Apply this query to a data object.
data_class()

from_data_object(data_object) Returns the query which would match this data ob-
ject.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

force_field_source The force field source to query for.

force_field_source
The force field source to query for. The default value of this attribute is not set. This attribute is optional.

Type ForceFieldSource

apply(data_object)
Apply this query to a data object.

Parameters data_object (BaseStoredData) – The data object to apply the query to.

Returns The values of the matched parameters of the data object fully matched this query, oth-
erwise None.

Return type tuple of Any, optional

2.32. API 231

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_data_object(data_object)
Returns the query which would match this data object.

Parameters data_object (BaseStoredData) – The data object to construct the query for.

Returns The query which would match this data object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

BaseSimulationDataQuery

class openff.evaluator.storage.query.BaseSimulationDataQuery
The base class for queries which will retrieve BaseSimulationData derived data.

__init__()

232 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__()

apply(data_object[, attributes_to_ignore]) Apply this query to a data object.
data_class() The type of data class that this query can be applied

to.
from_data_object(data_object) Returns the query which would match this data ob-

ject.
from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

force_field_id The id of the force field parameters which used to
generate the data.

property_phase The phase of the substance (e.g.
source_calculation_id The server id which should have generated this data.
substance The substance which the data should have been col-

lected for.
substance_query The subset of the substance to query for.
thermodynamic_state The state at which the data should have been col-

lected.

substance
The substance which the data should have been collected for. Data for a subset of this substance can be
queried for by using the substance_query attribute The default value of this attribute is not set. This attribute
is optional.

Type Substance

substance_query
The subset of the substance to query for. This option can only be used when the substance attribute is set.
The default value of this attribute is not set. This attribute is optional.

Type SubstanceQuery

thermodynamic_state
The state at which the data should have been collected. The default value of this attribute is not set. This
attribute is optional.

Type ThermodynamicState

property_phase
The phase of the substance (e.g. liquid, gas). The default value of this attribute is not set. This attribute is
optional.

Type PropertyPhase

source_calculation_id

2.32. API 233

OpenFF Evaluator Documentation

The server id which should have generated this data. The default value of this attribute is not set. This
attribute is optional.

Type str

force_field_id
The id of the force field parameters which used to generate the data. The default value of this attribute is
not set. This attribute is optional.

Type str

apply(data_object, attributes_to_ignore=None)
Apply this query to a data object.

Parameters data_object (BaseStoredData) – The data object to apply the query to.

Returns The values of the matched parameters of the data object fully matched this query, oth-
erwise None.

Return type tuple of Any, optional

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

abstract classmethod data_class()
The type of data class that this query can be applied to.

Returns
Return type type of BaseStoredData

classmethod from_data_object(data_object)
Returns the query which would match this data object.

Parameters data_object (BaseStoredData) – The data object to construct the query for.

Returns The query which would match this data object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

234 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

SimulationDataQuery

class openff.evaluator.storage.query.SimulationDataQuery
A class used to query a StorageBackend for StoredSimulationData objects which meet the specified set of
criteria.

__init__()

Methods

__init__()

apply(data_object[, attributes_to_ignore]) Apply this query to a data object.
data_class()

from_data_object(data_object) Returns the query which would match this data ob-
ject.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

force_field_id The id of the force field parameters which used to
generate the data.

number_of_molecules The total number of molecules in the system.
property_phase The phase of the substance (e.g.
source_calculation_id The server id which should have generated this data.
substance The substance which the data should have been col-

lected for.
substance_query The subset of the substance to query for.
thermodynamic_state The state at which the data should have been col-

lected.

number_of_molecules
The total number of molecules in the system. The default value of this attribute is not set. This attribute is
optional.

Type int

2.32. API 235

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

apply(data_object, attributes_to_ignore=None)
Apply this query to a data object.

Parameters data_object (BaseStoredData) – The data object to apply the query to.

Returns The values of the matched parameters of the data object fully matched this query, oth-
erwise None.

Return type tuple of Any, optional

force_field_id
The id of the force field parameters which used to generate the data. The default value of this attribute is
not set. This attribute is optional.

Type str

classmethod from_data_object(data_object)
Returns the query which would match this data object.

Parameters data_object (BaseStoredData) – The data object to construct the query for.

Returns The query which would match this data object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

property_phase
The phase of the substance (e.g. liquid, gas). The default value of this attribute is not set. This attribute is
optional.

Type PropertyPhase

source_calculation_id
The server id which should have generated this data. The default value of this attribute is not set. This
attribute is optional.

236 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

substance
The substance which the data should have been collected for. Data for a subset of this substance can be
queried for by using the substance_query attribute The default value of this attribute is not set. This attribute
is optional.

Type Substance

substance_query
The subset of the substance to query for. This option can only be used when the substance attribute is set.
The default value of this attribute is not set. This attribute is optional.

Type SubstanceQuery

thermodynamic_state
The state at which the data should have been collected. The default value of this attribute is not set. This
attribute is optional.

Type ThermodynamicState

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

FreeEnergyDataQuery

class openff.evaluator.storage.query.FreeEnergyDataQuery
A class used to query a StorageBackend for FreeEnergyData objects which meet the specified set of criteria.

__init__()

Methods

__init__()

apply(data_object[, attributes_to_ignore]) Apply this query to a data object.
data_class()

from_data_object(data_object) Returns the query which would match this data ob-
ject.

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

2.32. API 237

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

force_field_id The id of the force field parameters which used to
generate the data.

property_phase The phase of the substance (e.g.
source_calculation_id The server id which should have generated this data.
substance The substance which the data should have been col-

lected for.
substance_query The subset of the substance to query for.
thermodynamic_state The state at which the data should have been col-

lected.

apply(data_object, attributes_to_ignore=None)
Apply this query to a data object.

Parameters data_object (BaseStoredData) – The data object to apply the query to.

Returns The values of the matched parameters of the data object fully matched this query, oth-
erwise None.

Return type tuple of Any, optional

force_field_id
The id of the force field parameters which used to generate the data. The default value of this attribute is
not set. This attribute is optional.

Type str

classmethod from_data_object(data_object)
Returns the query which would match this data object.

Parameters data_object (BaseStoredData) – The data object to construct the query for.

Returns The query which would match this data object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

238 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

property_phase
The phase of the substance (e.g. liquid, gas). The default value of this attribute is not set. This attribute is
optional.

Type PropertyPhase

source_calculation_id
The server id which should have generated this data. The default value of this attribute is not set. This
attribute is optional.

Type str

substance
The substance which the data should have been collected for. Data for a subset of this substance can be
queried for by using the substance_query attribute The default value of this attribute is not set. This attribute
is optional.

Type Substance

substance_query
The subset of the substance to query for. This option can only be used when the substance attribute is set.
The default value of this attribute is not set. This attribute is optional.

Type SubstanceQuery

thermodynamic_state
The state at which the data should have been collected. The default value of this attribute is not set. This
attribute is optional.

Type ThermodynamicState

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Attributes

FilePath Represents a string file path.
StorageAttribute A descriptor used to mark attributes of a class as those

which store information about a cached piece of data.
QueryAttribute A descriptor used to add additional metadata to at-

tributes of a storage query.

2.32. API 239

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

FilePath

class openff.evaluator.storage.attributes.FilePath
Represents a string file path.

__init__()

Methods

__init__()

capitalize() Return a capitalized version of the string.
casefold() Return a version of the string suitable for caseless

comparisons.
center(width[, fillchar]) Return a centered string of length width.
count(sub[, start[, end]]) Return the number of non-overlapping occurrences

of substring sub in string S[start:end].
encode([encoding, errors]) Encode the string using the codec registered for en-

coding.
endswith (suffix[, start[, end]]) Return True if S ends with the specified suffix, False

otherwise.
expandtabs([tabsize]) Return a copy where all tab characters are expanded

using spaces.
find(sub[, start[, end]]) Return the lowest index in S where substring sub is

found, such that sub is contained within S[start:end].
format(*args, **kwargs) Return a formatted version of S, using substitutions

from args and kwargs.
format_map(mapping) Return a formatted version of S, using substitutions

from mapping.
index(sub[, start[, end]]) Return the lowest index in S where substring sub is

found, such that sub is contained within S[start:end].
isalnum() Return True if the string is an alpha-numeric string,

False otherwise.
isalpha() Return True if the string is an alphabetic string, False

otherwise.
isascii() Return True if all characters in the string are ASCII,

False otherwise.
isdecimal() Return True if the string is a decimal string, False

otherwise.
isdigit() Return True if the string is a digit string, False other-

wise.
isidentifier() Return True if the string is a valid Python identifier,

False otherwise.
islower() Return True if the string is a lowercase string, False

otherwise.
isnumeric() Return True if the string is a numeric string, False

otherwise.
isprintable() Return True if the string is printable, False otherwise.
isspace() Return True if the string is a whitespace string, False

otherwise.
continues on next page

240 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 221 – continued from previous page
istitle() Return True if the string is a title-cased string, False

otherwise.
isupper() Return True if the string is an uppercase string, False

otherwise.
join(iterable, /) Concatenate any number of strings.
ljust(width[, fillchar]) Return a left-justified string of length width.
lower() Return a copy of the string converted to lowercase.
lstrip([chars]) Return a copy of the string with leading whitespace

removed.
maketrans(x[, y, z]) Return a translation table usable for str.translate().
partition(sep, /) Partition the string into three parts using the given

separator.
replace(old, new[, count]) Return a copy with all occurrences of substring old

replaced by new.
rfind(sub[, start[, end]]) Return the highest index in S where substring sub is

found, such that sub is contained within S[start:end].
rindex(sub[, start[, end]]) Return the highest index in S where substring sub is

found, such that sub is contained within S[start:end].
rjust(width[, fillchar]) Return a right-justified string of length width.
rpartition(sep, /) Partition the string into three parts using the given

separator.
rsplit([sep, maxsplit]) Return a list of the words in the string, using sep as

the delimiter string.
rstrip([chars]) Return a copy of the string with trailing whitespace

removed.
split([sep, maxsplit]) Return a list of the words in the string, using sep as

the delimiter string.
splitlines([keepends]) Return a list of the lines in the string, breaking at line

boundaries.
startswith (prefix[, start[, end]]) Return True if S starts with the specified prefix, False

otherwise.
strip([chars]) Return a copy of the string with leading and trailing

whitespace removed.
swapcase() Convert uppercase characters to lowercase and low-

ercase characters to uppercase.
title() Return a version of the string where each word is ti-

tlecased.
translate(table, /) Replace each character in the string using the given

translation table.
upper() Return a copy of the string converted to uppercase.
zfill(width, /) Pad a numeric string with zeros on the left, to fill a

field of the given width.

capitalize()
Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

casefold()
Return a version of the string suitable for caseless comparisons.

center(width, fillchar=' ', /)
Return a centered string of length width.

2.32. API 241

OpenFF Evaluator Documentation

Padding is done using the specified fill character (default is a space).

count(sub[, start[, end]])→ int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional argu-
ments start and end are interpreted as in slice notation.

encode(encoding='utf-8', errors='strict')
Encode the string using the codec registered for encoding.

encoding The encoding in which to encode the string.

errors The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding
errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefre-
place’ as well as any other name registered with codecs.register_error that can handle UnicodeEn-
codeErrors.

endswith(suffix[, start[, end]])→ bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that
position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

expandtabs(tabsize=8)
Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

find(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

format(*args, **kwargs)→ str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified
by braces (‘{’ and ‘}’).

format_map(mapping)→ str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by
braces (‘{’ and ‘}’).

index(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

isalnum()
Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character
in the string.

isalpha()
Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the
string.

isascii()
Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

isdecimal()
Return True if the string is a decimal string, False otherwise.

242 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

A string is a decimal string if all characters in the string are decimal and there is at least one character in
the string.

isdigit()
Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the
string.

isidentifier()
Return True if the string is a valid Python identifier, False otherwise.

Use keyword.iskeyword() to test for reserved identifiers such as “def” and “class”.

islower()
Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character
in the string.

isnumeric()
Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

isprintable()
Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

isspace()
Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the
string.

istitle()
Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase
characters only cased ones.

isupper()
Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased
character in the string.

join(iterable, /)
Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new
string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

ljust(width, fillchar=' ', /)
Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

lower()
Return a copy of the string converted to lowercase.

2.32. API 243

OpenFF Evaluator Documentation

lstrip(chars=None, /)
Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

static maketrans(x, y=None, z=None, /)
Return a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters
to Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two
arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be
mapped to the character at the same position in y. If there is a third argument, it must be a string, whose
characters will be mapped to None in the result.

partition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the
part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

replace(old, new, count=-1, /)
Return a copy with all occurrences of substring old replaced by new.

count Maximum number of occurrences to replace. -1 (the default value) means replace all
occurrences.

If the optional argument count is given, only the first count occurrences are replaced.

rfind(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

rindex(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

rjust(width, fillchar=' ', /)
Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

rpartition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple
containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

rsplit(sep=None, maxsplit=- 1)
Return a list of the words in the string, using sep as the delimiter string.

sep The delimiter according which to split the string. None (the default value) means split ac-
cording to any whitespace, and discard empty strings from the result.

maxsplit Maximum number of splits to do. -1 (the default value) means no limit.

Splits are done starting at the end of the string and working to the front.

244 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

rstrip(chars=None, /)
Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

split(sep=None, maxsplit=- 1)
Return a list of the words in the string, using sep as the delimiter string.

sep The delimiter according which to split the string. None (the default value) means split according to
any whitespace, and discard empty strings from the result.

maxsplit Maximum number of splits to do. -1 (the default value) means no limit.

splitlines(keepends=False)
Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

startswith(prefix[, start[, end]])→ bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to
try.

strip(chars=None, /)
Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

swapcase()
Convert uppercase characters to lowercase and lowercase characters to uppercase.

title()
Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower
case.

translate(table, /)
Replace each character in the string using the given translation table.

table Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals,
strings, or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this opera-
tion raises LookupError, the character is left untouched. Characters mapped to None are deleted.

upper()
Return a copy of the string converted to uppercase.

zfill(width, /)
Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

2.32. API 245

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

StorageAttribute

class openff.evaluator.storage.attributes.StorageAttribute(docstring, type_hint, optional=False)
A descriptor used to mark attributes of a class as those which store information about a cached piece of data.

__init__(docstring, type_hint, optional=False)
Initializes a new Attribute object.

Parameters
• docstring (str) – A docstring describing the attributes purpose. This will automatically

be decorated with additional information such as type hints, default values, etc.

• type_hint (type, typing.Union) – The expected type of this attribute. This will be
used to help the workflow engine ensure that expected input types match corresponding
output values.

• default_value (Any) – The default value for this attribute.

• optional (bool) – Defines whether this is an optional input of a class. If true, the de-
fault_value should be set to UNDEFINED.

• read_only (bool) – Defines whether this attribute is read-only.

Methods

__init__(docstring, type_hint[, optional]) Initializes a new Attribute object.

QueryAttribute

class openff.evaluator.storage.attributes.QueryAttribute(docstring, type_hint, optional=False,
custom_match=False)

A descriptor used to add additional metadata to attributes of a storage query.

__init__(docstring, type_hint, optional=False, custom_match=False)
Initializes self.

Parameters custom_match (bool) – Whether a custom behaviour will be implemented when
matching this attribute against the matching data object attribute.

Methods

__init__(docstring, type_hint[, optional, ...]) Initializes self.

246 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

2.32.9 Workflow API

Workflow Encapsulates and prepares a workflow which is able to
estimate a physical property.

WorkflowException An exception which was raised while executing a work-
flow protocol.

WorkflowGraph A hierarchical structure for storing and submitting the
workflows which will estimate a set of physical proper-
ties..

WorkflowResult The result of executing a Workflow as part of a Work-
flowGraph.

Protocol The base class for a protocol which would form one step
of a larger property calculation workflow.

ProtocolGraph A graph of connected protocols which may be executed
together.

ProtocolGroup A group of workflow protocols to be executed in one
batch.

workflow_protocol A decorator which registers a class as being a protocol
which may be included in workflows.

register_workflow_protocol Registers a class as being a protocol which may be in-
cluded in workflows.

Workflow

class openff.evaluator.workflow.Workflow(global_metadata, unique_id=None)
Encapsulates and prepares a workflow which is able to estimate a physical property.

__init__(global_metadata, unique_id=None)
Constructs a new Workflow object.

Parameters
• global_metadata (dict of str and Any) – A dictionary of the metadata which will

be made available to each of the workflow protocols through the pseudo “global” scope.

• unique_id (str, optional) – A unique identifier to assign to this workflow. This id
will be appended to the ids of the protocols of this workflow. If none is provided, one will
be chosen at random.

Methods

__init__(global_metadata[, unique_id]) Constructs a new Workflow object.
execute([root_directory, ...]) Executes the workflow.
from_schema(schema, metadata[, unique_id]) Creates a workflow from its schema blueprint, and

the associated metadata.
generate_default_metadata(physical_property,
...)

Generates the default global metadata dictionary.

replace_protocol(old_protocol, new_protocol) Replaces an existing protocol with a new one, while
updating all input and local references to point to the
new protocol.

continues on next page

2.32. API 247

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Table 225 – continued from previous page
to_graph () Converts this workflow to an executable Workflow-

Graph.

Attributes

final_value_source The path to the protocol output which corresponds to
the estimated value of the property being estimated.

outputs_to_store A collection of data classes to populate ready to be
stored by a StorageBackend.

protocols The protocols in this workflow.
schema

property protocols
The protocols in this workflow.

Type tuple of Protocol

property final_value_source
The path to the protocol output which corresponds to the estimated value of the property being estimated.

Type ProtocolPath

property outputs_to_store
A collection of data classes to populate ready to be stored by a StorageBackend.

Type dict of str and StorageBackend

replace_protocol(old_protocol, new_protocol, update_paths_only=False)
Replaces an existing protocol with a new one, while updating all input and local references to point to the
new protocol.

The main use of this method is when merging multiple protocols into one.

Parameters
• old_protocol (Protocol or ProtocolPath) – The protocol (or its id) to replace.

• new_protocol (Protocol or ProtocolPath) – The new protocol (or its id) to use.

• update_paths_only (bool) – Whether only update the final_value_source, and out-
puts_to_store attributes, or to also update all of the protocols in protocols.

static generate_default_metadata(physical_property, force_field_path, parame-
ter_gradient_keys=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, target_uncertainty=None)

Generates the default global metadata dictionary.

Parameters
• physical_property (PhysicalProperty) – The physical property whose arguments

are available in the global scope.

• force_field_path (str) – The path to the force field parameters to use in the workflow.

• parameter_gradient_keys (list of ParameterGradientKey) – A list of references
to all of the parameters which all observables should be differentiated with respect to.

248 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• target_uncertainty (openff.evaluator.unit.Quantity, optional) – The un-
certainty which the property should be estimated to within.

Returns
The metadata dictionary, with the following keys / types:

• thermodynamic_state: ThermodynamicState - The state (T,p) at which the property
is being computed

• substance: Substance - The composition of the system of interest.

• components: list of Substance - The components present in the system for which the
property is being estimated.

• target_uncertainty: openff.evaluator.unit.Quantity - The target uncertainty with which
properties should be estimated.

• per_component_uncertainty: openff.evaluator.unit.Quantity - The target uncertainty divided
by the sqrt of the number of components in the system + 1

• force_field_path: str - A path to the force field parameters with which the property
should be evaluated with.

• parameter_gradient_keys: list of ParameterGradientKey - A list of references to all of the
parameters which all observables should be differentiated with respect to.

Return type dict of str, Any

to_graph()
Converts this workflow to an executable WorkflowGraph.

Returns The graph representation of this workflow.

Return type WorkflowGraph

classmethod from_schema(schema, metadata, unique_id=None)
Creates a workflow from its schema blueprint, and the associated metadata.

Parameters
• schema (WorkflowSchema) – The schema blueprint for this workflow.

• metadata (dict of str and Any) – The metadata to make available to the workflow.

• unique_id (str, optional) – A unique identifier to assign to this workflow. This id
will be appended to the ids of the protocols of this workflow. If none is provided one will
be chosen at random.

Returns The created workflow.

Return type cls

execute(root_directory='', calculation_backend=None, compute_resources=None)
Executes the workflow.

Parameters
• root_directory (str) – The directory to execute the graph in.

• calculation_backend (CalculationBackend, optional.) – The backend to exe-
cute the graph on. This parameter is mutually exclusive with compute_resources.

• compute_resources (CalculationBackend, optional.) – The compute resources
to run using. If None and no calculation_backend is specified, the workflow will be

2.32. API 249

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

executed on a single CPU thread. This parameter is mutually exclusive with calcula-
tion_backend.

Returns The result of executing this workflow. If executed on a calculation_backend, the result
will be wrapped in a Future object.

Return type WorkflowResult or Future of WorkflowResult

WorkflowException

exception openff.evaluator.workflow.WorkflowException(message=None, protocol_id=None)
An exception which was raised while executing a workflow protocol.

classmethod from_exception(exception)
Initialize this class from an existing exception.

Parameters exception (Exception) – The existing exception

Returns The initialized exception object.

Return type cls

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

250 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

OpenFF Evaluator Documentation

WorkflowGraph

class openff.evaluator.workflow.WorkflowGraph
A hierarchical structure for storing and submitting the workflows which will estimate a set of physical properties..

__init__()

Methods

__init__()

add_workflows(*workflows) Insert a set of workflows into the workflow graph.
execute([root_directory, ...]) Executes the workflow graph.

Attributes

protocols The protocols in this graph.
root_protocols The ids of the protocols in the group which do not

take input from the other grouped protocols.

property protocols
The protocols in this graph.

Type dict of str and Protocol

property root_protocols
The ids of the protocols in the group which do not take input from the other grouped protocols.

Type list of str

add_workflows(*workflows)
Insert a set of workflows into the workflow graph.

Parameters workflow (Workflow) – The workflow to insert.

execute(root_directory='', calculation_backend=None, compute_resources=None)
Executes the workflow graph.

Parameters
• root_directory (str) – The directory to execute the graph in.

• calculation_backend (CalculationBackend, optional.) – The backend to exe-
cute the graph on. This parameter is mutually exclusive with compute_resources.

• compute_resources (CalculationBackend, optional.) – The compute resources
to run using. If None and no calculation_backend is specified, the workflow will be
executed on a single CPU thread. This parameter is mutually exclusive with calcula-
tion_backend.

Returns The results of executing the graph. If a calculation_backend is specified, these results
will be wrapped in a Future.

Return type list of WorkflowResult or list of Future of WorkflowResult

2.32. API 251

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

WorkflowResult

class openff.evaluator.workflow.WorkflowResult
The result of executing a Workflow as part of a WorkflowGraph.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

Attributes

data_to_store Paths to the data objects to store.
exceptions Any exceptions raised by the layer while estimating

the property.
gradients The gradients of the estimated value with respect to

the specified force field parameters.
value The estimated value of the property and the uncer-

tainty in that value.
workflow_id The id of the workflow associated with this result.

workflow_id
The id of the workflow associated with this result. The default value of this attribute is not set and must be
set by the user..

Type str

value
The estimated value of the property and the uncertainty in that value. The default value of this attribute is
not set. This attribute is optional.

Type Measurement

gradients
The gradients of the estimated value with respect to the specified force field parameters. The default value
of this attribute is [].

Type list

exceptions
Any exceptions raised by the layer while estimating the property. The default value of this attribute is [].

Type list

data_to_store
Paths to the data objects to store. The default value of this attribute is [].

252 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

OpenFF Evaluator Documentation

Type list

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

Protocol

class openff.evaluator.workflow.Protocol(protocol_id)
The base class for a protocol which would form one step of a larger property calculation workflow.

A protocol may for example:

• create the coordinates of a mixed simulation box

• set up a bound ligand-protein system

• build the simulation topology

• perform an energy minimisation

An individual protocol may require a set of inputs, which may either be set as constants

>>> from openff.evaluator.protocols.openmm import OpenMMSimulation
>>>
>>> npt_equilibration = OpenMMSimulation('npt_equilibration')
>>> npt_equilibration.ensemble = OpenMMSimulation.Ensemble.NPT

or from the output of another protocol, pointed to by a ProtocolPath

2.32. API 253

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

>>> npt_production = OpenMMSimulation('npt_production')
>>> # Use the coordinate file output by the npt_equilibration protocol
>>> # as the input to the npt_production protocol
>>> npt_production.input_coordinate_file = ProtocolPath('output_coordinate_file',
>>> npt_equilibration.id)

In this way protocols may be chained together, thus defining a larger property calculation workflow from simple,
reusable building blocks.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

254 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

property schema
A serializable schema for this object.

Type ProtocolSchema

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

2.32. API 255

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

256 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

2.32. API 257

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ProtocolGraph

class openff.evaluator.workflow.ProtocolGraph
A graph of connected protocols which may be executed together.

__init__()

Methods

__init__()

add_protocols(*protocols[, ...]) Adds a set of protocols to the graph.
execute([root_directory, ...]) Execute the protocol graph in the specified directory,

and either using a CalculationBackend, or using a
specified set of compute resources.

Attributes

protocols The protocols in this graph.
root_protocols The ids of the protocols in the group which do not

take input from the other grouped protocols.

property protocols
The protocols in this graph.

Type dict of str and Protocol

property root_protocols
The ids of the protocols in the group which do not take input from the other grouped protocols.

Type list of str

add_protocols(*protocols, allow_external_dependencies=False)
Adds a set of protocols to the graph.

Parameters

258 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

• protocols (tuple of Protocol) – The protocols to add.

• allow_external_dependencies (bool) – If False, an exception will be raised if a pro-
tocol has a dependency outside of this graph.

Returns A mapping between the original protocols and protocols which were merged over the
course of adding the new protocols.

Return type dict of str and str

execute(root_directory='', calculation_backend=None, compute_resources=None,
enable_checkpointing=True, safe_exceptions=True)

Execute the protocol graph in the specified directory, and either using a CalculationBackend, or using a
specified set of compute resources.

Parameters
• root_directory (str) – The directory to execute the graph in.

• calculation_backend (CalculationBackend, optional.) – The backend to exe-
cute the graph on. This parameter is mutually exclusive with compute_resources.

• compute_resources (CalculationBackend, optional.) – The compute resources
to run using. This parameter is mutually exclusive with calculation_backend.

• enable_checkpointing (bool) – If enabled, protocols will not be executed more than
once if the output from their previous execution is found.

• safe_exceptions (bool) – If true, exceptions will be serialized into the results file rather
than directly raised, otherwise, the exception will be raised as normal.

Returns The paths to the JSON serialized outputs of the executed protocols. If executed using a
calculation backend, these will be Future objects which will return the output paths on calling
future.result().

Return type dict of str and str or Future

ProtocolGroup

class openff.evaluator.workflow.ProtocolGroup(protocol_id)
A group of workflow protocols to be executed in one batch.

This may be used for example to cluster together multiple protocols that will execute in a linear chain so that
multiple scheduler execution calls are reduced into a single one.

Additionally, a group may provide enhanced behaviour, for example running all protocols within the group self
consistently until a given condition is met (e.g run a simulation until a given observable has converged).

__init__(protocol_id)
Constructs a new ProtocolGroup.

2.32. API 259

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Methods

__init__(protocol_id) Constructs a new ProtocolGroup.
add_protocols(*protocols) Add protocols to this group.
apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Store the uuid of the calculation this protocol belongs

to
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
protocols A dictionary of the protocols in this groups, where

the dictionary key is the protocol id, and the value is
the protocol itself.

required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

260 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

property protocols
A dictionary of the protocols in this groups, where the dictionary key is the protocol id, and the value is the
protocol itself.

Notes

This property should not be altered. Use add_protocols to add new protocols to the group.

Type dict of str and Protocol

add_protocols(*protocols)
Add protocols to this group.

Parameters protocols (Protocol) – The protocols to add.

set_uuid(value)
Store the uuid of the calculation this protocol belongs to

Parameters value (str) – The uuid of the parent calculation.

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a different
one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

2.32. API 261

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

262 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

property schema
A serializable schema for this object.

Type ProtocolSchema

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

2.32. API 263

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

workflow_protocol

openff.evaluator.workflow.workflow_protocol()
A decorator which registers a class as being a protocol which may be included in workflows.

register_workflow_protocol

openff.evaluator.workflow.register_workflow_protocol(protocol_class)
Registers a class as being a protocol which may be included in workflows.

Schemas

ProtocolSchema A json serializable representation of a workflow proto-
col.

ProtocolGroupSchema A json serializable representation of a workflow protocol
group.

ProtocolReplicator A protocol replicator contains the information necessary
to replicate parts of a property estimation workflow.

WorkflowSchema The schematic for a property estimation workflow.

ProtocolSchema

class openff.evaluator.workflow.schemas.ProtocolSchema(unique_id=None, protocol_type=None,
inputs=None)

A json serializable representation of a workflow protocol.

__init__(unique_id=None, protocol_type=None, inputs=None)

264 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Methods

__init__([unique_id, protocol_type, inputs])

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_protocol() Creates a new protocol object from this schema.
validate([attribute_type]) Validate the values of the attributes.

Attributes

id The unique id associated with the protocol.
inputs The inputs to the protocol.
type The type of protocol associated with this schema.

id
The unique id associated with the protocol. The default value of this attribute is not set and must be set by
the user..

Type str

type
The type of protocol associated with this schema. The default value of this attribute is not set and must be
set by the user.. This attribute is read-only.

Type str

inputs
The inputs to the protocol. The default value of this attribute is not set and must be set by the user.. This
attribute is read-only.

Type dict

to_protocol()
Creates a new protocol object from this schema.

Returns The protocol created from this schema.

Return type Protocol

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

2.32. API 265

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns The names of the attributes of the specified type.

Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ProtocolGroupSchema

class openff.evaluator.workflow.schemas.ProtocolGroupSchema(unique_id=None,
protocol_type=None, inputs=None,
protocol_schemas=None)

A json serializable representation of a workflow protocol group.

__init__(unique_id=None, protocol_type=None, inputs=None, protocol_schemas=None)

Methods

__init__([unique_id, protocol_type, inputs, ...])

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

to_protocol() Creates a new protocol object from this schema.
validate([attribute_type]) Validate the values of the attributes.

Attributes

id The unique id associated with the protocol.
inputs The inputs to the protocol.
protocol_schemas The schemas of the protocols within this group.
type The type of protocol associated with this schema.

protocol_schemas
The schemas of the protocols within this group. The default value of this attribute is not set and must be

266 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

set by the user.. This attribute is read-only.

Type dict

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

id
The unique id associated with the protocol. The default value of this attribute is not set and must be set by
the user..

Type str

inputs
The inputs to the protocol. The default value of this attribute is not set and must be set by the user.. This
attribute is read-only.

Type dict

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

to_protocol()
Creates a new protocol object from this schema.

Returns The protocol created from this schema.

Return type Protocol

type
The type of protocol associated with this schema. The default value of this attribute is not set and must be
set by the user.. This attribute is read-only.

2.32. API 267

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

ProtocolReplicator

class openff.evaluator.workflow.schemas.ProtocolReplicator(replicator_id='')
A protocol replicator contains the information necessary to replicate parts of a property estimation workflow.

Any protocol whose id includes $(replicator.id) (where replicator.id is the id of a replicator) will be cloned for
each value present in template_values. Protocols that are being replicated will also have any ReplicatorValue
inputs replaced with the actual value taken from template_values.

When the protocol is replicated, the $(replicator.id) placeholder in the protocol id will be replaced an integer
which corresponds to the index of a value in the template_values array.

Any protocols which take input from a replicated protocol will be updated to instead take a list of value, populated
by the outputs of the replicated protocols.

Notes

• The template_values property must be a list of either constant values, or ProtocolPath objects which take
their value from the global scope.

• If children of replicated protocols are also flagged as to be replicated, they will only have their ids changed
to match the index of the parent protocol, as opposed to being fully replicated.

__init__(replicator_id='')
Constructs a new ProtocolReplicator object.

Parameters replicator_id (str) – The id of this replicator.

Methods

__init__([replicator_id]) Constructs a new ProtocolReplicator object.
apply(protocols[, template_values, ...]) Applies this replicator to the provided set of protocols

and any of their children.
from_json(file_path) Create this object from a JSON file.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents) Parses a typed json string into the corresponding class

structure.
update_references(protocols, ...) Redirects the input references of protocols to the

replicated versions.

Attributes

placeholder_id The string which protocols to be replicated should in-
clude in their ids.

property placeholder_id
The string which protocols to be replicated should include in their ids.

apply(protocols, template_values=None, template_index=- 1, template_value=None)
Applies this replicator to the provided set of protocols and any of their children.

268 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

This protocol should be followed by a call to update_references to ensure that all protocols which take their
input from a replicated protocol get correctly updated.

Parameters
• protocols (dict of str and Protocol) – The protocols to apply the replicator to.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by this replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by this replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

Returns
• dict of str and Protocol – The replicated protocols.

• dict of ProtocolPath and list of tuple of ProtocolPath and int – A dictionary of references
to all of the protocols which have been replicated, with keys of original protocol ids. Each
value is comprised of a list of the replicated protocol ids, and their index into the tem-
plate_values array.

update_references(protocols, replication_map, template_values)
Redirects the input references of protocols to the replicated versions.

Parameters
• protocols (dict of str and Protocol) – The protocols which have had this repli-

cator applied to them.

• replication_map (dict of ProtocolPath and list of tuple of
ProtocolPath and int) – A dictionary of references to all of the protocols which have
been replicated, with keys of original protocol ids. Each value is comprised of a list of the
replicated protocol ids, and their index into the template_values array.

• template_values (List of Any) – A list of the values which will be inserted into the
newly replicated protocols.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters

2.32. API 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

classmethod parse_json(string_contents)
Parses a typed json string into the corresponding class structure.

Parameters string_contents (str or bytes) – The typed json string.

Returns The parsed class.

Return type Any

WorkflowSchema

class openff.evaluator.workflow.schemas.WorkflowSchema
The schematic for a property estimation workflow.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

replace_protocol_types(protocol_replacements) Replaces protocols with given types with other pro-
tocols of specified replacements.

validate([attribute_type]) Validate the values of the attributes.

Attributes

final_value_source A reference to which protocol output corresponds to
the estimated value of the property.

outputs_to_store A collection of data classes to populate ready to be
stored by a StorageBackend.

protocol_replicators A set of replicators which will replicate parts of the
workflow.

protocol_schemas The schemas for the protocols which will make up the
workflow.

protocol_schemas
The schemas for the protocols which will make up the workflow. The default value of this attribute is [].

Type list

protocol_replicators

270 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

OpenFF Evaluator Documentation

A set of replicators which will replicate parts of the workflow. The default value of this attribute is not set.
This attribute is optional.

Type list

final_value_source
A reference to which protocol output corresponds to the estimated value of the property. The default value
of this attribute is not set. This attribute is optional.

Type ProtocolPath

outputs_to_store
A collection of data classes to populate ready to be stored by a StorageBackend. The default value of this
attribute is not set. This attribute is optional.

Type dict

replace_protocol_types(protocol_replacements, protocol_group_schema=None)
Replaces protocols with given types with other protocols of specified replacements. This is useful when
replacing the default protocols with custom ones, or swapping out base protocols with actual implementa-
tions

Warning: This method is NOT fully implemented and is likely to fail in all but a few specific cases.
This method should be used with extreme caution.

Parameters
• protocol_replacements (dict of str and str, optional) – A dictionary with

keys of the types of protocols which should be replaced with those protocols named by the
values.

• protocol_group_schema (ProtocolGroupSchema) – The protocol group to apply the
replacements to. This is mainly used when applying this method recursively.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

2.32. API 271

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

Attributes

BaseMergeBehaviour A base class for enums which will describes how at-
tributes should be handled when attempting to merge
similar protocols.

MergeBehaviour A enum which describes how attributes should be han-
dled when attempting to merge similar protocols.

InequalityMergeBehaviour A enum which describes how attributes which can be
compared with inequalities should be merged.

InputAttribute A descriptor used to mark an attribute of an object as an
input to that object.

OutputAttribute A descriptor used to mark an attribute of an as an output
of that object.

BaseMergeBehaviour

class openff.evaluator.workflow.attributes.BaseMergeBehaviour(value)
A base class for enums which will describes how attributes should be handled when attempting to merge similar
protocols.

__init__()

MergeBehaviour

class openff.evaluator.workflow.attributes.MergeBehaviour(value)
A enum which describes how attributes should be handled when attempting to merge similar protocols.

This enum may take values of

• ExactlyEqual: This attribute must be exactly equal between two protocols for them to be able to merge.

• Custom: This attribute will be ignored by the built-in merging code such that user specified behavior can
be implemented.

__init__()

272 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Attributes

ExactlyEqual

Custom

InequalityMergeBehaviour

class openff.evaluator.workflow.attributes.InequalityMergeBehaviour(value)
A enum which describes how attributes which can be compared with inequalities should be merged.

This enum may take values of

• SmallestValue: When two protocols are merged, the smallest value of this attribute from either protocol is
retained.

• LargestValue: When two protocols are merged, the largest value of this attribute from either protocol is
retained.

__init__()

Attributes

SmallestValue

LargestValue

InputAttribute

class openff.evaluator.workflow.attributes.InputAttribute(docstring, type_hint, default_value,
optional=False,
merge_behavior=MergeBehaviour.ExactlyEqual)

A descriptor used to mark an attribute of an object as an input to that object.

An attribute can either be set with a value directly, or it can also be set to a ProtocolPath to be set be the workflow
manager.

Examples

To mark an attribute as an input:

>>> from openff.evaluator.attributes import AttributeClass
>>> from openff.evaluator.workflow.attributes import InputAttribute
>>>
>>> class MyObject(AttributeClass):
>>>
>>> my_input = InputAttribute(
>>> docstring='An input will be used.',
>>> type_hint=float,

(continues on next page)

2.32. API 273

OpenFF Evaluator Documentation

(continued from previous page)

>>> default_value=0.1
>>>)

__init__(docstring, type_hint, default_value, optional=False,
merge_behavior=MergeBehaviour.ExactlyEqual)

Initializes a new InputAttribute object.

Parameters merge_behavior (BaseMergeBehaviour) – An enum describing how this input
should be handled when considering whether to, and actually merging two different objects.

Methods

__init__(docstring, type_hint, default_value) Initializes a new InputAttribute object.

OutputAttribute

class openff.evaluator.workflow.attributes.OutputAttribute(docstring, type_hint)
A descriptor used to mark an attribute of an as an output of that object. This attribute is expected to be populated
by the object itself, rather than be set externally.

Examples

To mark an attribute as an output:

>>> from openff.evaluator.attributes import AttributeClass
>>> from openff.evaluator.workflow.attributes import OutputAttribute
>>>
>>> class MyObject(AttributeClass):
>>>
>>> my_output = OutputAttribute(
>>> docstring='An output that will be filled.',
>>> type_hint=float
>>>)

__init__(docstring, type_hint)
Initializes a new OutputAttribute object.

Methods

__init__(docstring, type_hint) Initializes a new OutputAttribute object.

Placeholder Values

ReplicatorValue A placeholder value which will be set by a protocol repli-
cator with the specified id.

ProtocolPath Represents a pointer to the output of another protocol.

274 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

ReplicatorValue

class openff.evaluator.workflow.utils.ReplicatorValue(replicator_id='')
A placeholder value which will be set by a protocol replicator with the specified id.

__init__(replicator_id='')
Constructs a new ReplicatorValue object

Parameters replicator_id (str) – The id of the replicator which will set this value.

Methods

__init__([replicator_id]) Constructs a new ReplicatorValue object

ProtocolPath

class openff.evaluator.workflow.utils.ProtocolPath(property_name='', *protocol_ids)
Represents a pointer to the output of another protocol.

__init__(property_name='', *protocol_ids)
Constructs a new ProtocolPath object.

Parameters
• property_name (str) – The property name referenced by the path.

• protocol_ids (str) – An args list of protocol ids in the order in which they will appear
in the path.

Methods

__init__([property_name]) Constructs a new ProtocolPath object.
append_uuid(uuid) Appends a uuid to each of the protocol id's in the path
copy() Returns a copy of this path.
from_string(existing_path_string)

pop_next_in_path () Pops and then returns the leading protocol id from the
path.

prepend_protocol_id(id_to_prepend) Prepend a new protocol id onto the front of the path.
replace_protocol(old_id, new_id) Redirect the input to point at a new protocol.

Attributes

full_path The full path referenced by this object.
is_global

last_protocol The end protocol id of the path.
path_separator

property_name The property name pointed to by the path.
continues on next page

2.32. API 275

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Table 254 – continued from previous page
property_separator

protocol_ids The ids of the protocols referenced by this object.
protocol_path The full path referenced by this object excluding the

property name.
start_protocol The leading protocol id of the path.

property property_name
The property name pointed to by the path.

Type str

property protocol_ids
The ids of the protocols referenced by this object.

Type tuple of str

property start_protocol
The leading protocol id of the path.

Type str

property last_protocol
The end protocol id of the path.

Type str

property protocol_path
The full path referenced by this object excluding the property name.

Type str

property full_path
The full path referenced by this object.

Type str

prepend_protocol_id(id_to_prepend)
Prepend a new protocol id onto the front of the path.

Parameters id_to_prepend (str) – The protocol id to prepend to the path

pop_next_in_path()
Pops and then returns the leading protocol id from the path.

Returns The previously leading protocol id.

Return type str

append_uuid(uuid)
Appends a uuid to each of the protocol id’s in the path

Parameters uuid (str) – The uuid to append.

replace_protocol(old_id, new_id)
Redirect the input to point at a new protocol.

The main use of this method is when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the protocol to replace.

• new_id (str) – The id of the new protocol to use.

276 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

copy()
Returns a copy of this path.

2.32.10 Built-in Workflow Protocols

Analysis

BaseAverageObservable An abstract base class for protocols which will calculate
the average value of an observable and its uncertainty
via bootstrapping.

AverageObservable Computes the average value of an observable as well as
bootstrapped uncertainties for the average.

AverageDielectricConstant Computes the average value of the dielectric constant
from a set of dipole moments (M) and volumes (V)
sampled over the course of a molecular simulation
such that eps = 1 + (<M^2> - <M>^2) / (3.0 *
eps_0 * <V> * kb * T) [1]_.

AverageFreeEnergies A protocol which computes the Boltzmann weighted av-
erage (G° = -RT × Log[_{n} exp(-G°_{n})]) of a set of
free energies which were measured at the same thermo-
dynamic state.

ComputeDipoleMoments A protocol which will compute the dipole moment for
each configuration in a trajectory and for a given param-
eterized system.

BaseDecorrelateProtocol An abstract base class for protocols which will subsam-
ple a set of data, yielding only equilibrated, uncorrelated
data.

DecorrelateTrajectory A protocol which will subsample frames from a trajec-
tory, yielding only uncorrelated frames as determined
from a provided statistical inefficiency and equilibration
time.

DecorrelateObservables A protocol which will subsample a trajectory of observ-
ables, yielding only uncorrelated entries as determined
from a provided statistical inefficiency and equilibration
time.

BaseAverageObservable

class openff.evaluator.protocols.analysis.BaseAverageObservable(protocol_id)
An abstract base class for protocols which will calculate the average value of an observable and its uncertainty
via bootstrapping.

__init__(protocol_id)

2.32. API 277

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

bootstrap_iterations Input - The number of bootstrap iterations to per-
form.

bootstrap_sample_size Input - The relative sample size to use for bootstrap-
ping.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
potential_energies Input - The potential energies which were evaluated

at the same configurations and using the same force
field parameters as the observable to average.

required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
thermodynamic_state Input - The state at which the observables were com-

puted.
continues on next page

278 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 257 – continued from previous page
time_series_statistics Output - Statistics about the observables from which

the average was computed.These include the statisti-
cal inefficiency and the index after which the observ-
ables have become stationary (i.e.

value Output - The average value of the observable.

bootstrap_iterations
Input - The number of bootstrap iterations to perform. The default value of this attribute is 250.

Type int

bootstrap_sample_size
Input - The relative sample size to use for bootstrapping. The default value of this attribute is 1.0.

Type float

thermodynamic_state
Input - The state at which the observables were computed. This is required to compute ensemble averages
of the gradients of the observable with respect to force field parameters. The default value of this attribute
is not set. This attribute is optional.

Type ThermodynamicState

potential_energies
Input - The potential energies which were evaluated at the same configurations and using the same force
field parameters as the observable to average. This is required to compute ensemble averages of the gradi-
ents of the observable with respect to force field parameters. The default value of this attribute is not set.
This attribute is optional.

Type ObservableArray

value
Output - The average value of the observable. The default value of this attribute is not set and must be set
by the user..

Type Observable

time_series_statistics
Output - Statistics about the observables from which the average was computed.These include the statistical
inefficiency and the index after which the observables have become stationary (i.e. equilibrated). The
default value of this attribute is not set and must be set by the user..

Type TimeSeriesStatistics

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

2.32. API 279

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

280 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 281

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

282 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

AverageObservable

class openff.evaluator.protocols.analysis.AverageObservable(protocol_id)
Computes the average value of an observable as well as bootstrapped uncertainties for the average.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

bootstrap_iterations Input - The number of bootstrap iterations to per-
form.

bootstrap_sample_size Input - The relative sample size to use for bootstrap-
ping.

dependencies A list of pointers to the protocols which this protocol
takes input from.

divisor Input - A value to divide the statistic by.
id The unique id of this protocol.
observable Input - The file path to the observable which should

be averaged.
outputs A dictionary of the outputs of this property.

continues on next page

2.32. API 283

OpenFF Evaluator Documentation

Table 259 – continued from previous page
potential_energies Input - The potential energies which were evaluated

at the same configurations and using the same force
field parameters as the observable to average.

required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
thermodynamic_state Input - The state at which the observables were com-

puted.
time_series_statistics Output - Statistics about the observables from which

the average was computed.These include the statisti-
cal inefficiency and the index after which the observ-
ables have become stationary (i.e.

value Output - The average value of the observable.

observable
Input - The file path to the observable which should be averaged. The default value of this attribute is not
set and must be set by the user..

Type ObservableArray

divisor
Input - A value to divide the statistic by. This is useful if a statistic (such as enthalpy) needs to be normalised
by the number of molecules. The default value of this attribute is 1.0.

Type typing.Union[int, float, openff.evaluator.utils.units.Quantity]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

284 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

bootstrap_iterations
Input - The number of bootstrap iterations to perform. The default value of this attribute is 250.

Type int

bootstrap_sample_size
Input - The relative sample size to use for bootstrapping. The default value of this attribute is 1.0.

Type float

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

2.32. API 285

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

286 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

potential_energies
Input - The potential energies which were evaluated at the same configurations and using the same force
field parameters as the observable to average. This is required to compute ensemble averages of the gradi-
ents of the observable with respect to force field parameters. The default value of this attribute is not set.
This attribute is optional.

Type ObservableArray

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

thermodynamic_state
Input - The state at which the observables were computed. This is required to compute ensemble averages
of the gradients of the observable with respect to force field parameters. The default value of this attribute
is not set. This attribute is optional.

2.32. API 287

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ThermodynamicState

time_series_statistics
Output - Statistics about the observables from which the average was computed.These include the statistical
inefficiency and the index after which the observables have become stationary (i.e. equilibrated). The
default value of this attribute is not set and must be set by the user..

Type TimeSeriesStatistics

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
Output - The average value of the observable. The default value of this attribute is not set and must be set
by the user..

Type Observable

AverageDielectricConstant

class openff.evaluator.protocols.analysis.AverageDielectricConstant(protocol_id)
Computes the average value of the dielectric constant from a set of dipole moments (M) and volumes (V) sampled
over the course of a molecular simulation such that eps = 1 + (<M^2> - <M>^2) / (3.0 * eps_0 * <V>
* kb * T) [1]_.

References

[1] A. Glattli, X. Daura and W. F. van Gunsteren. Derivation of an improved simple point charge model
for liquid water: SPC/A and SPC/L. J. Chem. Phys. 116(22): 9811-9828, 2002

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
continues on next page

288 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 260 – continued from previous page
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

bootstrap_iterations Input - The number of bootstrap iterations to per-
form.

bootstrap_sample_size Input - The relative sample size to use for bootstrap-
ping.

dependencies A list of pointers to the protocols which this protocol
takes input from.

dipole_moments Input - The dipole moments of each sampled config-
uration.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
potential_energies Input - The potential energies which were evaluated

at the same configurations and using the same force
field parameters as the observable to average.

required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
thermodynamic_state Input - The state at which the observables were com-

puted.
time_series_statistics Output - Statistics about the observables from which

the average was computed.These include the statisti-
cal inefficiency and the index after which the observ-
ables have become stationary (i.e.

value Output - The average value of the observable.
volumes Input - The volume of each sampled configuration.

dipole_moments
Input - The dipole moments of each sampled configuration. The default value of this attribute is not set
and must be set by the user..

Type ObservableArray

volumes
Input - The volume of each sampled configuration. The default value of this attribute is not set and must
be set by the user..

Type ObservableArray

2.32. API 289

OpenFF Evaluator Documentation

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

bootstrap_iterations
Input - The number of bootstrap iterations to perform. The default value of this attribute is 250.

Type int

bootstrap_sample_size
Input - The relative sample size to use for bootstrapping. The default value of this attribute is 1.0.

Type float

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

290 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

2.32. API 291

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

potential_energies
Input - The potential energies which were evaluated at the same configurations and using the same force
field parameters as the observable to average. This is required to compute ensemble averages of the gradi-
ents of the observable with respect to force field parameters. The default value of this attribute is not set.
This attribute is optional.

Type ObservableArray

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

292 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

thermodynamic_state
Input - The state at which the observables were computed. This is required to compute ensemble averages
of the gradients of the observable with respect to force field parameters. The default value of this attribute
is not set. This attribute is optional.

Type ThermodynamicState

time_series_statistics
Output - Statistics about the observables from which the average was computed.These include the statistical
inefficiency and the index after which the observables have become stationary (i.e. equilibrated). The
default value of this attribute is not set and must be set by the user..

Type TimeSeriesStatistics

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
Output - The average value of the observable. The default value of this attribute is not set and must be set
by the user..

Type Observable

2.32. API 293

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

AverageFreeEnergies

class openff.evaluator.protocols.analysis.AverageFreeEnergies(protocol_id)
A protocol which computes the Boltzmann weighted average (G° = -RT × Log[_{n} exp(-G°_{n})]) of a set
of free energies which were measured at the same thermodynamic state. Confidence intervals are computed by
bootstrapping with replacement.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

bootstrap_cycles Input - The number of bootstrap cycles to perform
when estimating the uncertainty in the combined free
energies.

confidence_intervals Output - The 95% confidence intervals on the aver-
age free energy.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.

continues on next page

294 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 263 – continued from previous page
required_inputs The inputs which must be set on this protocol.
result Output - The sum of the values.
schema A serializable schema for this object.
thermodynamic_state Input - The thermodynamic state at which the free

energies were measured.
values Input - The values to add together.

values: List[openff.evaluator.utils.observables.Observable]
Input - The values to add together. The default value of this attribute is not set and must be set by the user..

Type list

thermodynamic_state
Input - The thermodynamic state at which the free energies were measured. The default value of this
attribute is not set and must be set by the user..

Type ThermodynamicState

bootstrap_cycles
Input - The number of bootstrap cycles to perform when estimating the uncertainty in the combined free
energies. The default value of this attribute is 2000.

Type int

result
Output - The sum of the values. The default value of this attribute is not set and must be set by the user..

Type Observable

confidence_intervals
Output - The 95% confidence intervals on the average free energy. The default value of this attribute is
not set and must be set by the user..

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

2.32. API 295

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

296 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 297

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

298 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

ComputeDipoleMoments

class openff.evaluator.protocols.analysis.ComputeDipoleMoments(protocol_id)
A protocol which will compute the dipole moment for each configuration in a trajectory and for a given param-
eterized system.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

dipole_moments Output - The computed dipole moments.
gradient_parameters Input - An optional list of parameters to differentiate

the dipole moments with respect to.
id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
parameterized_system Input - The parameterized system which encodes the

charge on each atom in the system.
required_inputs The inputs which must be set on this protocol.

continues on next page

2.32. API 299

OpenFF Evaluator Documentation

Table 265 – continued from previous page
schema A serializable schema for this object.
trajectory_path Input - The file path to the trajectory of configura-

tions.

parameterized_system
Input - The parameterized system which encodes the charge on each atom in the system. The default value
of this attribute is not set and must be set by the user..

Type ParameterizedSystem

trajectory_path
Input - The file path to the trajectory of configurations. The default value of this attribute is not set and
must be set by the user..

Type str

gradient_parameters
Input - An optional list of parameters to differentiate the dipole moments with respect to.

Type list

dipole_moments
Output - The computed dipole moments. The default value of this attribute is not set and must be set by
the user..

Type ObservableArray

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

300 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

2.32. API 301

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

302 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

BaseDecorrelateProtocol

class openff.evaluator.protocols.analysis.BaseDecorrelateProtocol(protocol_id)
An abstract base class for protocols which will subsample a set of data, yielding only equilibrated, uncorrelated
data.

__init__(protocol_id)

2.32. API 303

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
time_series_statistics Input - Statistics about the data to decorrelate.

time_series_statistics:
Union[openff.evaluator.utils.timeseries.TimeSeriesStatistics,
List[openff.evaluator.utils.timeseries.TimeSeriesStatistics]]

Input - Statistics about the data to decorrelate. This should include the statistical inefficiency and the
index after which the observables have become stationary (i.e. equilibrated). If a list of such statistics are
provided it will be assumed that multiple time series which have been joined together are being decorrelated
and hence will each be decorrelated separately. The default value of this attribute is not set and must be set
by the user..

Type typing.Union[list, openff.evaluator.utils.timeseries.TimeSeriesStatistics]

allow_merging

304 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list

OpenFF Evaluator Documentation

Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

2.32. API 305

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

306 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

2.32. API 307

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

DecorrelateTrajectory

class openff.evaluator.protocols.analysis.DecorrelateTrajectory(protocol_id)
A protocol which will subsample frames from a trajectory, yielding only uncorrelated frames as determined from
a provided statistical inefficiency and equilibration time.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

continues on next page

308 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 268 – continued from previous page
replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
input_coordinate_file Input - The file path to the starting coordinates of a

trajectory.
input_trajectory_path Input - The file path to the trajectory to subsample.
output_trajectory_path Output - The file path to the subsampled trajectory.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
time_series_statistics Input - Statistics about the data to decorrelate.

input_coordinate_file
Input - The file path to the starting coordinates of a trajectory. The default value of this attribute is not set
and must be set by the user..

Type str

input_trajectory_path
Input - The file path to the trajectory to subsample. The default value of this attribute is not set and must
be set by the user..

Type str

output_trajectory_path
Output - The file path to the subsampled trajectory. The default value of this attribute is not set and must
be set by the user..

Type str

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

2.32. API 309

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

310 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 311

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

time_series_statistics:
Union[openff.evaluator.utils.timeseries.TimeSeriesStatistics,
List[openff.evaluator.utils.timeseries.TimeSeriesStatistics]]

Input - Statistics about the data to decorrelate. This should include the statistical inefficiency and the
index after which the observables have become stationary (i.e. equilibrated). If a list of such statistics are
provided it will be assumed that multiple time series which have been joined together are being decorrelated

312 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

and hence will each be decorrelated separately. The default value of this attribute is not set and must be set
by the user..

Type typing.Union[list, openff.evaluator.utils.timeseries.TimeSeriesStatistics]

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

DecorrelateObservables

class openff.evaluator.protocols.analysis.DecorrelateObservables(protocol_id)
A protocol which will subsample a trajectory of observables, yielding only uncorrelated entries as determined
from a provided statistical inefficiency and equilibration time.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

2.32. API 313

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
input_observables Input - The observables to decorrelate.
output_observables Output - The decorrelated observables.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
time_series_statistics Input - Statistics about the data to decorrelate.

input_observables
Input - The observables to decorrelate. The default value of this attribute is not set and must be set by the
user..

Type typing.Union[openff.evaluator.utils.observables.ObservableArray,
openff.evaluator.utils.observables.ObservableFrame]

output_observables
Output - The decorrelated observables. The default value of this attribute is not set and must be set by the
user..

Type typing.Union[openff.evaluator.utils.observables.ObservableArray,
openff.evaluator.utils.observables.ObservableFrame]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

314 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

2.32. API 315

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

316 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

time_series_statistics:
Union[openff.evaluator.utils.timeseries.TimeSeriesStatistics,
List[openff.evaluator.utils.timeseries.TimeSeriesStatistics]]

Input - Statistics about the data to decorrelate. This should include the statistical inefficiency and the
index after which the observables have become stationary (i.e. equilibrated). If a list of such statistics are
provided it will be assumed that multiple time series which have been joined together are being decorrelated
and hence will each be decorrelated separately. The default value of this attribute is not set and must be set
by the user..

Type typing.Union[list, openff.evaluator.utils.timeseries.TimeSeriesStatistics]

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

2.32. API 317

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Coordinate Generation

BuildCoordinatesPackmol Creates a set of 3D coordinates with a specified compo-
sition using the PACKMOL package.

SolvateExistingStructure Solvates a set of 3D coordinates with a specified solvent
using the PACKMOL package.

BuildDockedCoordinates Creates a set of coordinates for a ligand bound to some
receptor.

BuildCoordinatesPackmol

class openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol(protocol_id)
Creates a set of 3D coordinates with a specified composition using the PACKMOL package.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

318 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

assigned_residue_names Output - The residue names which were assigned to
each of the components.

box_aspect_ratio Input - The aspect ratio of the simulation box.
coordinate_file_path Output - The file path to the created PDB coordinate

file.
count_exact_amount Input - Whether components present in an exact

amount (i.e.
dependencies A list of pointers to the protocols which this protocol

takes input from.
id The unique id of this protocol.
mass_density Input - The target density of the created system.
max_molecules Input - The maximum number of molecules to be

added to the system.
output_number_of_molecules Output - The number of molecules in the created sys-

tem.
output_substance Output - The substance which was built by packmol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
retain_packmol_files Input - If True, packmol will not delete all of the tem-

porary files it creates while building the coordinates.
schema A serializable schema for this object.
substance Input - The composition of the system to build.
tolerance Input - The packmol distance tolerance in units com-

patible with angstroms.
verbose_packmol Input - If True, packmol will print verbose informa-

tion to the logger The default value of this attribute is
False.

max_molecules
Input - The maximum number of molecules to be added to the system. The default value of this attribute
is 1000.

Type int

count_exact_amount
Input - Whether components present in an exact amount (i.e. defined with an ExactAmount) should be
considered when apply the maximum number of molecules constraint. This may be set false, for example,
when building a separate solvated protein (n = 1) and solvated protein + ligand complex (n = 2) system but
wish for both systems to have the same number of solvent molecules. The default value of this attribute is
True.

Type bool

mass_density
Input - The target density of the created system. The default value of this attribute is 0.95 g / ml.

Type Quantity

box_aspect_ratio
Input - The aspect ratio of the simulation box. The default value of this attribute is [1.0, 1.0, 1.0].

Type list

2.32. API 319

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

OpenFF Evaluator Documentation

substance
Input - The composition of the system to build. The default value of this attribute is not set and must be
set by the user..

Type Substance

tolerance
Input - The packmol distance tolerance in units compatible with angstroms. The default value of this
attribute is 2.0 Å.

Type Quantity

verbose_packmol
Input - If True, packmol will print verbose information to the logger The default value of this attribute is
False.

Type bool

retain_packmol_files
Input - If True, packmol will not delete all of the temporary files it creates while building the coordinates.
The default value of this attribute is False.

Type bool

output_number_of_molecules
Output - The number of molecules in the created system. This may be less than maximum requested due
to rounding of mole fractions The default value of this attribute is not set and must be set by the user..

Type int

output_substance
Output - The substance which was built by packmol. This may differ from the input substance for system
containing two or more components due to rounding of mole fractions. The mole fractions provided by this
output should always be used when weighting values by a mole fraction. The default value of this attribute
is not set and must be set by the user..

Type Substance

assigned_residue_names
Output - The residue names which were assigned to each of the components. Each key corresponds to a
component identifier. The default value of this attribute is not set and must be set by the user..

Type dict

coordinate_file_path
Output - The file path to the created PDB coordinate file. The default value of this attribute is not set and
must be set by the user..

Type str

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

320 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

2.32. API 321

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters

322 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

2.32. API 323

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

SolvateExistingStructure

class openff.evaluator.protocols.coordinates.SolvateExistingStructure(protocol_id)
Solvates a set of 3D coordinates with a specified solvent using the PACKMOL package.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

assigned_residue_names Output - The residue names which were assigned to
each of the components.

box_aspect_ratio Input - The aspect ratio of the simulation box.
center_solute_in_box Input - If True, the solute to solvate will be centered

in the simulation box.
continues on next page

324 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 276 – continued from previous page
coordinate_file_path Output - The file path to the created PDB coordinate

file.
count_exact_amount Input - Whether components present in an exact

amount (i.e.
dependencies A list of pointers to the protocols which this protocol

takes input from.
id The unique id of this protocol.
mass_density Input - The target density of the created system.
max_molecules Input - The maximum number of molecules to be

added to the system.
output_number_of_molecules Output - The number of molecules in the created sys-

tem.
output_substance Output - The substance which was built by packmol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
retain_packmol_files Input - If True, packmol will not delete all of the tem-

porary files it creates while building the coordinates.
schema A serializable schema for this object.
solute_coordinate_file Input - A file path to the solute to solvate.
substance Input - The composition of the system to build.
tolerance Input - The packmol distance tolerance in units com-

patible with angstroms.
verbose_packmol Input - If True, packmol will print verbose informa-

tion to the logger The default value of this attribute is
False.

solute_coordinate_file
Input - A file path to the solute to solvate. The default value of this attribute is not set and must be set by
the user..

Type str

center_solute_in_box
Input - If True, the solute to solvate will be centered in the simulation box. The default value of this attribute
is True.

Type bool

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

2.32. API 325

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

assigned_residue_names
Output - The residue names which were assigned to each of the components. Each key corresponds to a
component identifier. The default value of this attribute is not set and must be set by the user..

Type dict

box_aspect_ratio
Input - The aspect ratio of the simulation box. The default value of this attribute is [1.0, 1.0, 1.0].

Type list

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

coordinate_file_path
Output - The file path to the created PDB coordinate file. The default value of this attribute is not set and
must be set by the user..

Type str

count_exact_amount
Input - Whether components present in an exact amount (i.e. defined with an ExactAmount) should be
considered when apply the maximum number of molecules constraint. This may be set false, for example,
when building a separate solvated protein (n = 1) and solvated protein + ligand complex (n = 2) system but
wish for both systems to have the same number of solvent molecules. The default value of this attribute is
True.

326 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

2.32. API 327

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

mass_density
Input - The target density of the created system. The default value of this attribute is 0.95 g / ml.

Type Quantity

max_molecules
Input - The maximum number of molecules to be added to the system. The default value of this attribute
is 1000.

Type int

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

output_number_of_molecules
Output - The number of molecules in the created system. This may be less than maximum requested due
to rounding of mole fractions The default value of this attribute is not set and must be set by the user..

Type int

output_substance
Output - The substance which was built by packmol. This may differ from the input substance for system
containing two or more components due to rounding of mole fractions. The mole fractions provided by this
output should always be used when weighting values by a mole fraction. The default value of this attribute
is not set and must be set by the user..

Type Substance

property outputs
A dictionary of the outputs of this property.

328 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

retain_packmol_files
Input - If True, packmol will not delete all of the temporary files it creates while building the coordinates.
The default value of this attribute is False.

Type bool

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

substance
Input - The composition of the system to build. The default value of this attribute is not set and must be
set by the user..

Type Substance

tolerance
Input - The packmol distance tolerance in units compatible with angstroms. The default value of this
attribute is 2.0 Å.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

2.32. API 329

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

verbose_packmol
Input - If True, packmol will print verbose information to the logger The default value of this attribute is
False.

Type bool

BuildDockedCoordinates

class openff.evaluator.protocols.coordinates.BuildDockedCoordinates(protocol_id)
Creates a set of coordinates for a ligand bound to some receptor.

Notes

This protocol currently only supports docking with the OpenEye OEDocking framework.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

330 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Attributes

activate_site_location Input - Defines the method by which the activate site
is identified.

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

docked_complex_coordinate_path Output - The file path to the docked ligand-receptor
complex.

docked_ligand_coordinate_path Output - The file path to the coordinates of the lig-
and in it's docked pose, aligned with the initial recep-
tor_coordinate_file.

id The unique id of this protocol.
ligand_residue_name Output - The residue name assigned to the docked

ligand.
ligand_substance Input - A substance containing only the ligand to

dock.
number_of_ligand_conformers Input - The number of conformers to try and dock

into the receptor structure.
outputs A dictionary of the outputs of this property.
receptor_coordinate_file Input - The file path to the MOL2 coordinates of the

receptor molecule.
receptor_residue_name Output - The residue name assigned to the receptor.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

class ActivateSiteLocation(value)
An enum which describes the methods by which a receptors activate site(s) is located.

ligand_substance
Input - A substance containing only the ligand to dock. The default value of this attribute is not set and
must be set by the user..

Type Substance

number_of_ligand_conformers
Input - The number of conformers to try and dock into the receptor structure. The default value of this
attribute is 100.

Type int

receptor_coordinate_file
Input - The file path to the MOL2 coordinates of the receptor molecule. The default value of this attribute
is not set and must be set by the user..

Type str

activate_site_location
Input - Defines the method by which the activate site is identified. The default value of this attribute is
ActivateSiteLocation.ReceptorCenterOfMass.

Type BuildDockedCoordinates.ActivateSiteLocation

docked_ligand_coordinate_path
Output - The file path to the coordinates of the ligand in it’s docked pose, aligned with the initial recep-
tor_coordinate_file. The default value of this attribute is not set and must be set by the user..

2.32. API 331

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

docked_complex_coordinate_path
Output - The file path to the docked ligand-receptor complex. The default value of this attribute is not set
and must be set by the user..

Type str

ligand_residue_name
Output - The residue name assigned to the docked ligand. The default value of this attribute is not set and
must be set by the user..

Type str

receptor_residue_name
Output - The residue name assigned to the receptor. The default value of this attribute is not set and must
be set by the user..

Type str

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

332 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

2.32. API 333

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

334 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Force Field Assignment

BaseBuildSystem The base class for any protocol whose role is to apply a
set of force field parameters to a given system.

BuildSmirnoffSystem Parametrise a set of molecules with a given smirnoff
force field using the OpenFF toolkit.

BuildLigParGenSystem Parametrise a set of molecules with the OPLS-AA/M
force field.

BuildTLeapSystem Parametrise a set of molecules with an Amber based
force field.

2.32. API 335

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://github.com/openforcefield/openff-toolkit

OpenFF Evaluator Documentation

BaseBuildSystem

class openff.evaluator.protocols.forcefield.BaseBuildSystem(protocol_id)
The base class for any protocol whose role is to apply a set of force field parameters to a given system.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

coordinate_file_path Input - The file path to the PDB coordinate file which
defines the topology of the system to which the force
field parameters will be assigned.

dependencies A list of pointers to the protocols which this protocol
takes input from.

force_field_path Input - The file path to the force field parameters to
assign to the system.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
parameterized_system Output - The parameterized system object.
required_inputs The inputs which must be set on this protocol.

continues on next page

336 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 281 – continued from previous page
schema A serializable schema for this object.
substance Input - The composition of the system.

force_field_path
Input - The file path to the force field parameters to assign to the system. The default value of this attribute
is not set and must be set by the user..

Type str

coordinate_file_path
Input - The file path to the PDB coordinate file which defines the topology of the system to which the force
field parameters will be assigned. The default value of this attribute is not set and must be set by the user..

Type str

substance
Input - The composition of the system. The default value of this attribute is not set and must be set by the
user..

Type Substance

parameterized_system
Output - The parameterized system object. The default value of this attribute is not set and must be set by
the user..

Type ParameterizedSystem

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

2.32. API 337

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

338 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

2.32. API 339

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

BuildSmirnoffSystem

class openff.evaluator.protocols.forcefield.BuildSmirnoffSystem(protocol_id)
Parametrise a set of molecules with a given smirnoff force field using the OpenFF toolkit.

__init__(protocol_id)

340 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://github.com/openforcefield/openff-toolkit

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

coordinate_file_path Input - The file path to the PDB coordinate file which
defines the topology of the system to which the force
field parameters will be assigned.

dependencies A list of pointers to the protocols which this protocol
takes input from.

force_field_path Input - The file path to the force field parameters to
assign to the system.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
parameterized_system Output - The parameterized system object.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
substance Input - The composition of the system.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

2.32. API 341

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

coordinate_file_path
Input - The file path to the PDB coordinate file which defines the topology of the system to which the force
field parameters will be assigned. The default value of this attribute is not set and must be set by the user..

Type str

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

342 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

force_field_path
Input - The file path to the force field parameters to assign to the system. The default value of this attribute
is not set and must be set by the user..

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

2.32. API 343

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

parameterized_system
Output - The parameterized system object. The default value of this attribute is not set and must be set by
the user..

Type ParameterizedSystem

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

344 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

substance
Input - The composition of the system. The default value of this attribute is not set and must be set by the
user..

Type Substance

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

BuildLigParGenSystem

class openff.evaluator.protocols.forcefield.BuildLigParGenSystem(protocol_id)
Parametrise a set of molecules with the OPLS-AA/M force field. using a LigParGen server.

2.32. API 345

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
http://zarbi.chem.yale.edu/ligpargen/

OpenFF Evaluator Documentation

Notes

This protocol is currently a work in progress and as such has limited functionality compared to the more estab-
lished BuildSmirnoffSystem protocol.

References

[1] Potential energy functions for atomic-level simulations of water and organic and biomolecular sys-
tems. Jorgensen, W. L.; Tirado-Rives, J. Proc. Nat. Acad. Sci. USA 2005, 102, 6665-6670

[2] 1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simu-
lations. Dodda, L. S.; Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B, 2017, 121 (15),
pp 3864-3870

[3] LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Dodda, L.
S.;Cabeza de Vaca, I.; Tirado-Rives, J.; Jorgensen, W. L. Nucleic Acids Research, Volume 45, Issue W1, 3
July 2017, Pages W331-W336

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

346 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

coordinate_file_path Input - The file path to the PDB coordinate file which
defines the topology of the system to which the force
field parameters will be assigned.

dependencies A list of pointers to the protocols which this protocol
takes input from.

force_field_path Input - The file path to the force field parameters to
assign to the system.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
parameterized_system Output - The parameterized system object.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
substance Input - The composition of the system.
water_model Input - The water model to apply, if any water

molecules are present.

class WaterModel(value)
An enum which describes which water model is being used, so that correct charges can be applied.

Warning: This is only a temporary addition until full water model support is introduced.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

2.32. API 347

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

coordinate_file_path
Input - The file path to the PDB coordinate file which defines the topology of the system to which the force
field parameters will be assigned. The default value of this attribute is not set and must be set by the user..

Type str

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

force_field_path
Input - The file path to the force field parameters to assign to the system. The default value of this attribute
is not set and must be set by the user..

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

348 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 349

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

parameterized_system
Output - The parameterized system object. The default value of this attribute is not set and must be set by
the user..

Type ParameterizedSystem

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

350 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

substance
Input - The composition of the system. The default value of this attribute is not set and must be set by the
user..

Type Substance

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

water_model
Input - The water model to apply, if any water molecules are present. The default value of this attribute is
WaterModel.TIP3P.

Type TemplateBuildSystem.WaterModel

BuildTLeapSystem

class openff.evaluator.protocols.forcefield.BuildTLeapSystem(protocol_id)
Parametrise a set of molecules with an Amber based force field. using the tleap package.

Notes

• This protocol is currently a work in progress and as such has limited functionality compared to the more
established BuildSmirnoffSystem protocol.

• This protocol requires the optional ambertools >=19.0 dependency to be installed.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
continues on next page

2.32. API 351

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
http://ambermd.org/AmberTools.php

OpenFF Evaluator Documentation

Table 286 – continued from previous page
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

charge_backend Input - The backend framework to use to assign par-
tial charges.

coordinate_file_path Input - The file path to the PDB coordinate file which
defines the topology of the system to which the force
field parameters will be assigned.

dependencies A list of pointers to the protocols which this protocol
takes input from.

force_field_path Input - The file path to the force field parameters to
assign to the system.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
parameterized_system Output - The parameterized system object.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
substance Input - The composition of the system.
water_model Input - The water model to apply, if any water

molecules are present.

class ChargeBackend(value)
The framework to use to assign partial charges.

charge_backend
Input - The backend framework to use to assign partial charges.

Type BuildTLeapSystem.ChargeBackend

class WaterModel(value)
An enum which describes which water model is being used, so that correct charges can be applied.

Warning: This is only a temporary addition until full water model support is introduced.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

352 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

coordinate_file_path
Input - The file path to the PDB coordinate file which defines the topology of the system to which the force
field parameters will be assigned. The default value of this attribute is not set and must be set by the user..

Type str

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

2.32. API 353

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

force_field_path
Input - The file path to the force field parameters to assign to the system. The default value of this attribute
is not set and must be set by the user..

Type str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

354 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

parameterized_system
Output - The parameterized system object. The default value of this attribute is not set and must be set by
the user..

Type ParameterizedSystem

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

2.32. API 355

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

substance
Input - The composition of the system. The default value of this attribute is not set and must be set by the
user..

Type Substance

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

water_model
Input - The water model to apply, if any water molecules are present. The default value of this attribute is
WaterModel.TIP3P.

Type TemplateBuildSystem.WaterModel

Gradients

ZeroGradients Zeros the gradients of an observable with respect to a
specified set of force field parameters.

356 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

ZeroGradients

class openff.evaluator.protocols.gradients.ZeroGradients(protocol_id)
Zeros the gradients of an observable with respect to a specified set of force field parameters.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

force_field_path Input - The path to the force field which contains
the parameters to differentiate the observable with re-
spect to.

gradient_parameters Input - The parameters to zero the gradient with re-
spect to.

id The unique id of this protocol.
input_observables Input - The observable to set the gradients of.
output_observables Output - The observable with zeroed gradients.
outputs A dictionary of the outputs of this property.

continues on next page

2.32. API 357

OpenFF Evaluator Documentation

Table 290 – continued from previous page
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

input_observables
Input - The observable to set the gradients of. The default value of this attribute is not set and must be set
by the user..

Type typing.Union[openff.evaluator.utils.observables.Observable,
openff.evaluator.utils.observables.ObservableArray]

force_field_path
Input - The path to the force field which contains the parameters to differentiate the observable with respect
to. This is many used to get the correct units for the parameters. The default value of this attribute is not
set and must be set by the user..

Type str

gradient_parameters
Input - The parameters to zero the gradient with respect to.

Type list

output_observables
Output - The observable with zeroed gradients. The default value of this attribute is not set and must be
set by the user..

Type typing.Union[openff.evaluator.utils.observables.Observable,
openff.evaluator.utils.observables.ObservableArray]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

358 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

2.32. API 359

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

360 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Groups

ConditionalGroup A collection of protocols which are to execute until a
given condition is met.

2.32. API 361

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

ConditionalGroup

class openff.evaluator.protocols.groups.ConditionalGroup(protocol_id)
A collection of protocols which are to execute until a given condition is met.

__init__(protocol_id)
Constructs a new ProtocolGroup.

Methods

__init__(protocol_id) Constructs a new ProtocolGroup.
add_condition(condition_to_add) Adds a condition to this groups list of conditions if it

not already in the condition list.
add_protocols(*protocols) Add protocols to this group.
apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another ProtocolGroup with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Store the uuid of the calculation this protocol belongs

to
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

conditions Input - The conditions which must be satisfied be-
forethe group will cleanly exit.

current_iteration Output - The current number of iterations this group
has performed while attempting to satisfy the speci-
fied conditions.

dependencies A list of pointers to the protocols which this protocol
takes input from.

continues on next page

362 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 293 – continued from previous page
id The unique id of this protocol.
max_iterations Input - The maximum number of iterations to run for

to try and satisfy the groups conditions.
outputs A dictionary of the outputs of this property.
protocols A dictionary of the protocols in this groups, where

the dictionary key is the protocol id, and the value is
the protocol itself.

required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

class Condition
Defines a specific condition which must be met of the form left_hand_value [TYPE] right_hand_value,
where [TYPE] may be less than or greater than.

class Type(value)
The available condition types.

left_hand_value
The left-hand value to compare. The default value of this attribute is not set and must be set by the
user..

Type typing.Union[int, float, openff.evaluator.utils.units.Quantity]

right_hand_value
The right-hand value to compare. The default value of this attribute is not set and must be set by the
user..

Type typing.Union[int, float, openff.evaluator.utils.units.Quantity]

type
The right-hand value to compare. The default value of this attribute is Type.LessThan.

Type ConditionalGroup.Condition.Type

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.
Returns The parsed class.
Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute
to search for.

Returns The names of the attributes of the specified type.
Return type list of str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.
• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.
Return type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute
to validate.

Raises ValueError or AssertionError –

2.32. API 363

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

conditions
Input - The conditions which must be satisfied beforethe group will cleanly exit. The default value of this
attribute is [].

Type list

current_iteration
Output - The current number of iterations this group has performed while attempting to satisfy the specified
conditions. This value starts from one. The default value of this attribute is not set and must be set by the
user..

Type int

max_iterations
Input - The maximum number of iterations to run for to try and satisfy the groups conditions. The default
value of this attribute is 100.

Type int

merge(other)
Merges another ProtocolGroup with this one. The id of this protocol will remain unchanged.

It is assumed that can_merge has already returned that these protocol groups are compatible to be merged
together.

Parameters other (ConditionalGroup) – The protocol to merge into this one.

add_condition(condition_to_add)
Adds a condition to this groups list of conditions if it not already in the condition list.

Parameters condition_to_add (ConditionalGroup.Condition) – The condition to add.

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

add_protocols(*protocols)
Add protocols to this group.

Parameters protocols (Protocol) – The protocols to add.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

364 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

2.32. API 365

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

366 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

property protocols
A dictionary of the protocols in this groups, where the dictionary key is the protocol id, and the value is the
protocol itself.

Notes

This property should not be altered. Use add_protocols to add new protocols to the group.

Type dict of str and Protocol

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a different
one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Store the uuid of the calculation this protocol belongs to

Parameters value (str) – The uuid of the parent calculation.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Miscellaneous

AddValues A protocol to add together a list of values.
SubtractValues A protocol to subtract one value from another such that:
MultiplyValue A protocol which multiplies a value by a specified scalar
DivideValue A protocol which divides a value by a specified scalar

continues on next page

2.32. API 367

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 294 – continued from previous page
WeightByMoleFraction Multiplies a value by the mole fraction of a component

in a Substance.
FilterSubstanceByRole A protocol which takes a substance as input, and returns

a substance which only contains components whose role
match a given criteria.

DummyProtocol A protocol whose only purpose is to return an input value
as an output value.

AddValues

class openff.evaluator.protocols.miscellaneous.AddValues(protocol_id)
A protocol to add together a list of values.

Notes

The values input must either be a list of openff.evaluator.unit.Quantity, a ProtocolPath to a list of
openff.evaluator.unit.Quantity, or a list of ProtocolPath which each point to a openff.evaluator.unit.Quantity.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

368 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
result Output - The sum of the values.
schema A serializable schema for this object.
values Input - The values to add together.

values
Input - The values to add together. The default value of this attribute is not set and must be set by the user..

Type list

result
Output - The sum of the values. The default value of this attribute is not set and must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

2.32. API 369

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

370 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

2.32. API 371

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

SubtractValues

class openff.evaluator.protocols.miscellaneous.SubtractValues(protocol_id)
A protocol to subtract one value from another such that:

result = value_b - value_a

__init__(protocol_id)

372 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
result Output - The results of value_b - value_a.
schema A serializable schema for this object.
value_a Input - value_a in the formula result = value_b -

value_a.
value_b Input - value_b in the formula result = value_b -

value_a.

value_a
Input - value_a in the formula result = value_b - value_a. The default value of this attribute is not set and
must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

2.32. API 373

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

value_b
Input - value_b in the formula result = value_b - value_a. The default value of this attribute is not set and
must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

result
Output - The results of value_b - value_a. The default value of this attribute is not set and must be set by
the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

374 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

2.32. API 375

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

376 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

MultiplyValue

class openff.evaluator.protocols.miscellaneous.MultiplyValue(protocol_id)
A protocol which multiplies a value by a specified scalar

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.

continues on next page

2.32. API 377

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 299 – continued from previous page
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
multiplier Input - The scalar to multiply by.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
result Output - The result of the multiplication.
schema A serializable schema for this object.
value Input - The value to multiply.

value
Input - The value to multiply. The default value of this attribute is not set and must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

multiplier
Input - The scalar to multiply by. The default value of this attribute is not set and must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Quantity]

result
Output - The result of the multiplication. The default value of this attribute is not set and must be set by
the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

allow_merging

378 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

2.32. API 379

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

380 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

2.32. API 381

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

DivideValue

class openff.evaluator.protocols.miscellaneous.DivideValue(protocol_id)
A protocol which divides a value by a specified scalar

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
continues on next page

382 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 301 – continued from previous page
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

divisor Input - The scalar to divide by.
id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
result Output - The result of the division.
schema A serializable schema for this object.
value Input - The value to divide.

value
Input - The value to divide. The default value of this attribute is not set and must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

divisor
Input - The scalar to divide by. The default value of this attribute is not set and must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Quantity]

result
Output - The result of the division. The default value of this attribute is not set and must be set by the
user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

2.32. API 383

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

384 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 385

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

386 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

WeightByMoleFraction

class openff.evaluator.protocols.miscellaneous.WeightByMoleFraction(protocol_id)
Multiplies a value by the mole fraction of a component in a Substance.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

component Input - The component whose mole fraction to
weight by.

dependencies A list of pointers to the protocols which this protocol
takes input from.

full_substance Input - The full substance which describes the mole
fraction of the component.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
value Input - The value to be weighted.

continues on next page

2.32. API 387

OpenFF Evaluator Documentation

Table 304 – continued from previous page
weighted_value Output - The value weighted by the component`s

mole fraction as determined from the `full_substance.

value
Input - The value to be weighted. The default value of this attribute is not set and must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

component
Input - The component whose mole fraction to weight by. The default value of this attribute is not set and
must be set by the user..

Type Substance

full_substance
Input - The full substance which describes the mole fraction of the component. The default value of this
attribute is not set and must be set by the user..

Type Substance

weighted_value
Output - The value weighted by the component`s mole fraction as determined from the `full_substance.
The default value of this attribute is not set and must be set by the user..

Type typing.Union[int, float, openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.utils.observables.Observable, openff.evaluator.utils.observables.ObservableArray]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

388 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

2.32. API 389

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

390 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

2.32. API 391

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

FilterSubstanceByRole

class openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole(protocol_id)
A protocol which takes a substance as input, and returns a substance which only contains components whose
role match a given criteria.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

component_roles Input - The roles to filter substance components
against.

dependencies A list of pointers to the protocols which this protocol
takes input from.

expected_components Input - The number of components expected to re-
main after filtering.

filtered_substance Output - The filtered substance.
id The unique id of this protocol.
input_substance Input - The substance to filter.
outputs A dictionary of the outputs of this property.

continues on next page

392 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 306 – continued from previous page
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

input_substance
Input - The substance to filter. The default value of this attribute is not set and must be set by the user..

Type Substance

component_roles
Input - The roles to filter substance components against. The default value of this attribute is not set and
must be set by the user..

Type list

expected_components
Input - The number of components expected to remain after filtering. An exception is raised if this number
is not matched. The default value of this attribute is not set. This attribute is optional.

Type int

filtered_substance
Output - The filtered substance. The default value of this attribute is not set and must be set by the user..

Type Substance

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

2.32. API 393

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

394 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

2.32. API 395

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

DummyProtocol

class openff.evaluator.protocols.miscellaneous.DummyProtocol(protocol_id)
A protocol whose only purpose is to return an input value as an output value.

__init__(protocol_id)

396 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
input_value Input - A dummy input.
output_value Output - A dummy output.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

input_value
Input - A dummy input. The default value of this attribute is not set and must be set by the user..

Type typing.Union[str, int, float, openff.evaluator.utils.units.Quantity,
openff.evaluator.utils.units.Measurement, openff.evaluator.utils.observables.Observable,
openff.evaluator.utils.observables.ObservableArray, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.forcefield.gradients.ParameterGradientKey, list, tuple, dict, set, frozenset]

output_value
Output - A dummy output. The default value of this attribute is not set and must be set by the user..

Type typing.Union[str, int, float, openff.evaluator.utils.units.Quantity,

2.32. API 397

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

openff.evaluator.utils.units.Measurement, openff.evaluator.utils.observables.Observable,
openff.evaluator.utils.observables.ObservableArray, openff.evaluator.forcefield.gradients.ParameterGradient,
openff.evaluator.forcefield.gradients.ParameterGradientKey, list, tuple, dict, set, frozenset]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

398 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

2.32. API 399

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

400 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

OpenMM

OpenMMEnergyMinimisation A protocol to minimise the potential energy of a system
using OpenMM.

OpenMMSimulation Performs a molecular dynamics simulation in a given en-
semble using an OpenMM backend.

OpenMMEvaluateEnergies Re-evaluates the energy of a series of configurations for
a given set of force field parameters using OpenMM.

OpenMMEnergyMinimisation

class openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation(protocol_id)
A protocol to minimise the potential energy of a system using OpenMM.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
continues on next page

2.32. API 401

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 310 – continued from previous page
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

enable_pbc Input - If true, periodic boundary conditions will be
enabled.

id The unique id of this protocol.
input_coordinate_file Input - The coordinates to minimise.
max_iterations Input - The maximum number of iterations to per-

form.
output_coordinate_file Output - The file path to the minimised coordinates.
outputs A dictionary of the outputs of this property.
parameterized_system Input - The parameterized system object which en-

codes the systems potential energy function.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
tolerance Input - The energy tolerance to which the system

should be minimized.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

402 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

enable_pbc
Input - If true, periodic boundary conditions will be enabled. The default value of this attribute is True.

Type bool

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

2.32. API 403

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

input_coordinate_file
Input - The coordinates to minimise. The default value of this attribute is not set and must be set by the
user..

404 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

max_iterations
Input - The maximum number of iterations to perform. If this is 0, minimization is continued until the
results converge without regard to how many iterations it takes. The default value of this attribute is 0.

Type int

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

output_coordinate_file
Output - The file path to the minimised coordinates. The default value of this attribute is not set and must
be set by the user..

Type str

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

parameterized_system
Input - The parameterized system object which encodes the systems potential energy function. The default
value of this attribute is not set and must be set by the user..

Type ParameterizedSystem

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

2.32. API 405

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

tolerance
Input - The energy tolerance to which the system should be minimized. The default value of this attribute
is 10.0 kJ / mol.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

OpenMMSimulation

class openff.evaluator.protocols.openmm.OpenMMSimulation(protocol_id)
Performs a molecular dynamics simulation in a given ensemble using an OpenMM backend.

This protocol employs the Langevin integrator implemented in the openmmtools package to propagate the state
of the system using the default BAOAB splitting [1]_. Further, simulations which are run in the NPT simulation
will have a Monte Carlo barostat (openmm.MonteCarloBarostat) applied every 25 steps (the OpenMM default).

References

[1] Leimkuhler, Ben, and Charles Matthews. “Numerical methods for stochastic molecular dynamics.”
Molecular Dynamics. Springer, Cham, 2015. 261-328.

__init__(protocol_id)

406 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_gpu_platforms Input - If true, the simulation will be performed
using a GPU if available, otherwise it will be con-
strained to only using CPUs.

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

checkpoint_frequency Input - The frequency (in multiples of out-
put_frequency) with which to write to a checkpoint
file, e.g.

dependencies A list of pointers to the protocols which this protocol
takes input from.

enable_pbc Input - If true, periodic boundary conditions will be
enabled.

ensemble Input - The thermodynamic ensemble to simulate in.
gradient_parameters Input - An optional list of parameters to differentiate

the evaluated energies with respect to.
high_precision Input - If true, the simulation will be run using dou-

ble precision.
id The unique id of this protocol.
input_coordinate_file Input - The file path to the starting coordinates.

continues on next page

2.32. API 407

OpenFF Evaluator Documentation

Table 313 – continued from previous page
observables Output - The observables collected during the sim-

ulation.
output_coordinate_file Output - The file path to the coordinates of the final

system configuration.
output_frequency Input - The frequency (in number of steps) with

which to write to the output statistics and trajectory
files.

outputs A dictionary of the outputs of this property.
parameterized_system Input - The parameterized system object which en-

codes the systems potential energy function.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
steps_per_iteration Input - The number of steps to propogate the system

by at each iteration.
thermodynamic_state Input - The thermodynamic conditions to simulate

under The default value of this attribute is not set and
must be set by the user..

thermostat_friction Input - The thermostat friction coefficient.
timestep Input - The timestep to evolve the system by at each

step.
total_number_of_iterations Input - The number of times to propogate the system

forward by the steps_per_iteration number of steps.
trajectory_file_path Output - The file path to the trajectory sampled dur-

ing the simulation.

allow_gpu_platforms
Input - If true, the simulation will be performed using a GPU if available, otherwise it will be constrained
to only using CPUs. The default value of this attribute is True.

Type bool

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

408 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

checkpoint_frequency
Input - The frequency (in multiples of output_frequency) with which to write to a checkpoint file, e.g. if
output_frequency=100 and checkpoint_frequency==2, a checkpoint file would be saved every 200 steps.
When two protocols are merged, the largest value of this attribute from either protocol is retained. The
default value of this attribute is 10. This attribute is optional.

Type int

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

enable_pbc
Input - If true, periodic boundary conditions will be enabled. The default value of this attribute is True.

Type bool

ensemble
Input - The thermodynamic ensemble to simulate in. The default value of this attribute is Ensemble.NPT.

Type Ensemble

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

2.32. API 409

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

gradient_parameters
Input - An optional list of parameters to differentiate the evaluated energies with respect to.

410 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Type list

high_precision
Input - If true, the simulation will be run using double precision. The default value of this attribute is
False.

Type bool

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

input_coordinate_file
Input - The file path to the starting coordinates. The default value of this attribute is not set and must be
set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

observables
Output - The observables collected during the simulation. The default value of this attribute is not set and
must be set by the user..

Type ObservableFrame

output_coordinate_file
Output - The file path to the coordinates of the final system configuration. The default value of this attribute
is not set and must be set by the user..

Type str

output_frequency
Input - The frequency (in number of steps) with which to write to the output statistics and trajectory files.
When two protocols are merged, the largest value of this attribute from either protocol is retained. The
default value of this attribute is 3000.

Type int

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

2.32. API 411

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

parameterized_system
Input - The parameterized system object which encodes the systems potential energy function. The default
value of this attribute is not set and must be set by the user..

Type ParameterizedSystem

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

steps_per_iteration
Input - The number of steps to propogate the system by at each iteration. The total number of steps per-
formed by this protocol will be total_number_of_iterations * steps_per_iteration. The default value of this
attribute is 1000000.

Type int

thermodynamic_state
Input - The thermodynamic conditions to simulate under The default value of this attribute is not set and
must be set by the user..

Type ThermodynamicState

thermostat_friction
Input - The thermostat friction coefficient. When two protocols are merged, the largest value of this at-
tribute from either protocol is retained. The default value of this attribute is 1.0 / ps.

412 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Type Quantity

timestep
Input - The timestep to evolve the system by at each step. When two protocols are merged, the largest value
of this attribute from either protocol is retained. The default value of this attribute is 2.0 fs.

Type Quantity

total_number_of_iterations
Input - The number of times to propogate the system forward by the steps_per_iteration number of
steps. The total number of steps performed by this protocol will be total_number_of_iterations *
steps_per_iteration. The default value of this attribute is 1.

Type int

trajectory_file_path
Output - The file path to the trajectory sampled during the simulation. The default value of this attribute
is not set and must be set by the user..

Type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

OpenMMEvaluateEnergies

class openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies(protocol_id)
Re-evaluates the energy of a series of configurations for a given set of force field parameters using OpenMM.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
continues on next page

2.32. API 413

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 314 – continued from previous page
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

enable_pbc Input - If true, periodic boundary conditions will be
enabled.

gradient_parameters Input - An optional list of parameters to differentiate
the evaluated energies with respect to.

id The unique id of this protocol.
output_observables Output - An observable array which stores the re-

duced potentials potential energies evaluated at the
specified state and using the specified system object
for each configuration in the trajectory.

outputs A dictionary of the outputs of this property.
parameterized_system Input - The parameterized system object which en-

codes the systems potential energy function.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
thermodynamic_state Input - The state to calculate the reduced potentials

at.
trajectory_file_path Input - The path to the trajectory file which contains

the configurations to calculate the energies of.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

414 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

enable_pbc
Input - If true, periodic boundary conditions will be enabled. The default value of this attribute is True.

Type bool

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

2.32. API 415

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

gradient_parameters
Input - An optional list of parameters to differentiate the evaluated energies with respect to.

Type list

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

416 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

output_observables
Output - An observable array which stores the reduced potentials potential energies evaluated at the spec-
ified state and using the specified system object for each configuration in the trajectory. The default value
of this attribute is not set and must be set by the user..

Type ObservableFrame

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

parameterized_system
Input - The parameterized system object which encodes the systems potential energy function. The default
value of this attribute is not set and must be set by the user..

Type ParameterizedSystem

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

2.32. API 417

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

thermodynamic_state
Input - The state to calculate the reduced potentials at. The default value of this attribute is not set and
must be set by the user..

Type ThermodynamicState

trajectory_file_path
Input - The path to the trajectory file which contains the configurations to calculate the energies of. The
default value of this attribute is not set and must be set by the user..

Type str

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

Paprika

PreparePullCoordinates A protocol which will align a host-guest complex to the
z-axis and position the guest molecule at a specified
point along the pull axis.

PrepareReleaseCoordinates A protocol which will extract the host molecule from
a file containing both the host and guest molecules and
produce a coordinate file containing only the host which
has been correctly aligned to the z-axis.

AddDummyAtoms A protocol which will add the reference 'dummy' atoms
to a parameterised system.

PreparePullCoordinates

class openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates(protocol_id)
A protocol which will align a host-guest complex to the z-axis and position the guest molecule at a specified
point along the pull axis.

__init__(protocol_id)

418 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

complex_file_path Input - The path to the file which the coordinates of
the guest moleculebound to the host molecule.

dependencies A list of pointers to the protocols which this protocol
takes input from.

guest_orientation_mask Input - The string mask which describes which guest
atoms will be restrained relative to the dummy atoms
to keep the molecule aligned to the z-axis.

id The unique id of this protocol.
n_pull_windows Input - The total number of the pull windows in the

calculation.
output_coordinate_path Output - The file path to the system which has been

correctly aligned to the z-axis.
outputs A dictionary of the outputs of this property.
pull_distance Input - The total distance that the guest will be pulled

along the z-axis during the pull phase.
pull_window_index Input - The index of the pull window to generate co-

ordinates for.
required_inputs The inputs which must be set on this protocol.

continues on next page

2.32. API 419

OpenFF Evaluator Documentation

Table 318 – continued from previous page
schema A serializable schema for this object.
substance Input - The substance which defines the host, guest

and solvent.

guest_orientation_mask
Input - The string mask which describes which guest atoms will be restrained relative to the dummy atoms
to keep the molecule aligned to the z-axis. This should be of the form ‘X Y’ where X Y are ParmEd
selectors for the first and second guest atoms. The default value of this attribute is not set and must be set
by the user..

Type str

pull_distance
Input - The total distance that the guest will be pulled along the z-axis during the pull phase. The default
value of this attribute is not set and must be set by the user..

Type Quantity

pull_window_index
Input - The index of the pull window to generate coordinates for. The default value of this attribute is not
set and must be set by the user..

Type int

n_pull_windows
Input - The total number of the pull windows in the calculation. The default value of this attribute is not
set and must be set by the user..

Type int

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

420 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

complex_file_path
Input - The path to the file which the coordinates of the guest moleculebound to the host molecule. The
default value of this attribute is not set and must be set by the user..

Type str

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

2.32. API 421

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

422 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

output_coordinate_path
Output - The file path to the system which has been correctly aligned to the z-axis. The default value of
this attribute is not set and must be set by the user..

Type str

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

substance
Input - The substance which defines the host, guest and solvent. The default value of this attribute is not
set and must be set by the user..

Type Substance

2.32. API 423

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

PrepareReleaseCoordinates

class openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates(protocol_id)
A protocol which will extract the host molecule from a file containing both the host and guest molecules and
produce a coordinate file containing only the host which has been correctly aligned to the z-axis.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

424 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

complex_file_path Input - The path to the file which the coordinates of
the guest moleculebound to the host molecule.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
output_coordinate_path Output - The file path to the system which has been

correctly aligned to the z-axis.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
substance Input - The substance which defines the host, guest

and solvent.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

2.32. API 425

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

complex_file_path
Input - The path to the file which the coordinates of the guest moleculebound to the host molecule. The
default value of this attribute is not set and must be set by the user..

Type str

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

426 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

output_coordinate_path
Output - The file path to the system which has been correctly aligned to the z-axis. The default value of
this attribute is not set and must be set by the user..

2.32. API 427

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

substance
Input - The substance which defines the host, guest and solvent. The default value of this attribute is not
set and must be set by the user..

Type Substance

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

428 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

AddDummyAtoms

class openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms(protocol_id)
A protocol which will add the reference ‘dummy’ atoms to a parameterised system. This protocol assumes the
host / complex has already been correctly aligned to the z-axis and has been placed at the origin.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
input_coordinate_path Input - The file path to the coordinates which the

dummy atoms should be added to.
input_system Input - The parameterized system which the dummy

atoms should be added to.
offset Input - The distance to offset the dummy atoms from

the origin (0, 0, 0) backwards along the z-axis.
continues on next page

2.32. API 429

OpenFF Evaluator Documentation

Table 322 – continued from previous page
output_coordinate_path Output - The file path to the coordinates which in-

clude the added dummy atoms.
output_system Output - The parameterized system which include

the added dummy atoms.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
substance Input - The substance which defines the host, guest

and solvent.

substance
Input - The substance which defines the host, guest and solvent. The default value of this attribute is not
set and must be set by the user..

Type Substance

offset
Input - The distance to offset the dummy atoms from the origin (0, 0, 0) backwards along the z-axis. The
default value of this attribute is not set and must be set by the user..

Type Quantity

input_coordinate_path
Input - The file path to the coordinates which the dummy atoms should be added to. The default value of
this attribute is not set and must be set by the user..

Type str

input_system
Input - The parameterized system which the dummy atoms should be added to. The default value of this
attribute is not set and must be set by the user..

Type ParameterizedSystem

output_coordinate_path
Output - The file path to the coordinates which include the added dummy atoms. The default value of this
attribute is not set and must be set by the user..

Type str

output_system
Output - The parameterized system which include the added dummy atoms. The default value of this
attribute is not set and must be set by the user..

Type ParameterizedSystem

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

430 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

2.32. API 431

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters

432 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

2.32. API 433

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

GenerateAttachRestraints Generates the restraint values to apply during the 'at-
tach' phase from a set of restraint schema definitions and
makes them easily accessible for the protocols which
will apply them to the parameterized system.

GeneratePullRestraints Generates the restraint values to apply during the 'pull'
phase from a set of restraint schema definitions and
makes them easily accessible for the protocols which
will apply them to the parameterized system.

GenerateReleaseRestraints Generates the restraint values to apply during the 're-
lease' phase from a set of restraint schema definitions
and makes them easily accessible for the protocols which
will apply them to the parameterized system.

ApplyRestraints A protocol which will apply the restraints defined in a
restraints JSON file to a specified system.

GenerateAttachRestraints

class openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints(protocol_id)
Generates the restraint values to apply during the ‘attach’ phase from a set of restraint schema definitions and
makes them easily accessible for the protocols which will apply them to the parameterized system.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
continues on next page

434 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 324 – continued from previous page
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

attach_lambdas Input - The values of lambda to use for the attach
phase.

complex_coordinate_path Input - The file path to a coordinate file which con-
tains the solvatedhost-guest complex and has the an-
chor dummy atoms added.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
restraint_schemas Input - The full set of restraint schemas.
restraints_path Output - The file path to the paprika generated re-

straints JSON file.
schema A serializable schema for this object.

complex_coordinate_path
Input - The file path to a coordinate file which contains the solvatedhost-guest complex and has the anchor
dummy atoms added. The default value of this attribute is not set and must be set by the user..

Type str

attach_lambdas
Input - The values of lambda to use for the attach phase. These muststart from 0.0 and increase monoton-
ically to and include 1.0. The default value of this attribute is not set and must be set by the user..

Type list

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

2.32. API 435

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

436 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 437

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

restraint_schemas
Input - The full set of restraint schemas. The default value of this attribute is not set and must be set by the
user..

Type dict

restraints_path
Output - The file path to the paprika generated restraints JSON file. The default value of this attribute is
not set and must be set by the user..

Type str

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

438 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

GeneratePullRestraints

class openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints(protocol_id)
Generates the restraint values to apply during the ‘pull’ phase from a set of restraint schema definitions and makes
them easily accessible for the protocols which will apply them to the parameterized system.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

2.32. API 439

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

attach_lambdas Input - The values of lambda to use for the attach
phase.

complex_coordinate_path Input - The file path to a coordinate file which con-
tains the solvatedhost-guest complex and has the an-
chor dummy atoms added.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
n_pull_windows Input - The number of lambda to use for the pull

phase.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
restraint_schemas Input - The full set of restraint schemas.
restraints_path Output - The file path to the paprika generated re-

straints JSON file.
schema A serializable schema for this object.

n_pull_windows
Input - The number of lambda to use for the pull phase. The default value of this attribute is not set and
must be set by the user..

Type int

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

440 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

attach_lambdas
Input - The values of lambda to use for the attach phase. These muststart from 0.0 and increase monoton-
ically to and include 1.0. The default value of this attribute is not set and must be set by the user..

Type list

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

complex_coordinate_path
Input - The file path to a coordinate file which contains the solvatedhost-guest complex and has the anchor
dummy atoms added. The default value of this attribute is not set and must be set by the user..

Type str

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

2.32. API 441

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

442 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

restraint_schemas
Input - The full set of restraint schemas. The default value of this attribute is not set and must be set by the
user..

Type dict

restraints_path
Output - The file path to the paprika generated restraints JSON file. The default value of this attribute is
not set and must be set by the user..

Type str

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

2.32. API 443

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

GenerateReleaseRestraints

class openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints(protocol_id)
Generates the restraint values to apply during the ‘release’ phase from a set of restraint schema definitions and
makes them easily accessible for the protocols which will apply them to the parameterized system.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

444 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

host_coordinate_path Input - The file path to a coordinate file which con-
tains the solvatedhost molecule and has the anchor
dummy atoms added.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
release_lambdas Input - The values of lambda to use for the release

phase.
required_inputs The inputs which must be set on this protocol.
restraint_schemas Input - The full set of restraint schemas.
restraints_path Output - The file path to the paprika generated re-

straints JSON file.
schema A serializable schema for this object.

host_coordinate_path
Input - The file path to a coordinate file which contains the solvatedhost molecule and has the anchor
dummy atoms added. The default value of this attribute is not set and must be set by the user..

Type str

release_lambdas
Input - The values of lambda to use for the release phase. These muststart from 1.0 and decrease mono-
tonically to and include 0.0. The default value of this attribute is not set and must be set by the user..

Type list

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

2.32. API 445

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

446 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

2.32. API 447

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

restraint_schemas
Input - The full set of restraint schemas. The default value of this attribute is not set and must be set by the
user..

Type dict

restraints_path
Output - The file path to the paprika generated restraints JSON file. The default value of this attribute is
not set and must be set by the user..

Type str

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

448 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ApplyRestraints

class openff.evaluator.protocols.paprika.restraints.ApplyRestraints(protocol_id)
A protocol which will apply the restraints defined in a restraints JSON file to a specified system.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
load_restraints(file_path) Loads a set of paprika restraint objects from a JSON

file.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
continues on next page

2.32. API 449

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 331 – continued from previous page
input_system Input - The parameterized system which the re-

straints should be added to.
output_system Output - The parameterized system which now in-

cludes the added restraints.
outputs A dictionary of the outputs of this property.
phase Input - The APR phase to take the restraints from.
required_inputs The inputs which must be set on this protocol.
restraints_path Input - The file path to the JSON file which contains

the restraint definitions.
schema A serializable schema for this object.
window_index Input - The index of the window to take the restraints

from.

restraints_path
Input - The file path to the JSON file which contains the restraint definitions. This will usually have been
generated by a GenerateXXXRestraints protocol. The default value of this attribute is not set and must be
set by the user..

Type str

phase
Input - The APR phase to take the restraints from. The default value of this attribute is not set and must
be set by the user..

Type str

window_index
Input - The index of the window to take the restraints from. The default value of this attribute is not set
and must be set by the user..

Type int

input_system
Input - The parameterized system which the restraints should be added to. The default value of this attribute
is not set and must be set by the user..

Type ParameterizedSystem

output_system
Output - The parameterized system which now includes the added restraints. The default value of this
attribute is not set and must be set by the user..

Type ParameterizedSystem

classmethod load_restraints(file_path: str)
Loads a set of paprika restraint objects from a JSON file.

Parameters file_path – The path to the JSON serialized restraints.

Returns
Return type The loaded paprika restraint objects.

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

450 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters

2.32. API 451

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

452 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

2.32. API 453

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

AnalyzeAPRPhase A protocol which will analyze the outputs of the attach,
pull or release phases of an APR calculation and return
the change in free energy for that phase of the calcula-
tion.

ComputeSymmetryCorrection Computes the symmetry correction for an APR calcula-
tion which involves a guest with symmetry.

ComputeReferenceWork Computes the reference state work.

AnalyzeAPRPhase

class openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase(protocol_id)
A protocol which will analyze the outputs of the attach, pull or release phases of an APR calculation and return
the change in free energy for that phase of the calculation.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
continues on next page

454 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 333 – continued from previous page
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
phase Input - The phase of the calculation being analyzed.
required_inputs The inputs which must be set on this protocol.
restraints_path Input - The file path to the JSON file which contains

the restraint definitions.
result Output - The analysed free energy.
schema A serializable schema for this object.
topology_path Input - The file path to a coordinate file which con-

tains topological information about the system.
trajectory_paths Input - A list of paths to the trajectories (in the cor-

rect order) generated during the phase being ana-
lyzed.

topology_path
Input - The file path to a coordinate file which contains topological information about the system. The
default value of this attribute is not set and must be set by the user..

Type str

trajectory_paths
Input - A list of paths to the trajectories (in the correct order) generated during the phase being analyzed.
The default value of this attribute is not set and must be set by the user..

Type list

phase
Input - The phase of the calculation being analyzed. The default value of this attribute is not set and must
be set by the user..

Type str

restraints_path

2.32. API 455

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Input - The file path to the JSON file which contains the restraint definitions. This will usually have been
generated by a GenerateXXXRestraints protocol. The default value of this attribute is not set and must be
set by the user..

Type str

result
Output - The analysed free energy. The default value of this attribute is not set and must be set by the user..

Type Observable

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

456 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

2.32. API 457

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

458 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ComputeSymmetryCorrection

class openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection(protocol_id)
Computes the symmetry correction for an APR calculation which involves a guest with symmetry.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.

continues on next page

2.32. API 459

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 335 – continued from previous page
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
n_microstates Input - The number of symmetry microstates of the

guest molecule.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
result Output - The symmetry correction.
schema A serializable schema for this object.
thermodynamic_state Input - The thermodynamic state that the calculation

was performed at.

n_microstates
Input - The number of symmetry microstates of the guest molecule. The default value of this attribute is
not set and must be set by the user..

Type int

thermodynamic_state
Input - The thermodynamic state that the calculation was performed at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

result
Output - The symmetry correction. The default value of this attribute is not set and must be set by the
user..

Type Observable

allow_merging

460 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

2.32. API 461

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

462 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

2.32. API 463

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ComputeReferenceWork

class openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork(protocol_id)
Computes the reference state work.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
continues on next page

464 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 337 – continued from previous page
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
restraints_path Input - The file path to the JSON file which contains

the restraint definitions.
result Output - The reference state work.
schema A serializable schema for this object.
thermodynamic_state Input - The thermodynamic state that the calculation

was performed at.

thermodynamic_state
Input - The thermodynamic state that the calculation was performed at. The default value of this attribute
is not set and must be set by the user..

Type ThermodynamicState

restraints_path
Input - The file path to the JSON file which contains the restraint definitions. This will usually have been
generated by a GenerateXXXRestraints protocol. The default value of this attribute is not set and must be
set by the user..

Type str

result
Output - The reference state work. The default value of this attribute is not set and must be set by the user..

Type Observable

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

2.32. API 465

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

466 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 467

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

468 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Reweighting

ConcatenateTrajectories A protocol which concatenates multiple trajectories into
a single one.

ConcatenateObservables A protocol which concatenates multiple
ObservableFrame objects into a single
ObservableFrame object.

BaseEvaluateEnergies A base class for protocols which will re-evaluate the en-
ergy of a series of configurations for a given set of force
field parameters.

BaseMBARProtocol Re-weights a set of observables using MBAR to calcu-
late the average value of the observables at a different
state than they were originally measured.

ReweightObservable Reweight an array of observables to a new state using
MBAR.

ReweightDielectricConstant Computes the avergage value of the dielectric constant
be re-weighting a set a set of dipole moments and vol-
umes using MBAR.

ConcatenateTrajectories

class openff.evaluator.protocols.reweighting.ConcatenateTrajectories(protocol_id)
A protocol which concatenates multiple trajectories into a single one.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.

continues on next page

2.32. API 469

OpenFF Evaluator Documentation

Table 340 – continued from previous page
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
input_coordinate_paths Input - A list of paths to the starting PDB coordinates

for each of the trajectories.
input_trajectory_paths Input - A list of paths to the trajectories to concate-

nate.
output_coordinate_path Output - The path the PDB coordinate file which

contains the topology of the concatenated trajectory.
output_trajectory_path Output - The path to the concatenated trajectory.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

input_coordinate_paths
Input - A list of paths to the starting PDB coordinates for each of the trajectories. The default value of this
attribute is not set and must be set by the user..

Type list

input_trajectory_paths
Input - A list of paths to the trajectories to concatenate. The default value of this attribute is not set and
must be set by the user..

Type list

output_coordinate_path
Output - The path the PDB coordinate file which contains the topology of the concatenated trajectory. The
default value of this attribute is not set and must be set by the user..

Type str

output_trajectory_path
Output - The path to the concatenated trajectory. The default value of this attribute is not set and must be
set by the user..

Type str

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

470 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

2.32. API 471

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

472 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

2.32. API 473

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ConcatenateObservables

class openff.evaluator.protocols.reweighting.ConcatenateObservables(protocol_id)
A protocol which concatenates multiple ObservableFrame objects into a single ObservableFrame object.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

474 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

id The unique id of this protocol.
input_observables Input - A list of observable arrays to concatenate.
output_observables Output - The concatenated observable array.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.

input_observables
Input - A list of observable arrays to concatenate. The default value of this attribute is not set and must be
set by the user..

Type list

output_observables
Output - The concatenated observable array. The default value of this attribute is not set and must be set
by the user..

Type typing.Union[openff.evaluator.utils.observables.ObservableArray,
openff.evaluator.utils.observables.ObservableFrame]

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

2.32. API 475

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

476 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

2.32. API 477

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

BaseEvaluateEnergies

class openff.evaluator.protocols.reweighting.BaseEvaluateEnergies(protocol_id)
A base class for protocols which will re-evaluate the energy of a series of configurations for a given set of force
field parameters.

__init__(protocol_id)

478 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

enable_pbc Input - If true, periodic boundary conditions will be
enabled.

gradient_parameters Input - An optional list of parameters to differentiate
the evaluated energies with respect to.

id The unique id of this protocol.
output_observables Output - An observable array which stores the re-

duced potentials potential energies evaluated at the
specified state and using the specified system object
for each configuration in the trajectory.

outputs A dictionary of the outputs of this property.
parameterized_system Input - The parameterized system object which en-

codes the systems potential energy function.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
thermodynamic_state Input - The state to calculate the reduced potentials

at.
continues on next page

2.32. API 479

OpenFF Evaluator Documentation

Table 345 – continued from previous page
trajectory_file_path Input - The path to the trajectory file which contains

the configurations to calculate the energies of.

thermodynamic_state
Input - The state to calculate the reduced potentials at. The default value of this attribute is not set and
must be set by the user..

Type ThermodynamicState

parameterized_system
Input - The parameterized system object which encodes the systems potential energy function. The default
value of this attribute is not set and must be set by the user..

Type ParameterizedSystem

enable_pbc
Input - If true, periodic boundary conditions will be enabled. The default value of this attribute is True.

Type bool

trajectory_file_path
Input - The path to the trajectory file which contains the configurations to calculate the energies of. The
default value of this attribute is not set and must be set by the user..

Type str

gradient_parameters
Input - An optional list of parameters to differentiate the evaluated energies with respect to.

Type list

output_observables
Output - An observable array which stores the reduced potentials potential energies evaluated at the spec-
ified state and using the specified system object for each configuration in the trajectory. The default value
of this attribute is not set and must be set by the user..

Type ObservableFrame

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

480 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

2.32. API 481

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

482 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

2.32. API 483

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

BaseMBARProtocol

class openff.evaluator.protocols.reweighting.BaseMBARProtocol(protocol_id)
Re-weights a set of observables using MBAR to calculate the average value of the observables at a different state
than they were originally measured.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

bootstrap_iterations Input - The number of bootstrap iterations to perform
if bootstraped uncertainties have been requested The
default value of this attribute is 250.

bootstrap_uncertainties Input - If true, bootstrapping will be used to esti-
mated the total uncertainty in the reweighted value.

dependencies A list of pointers to the protocols which this protocol
takes input from.

effective_samples Output - The number of effective samples which
were re-weighted.

continues on next page

484 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

Table 347 – continued from previous page
frame_counts Input - The number of configurations per reference

state.
id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
reference_reduced_potentials Input - The reduced potentials of each configuration

evaluated at each of the reference states.
required_effective_samples Input - The minimum number of effective samples

required to be able to reweight the observable.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
target_reduced_potentials Input - The reduced potentials of each configuration

evaluated at the target state.
value Output - The re-weighted average value of the ob-

servable at the target state.

reference_reduced_potentials:
List[openff.evaluator.utils.observables.ObservableArray]

Input - The reduced potentials of each configuration evaluated at each of the reference states. The default
value of this attribute is not set and must be set by the user..

Type list

target_reduced_potentials
Input - The reduced potentials of each configuration evaluated at the target state. The default value of this
attribute is not set and must be set by the user..

Type ObservableArray

frame_counts
Input - The number of configurations per reference state. The sum of theseshould equal the length of the
reference_reduced_potentials and target_reduced_potentials input arrays as well any input
observable arrays. The default value of this attribute is not set and must be set by the user..

Type list

bootstrap_uncertainties
Input - If true, bootstrapping will be used to estimated the total uncertainty in the reweighted value. The
default value of this attribute is False.

Type bool

bootstrap_iterations
Input - The number of bootstrap iterations to perform if bootstraped uncertainties have been requested The
default value of this attribute is 250.

Type int

required_effective_samples
Input - The minimum number of effective samples required to be able to reweight the observable. If the
effective samples is less than this minimum an exception will be raised. The default value of this attribute
is 50.

Type int

value
Output - The re-weighted average value of the observable at the target state. The default value of this
attribute is not set and must be set by the user..

Type Observable

2.32. API 485

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

effective_samples
Output - The number of effective samples which were re-weighted. The default value of this attribute is
not set and must be set by the user..

Type float

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

486 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

2.32. API 487

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

488 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

ReweightObservable

class openff.evaluator.protocols.reweighting.ReweightObservable(protocol_id)
Reweight an array of observables to a new state using MBAR.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
continues on next page

2.32. API 489

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 348 – continued from previous page
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

bootstrap_iterations Input - The number of bootstrap iterations to perform
if bootstraped uncertainties have been requested The
default value of this attribute is 250.

bootstrap_uncertainties Input - If true, bootstrapping will be used to esti-
mated the total uncertainty in the reweighted value.

dependencies A list of pointers to the protocols which this protocol
takes input from.

effective_samples Output - The number of effective samples which
were re-weighted.

frame_counts Input - The number of configurations per reference
state.

id The unique id of this protocol.
observable Input - The observables to reweight.
outputs A dictionary of the outputs of this property.
reference_reduced_potentials Input - The reduced potentials of each configuration

evaluated at each of the reference states.
required_effective_samples Input - The minimum number of effective samples

required to be able to reweight the observable.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
target_reduced_potentials Input - The reduced potentials of each configuration

evaluated at the target state.
value Output - The re-weighted average value of the ob-

servable at the target state.

observable
Input - The observables to reweight. The array should contain the values of the observable evaluated for
of each configuration at the target state. The default value of this attribute is not set and must be set by the
user..

Type ObservableArray

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters

490 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

bootstrap_iterations
Input - The number of bootstrap iterations to perform if bootstraped uncertainties have been requested The
default value of this attribute is 250.

Type int

bootstrap_uncertainties
Input - If true, bootstrapping will be used to estimated the total uncertainty in the reweighted value. The
default value of this attribute is False.

Type bool

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

2.32. API 491

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

effective_samples
Output - The number of effective samples which were re-weighted. The default value of this attribute is
not set and must be set by the user..

Type float

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

frame_counts
Input - The number of configurations per reference state. The sum of theseshould equal the length of the
reference_reduced_potentials and target_reduced_potentials input arrays as well any input
observable arrays. The default value of this attribute is not set and must be set by the user..

Type list

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

492 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

reference_reduced_potentials:
List[openff.evaluator.utils.observables.ObservableArray]

Input - The reduced potentials of each configuration evaluated at each of the reference states. The default
value of this attribute is not set and must be set by the user..

Type list

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

2.32. API 493

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

required_effective_samples
Input - The minimum number of effective samples required to be able to reweight the observable. If the
effective samples is less than this minimum an exception will be raised. The default value of this attribute
is 50.

Type int

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

target_reduced_potentials
Input - The reduced potentials of each configuration evaluated at the target state. The default value of this
attribute is not set and must be set by the user..

Type ObservableArray

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
Output - The re-weighted average value of the observable at the target state. The default value of this
attribute is not set and must be set by the user..

Type Observable

494 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

ReweightDielectricConstant

class openff.evaluator.protocols.reweighting.ReweightDielectricConstant(protocol_id)
Computes the avergage value of the dielectric constant be re-weighting a set a set of dipole moments and volumes
using MBAR.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

bootstrap_iterations Input - The number of bootstrap iterations to perform
if bootstraped uncertainties have been requested The
default value of this attribute is 250.

bootstrap_uncertainties Input - If true, bootstrapping will be used to esti-
mated the total uncertainty in the reweighted value.

dependencies A list of pointers to the protocols which this protocol
takes input from.

dipole_moments Input - The dipole moments evaluated at reference
state's configurationsusing the force field of the target
state.

continues on next page

2.32. API 495

OpenFF Evaluator Documentation

Table 351 – continued from previous page
effective_samples Output - The number of effective samples which

were re-weighted.
frame_counts Input - The number of configurations per reference

state.
id The unique id of this protocol.
outputs A dictionary of the outputs of this property.
reference_reduced_potentials Input - The reduced potentials of each configuration

evaluated at each of the reference states.
required_effective_samples Input - The minimum number of effective samples

required to be able to reweight the observable.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
target_reduced_potentials Input - The reduced potentials of each configuration

evaluated at the target state.
thermodynamic_state Input - The thermodynamic state to re-weight to.
value Output - The re-weighted average value of the ob-

servable at the target state.
volumes Input - The dipole moments evaluated at reference

state's configurationsusing the force field of the target
state.

dipole_moments
Input - The dipole moments evaluated at reference state’s configurationsusing the force field of the target
state. The default value of this attribute is not set and must be set by the user..

Type typing.Union[openff.evaluator.utils.observables.ObservableArray, list]

volumes
Input - The dipole moments evaluated at reference state’s configurationsusing the force field of the target
state. The default value of this attribute is not set and must be set by the user..

Type typing.Union[openff.evaluator.utils.observables.ObservableArray, list]

thermodynamic_state
Input - The thermodynamic state to re-weight to. The default value of this attribute is not set and must be
set by the user..

Type ThermodynamicState

bootstrap_uncertainties
Input - If true, bootstrapping will be used to estimated the total uncertainty in the reweighted value. The
default value of this attribute is False.

Type bool

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters

496 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

bootstrap_iterations
Input - The number of bootstrap iterations to perform if bootstraped uncertainties have been requested The
default value of this attribute is 250.

Type int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

effective_samples
Output - The number of effective samples which were re-weighted. The default value of this attribute is
not set and must be set by the user..

Type float

2.32. API 497

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

OpenFF Evaluator Documentation

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

frame_counts
Input - The number of configurations per reference state. The sum of theseshould equal the length of the
reference_reduced_potentials and target_reduced_potentials input arrays as well any input
observable arrays. The default value of this attribute is not set and must be set by the user..

Type list

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

498 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

reference_reduced_potentials:
List[openff.evaluator.utils.observables.ObservableArray]

Input - The reduced potentials of each configuration evaluated at each of the reference states. The default
value of this attribute is not set and must be set by the user..

Type list

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

2.32. API 499

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

required_effective_samples
Input - The minimum number of effective samples required to be able to reweight the observable. If the
effective samples is less than this minimum an exception will be raised. The default value of this attribute
is 50.

Type int

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

target_reduced_potentials
Input - The reduced potentials of each configuration evaluated at the target state. The default value of this
attribute is not set and must be set by the user..

Type ObservableArray

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

value
Output - The re-weighted average value of the observable at the target state. The default value of this
attribute is not set and must be set by the user..

Type Observable

Simulation

500 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

BaseEnergyMinimisation A base class for protocols which will minimise the po-
tential energy of a given system.

BaseSimulation A base class for protocols which will perform a molec-
ular simulation in a given ensemble and at a specified
state.

BaseEnergyMinimisation

class openff.evaluator.protocols.simulation.BaseEnergyMinimisation(protocol_id)
A base class for protocols which will minimise the potential energy of a given system.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

2.32. API 501

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

dependencies A list of pointers to the protocols which this protocol
takes input from.

enable_pbc Input - If true, periodic boundary conditions will be
enabled.

id The unique id of this protocol.
input_coordinate_file Input - The coordinates to minimise.
max_iterations Input - The maximum number of iterations to per-

form.
output_coordinate_file Output - The file path to the minimised coordinates.
outputs A dictionary of the outputs of this property.
parameterized_system Input - The parameterized system object which en-

codes the systems potential energy function.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
tolerance Input - The energy tolerance to which the system

should be minimized.

input_coordinate_file
Input - The coordinates to minimise. The default value of this attribute is not set and must be set by the
user..

Type str

parameterized_system
Input - The parameterized system object which encodes the systems potential energy function. The default
value of this attribute is not set and must be set by the user..

Type ParameterizedSystem

tolerance
Input - The energy tolerance to which the system should be minimized. The default value of this attribute
is 10.0 kJ / mol.

Type Quantity

max_iterations
Input - The maximum number of iterations to perform. If this is 0, minimization is continued until the
results converge without regard to how many iterations it takes. The default value of this attribute is 0.

Type int

enable_pbc
Input - If true, periodic boundary conditions will be enabled. The default value of this attribute is True.

Type bool

output_coordinate_file
Output - The file path to the minimised coordinates. The default value of this attribute is not set and must
be set by the user..

Type str

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

502 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

2.32. API 503

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

504 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

2.32. API 505

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

BaseSimulation

class openff.evaluator.protocols.simulation.BaseSimulation(protocol_id)
A base class for protocols which will perform a molecular simulation in a given ensemble and at a specified state.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

continues on next page

506 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 355 – continued from previous page
replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_gpu_platforms Input - If true, the simulation will be performed
using a GPU if available, otherwise it will be con-
strained to only using CPUs.

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

checkpoint_frequency Input - The frequency (in multiples of out-
put_frequency) with which to write to a checkpoint
file, e.g.

dependencies A list of pointers to the protocols which this protocol
takes input from.

enable_pbc Input - If true, periodic boundary conditions will be
enabled.

ensemble Input - The thermodynamic ensemble to simulate in.
gradient_parameters Input - An optional list of parameters to differentiate

the evaluated energies with respect to.
high_precision Input - If true, the simulation will be run using dou-

ble precision.
id The unique id of this protocol.
input_coordinate_file Input - The file path to the starting coordinates.
observables Output - The observables collected during the sim-

ulation.
output_coordinate_file Output - The file path to the coordinates of the final

system configuration.
output_frequency Input - The frequency (in number of steps) with

which to write to the output statistics and trajectory
files.

outputs A dictionary of the outputs of this property.
parameterized_system Input - The parameterized system object which en-

codes the systems potential energy function.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
steps_per_iteration Input - The number of steps to propogate the system

by at each iteration.
thermodynamic_state Input - The thermodynamic conditions to simulate

under The default value of this attribute is not set and
must be set by the user..

thermostat_friction Input - The thermostat friction coefficient.
timestep Input - The timestep to evolve the system by at each

step.
total_number_of_iterations Input - The number of times to propogate the system

forward by the steps_per_iteration number of steps.
continues on next page

2.32. API 507

OpenFF Evaluator Documentation

Table 356 – continued from previous page
trajectory_file_path Output - The file path to the trajectory sampled dur-

ing the simulation.

steps_per_iteration
Input - The number of steps to propogate the system by at each iteration. The total number of steps per-
formed by this protocol will be total_number_of_iterations * steps_per_iteration. The default value of this
attribute is 1000000.

Type int

total_number_of_iterations
Input - The number of times to propogate the system forward by the steps_per_iteration number of
steps. The total number of steps performed by this protocol will be total_number_of_iterations *
steps_per_iteration. The default value of this attribute is 1.

Type int

output_frequency
Input - The frequency (in number of steps) with which to write to the output statistics and trajectory files.
When two protocols are merged, the largest value of this attribute from either protocol is retained. The
default value of this attribute is 3000.

Type int

checkpoint_frequency
Input - The frequency (in multiples of output_frequency) with which to write to a checkpoint file, e.g. if
output_frequency=100 and checkpoint_frequency==2, a checkpoint file would be saved every 200 steps.
When two protocols are merged, the largest value of this attribute from either protocol is retained. The
default value of this attribute is 10. This attribute is optional.

Type int

timestep
Input - The timestep to evolve the system by at each step. When two protocols are merged, the largest value
of this attribute from either protocol is retained. The default value of this attribute is 2.0 fs.

Type Quantity

thermodynamic_state
Input - The thermodynamic conditions to simulate under The default value of this attribute is not set and
must be set by the user..

Type ThermodynamicState

ensemble
Input - The thermodynamic ensemble to simulate in. The default value of this attribute is Ensemble.NPT.

Type Ensemble

thermostat_friction
Input - The thermostat friction coefficient. When two protocols are merged, the largest value of this at-
tribute from either protocol is retained. The default value of this attribute is 1.0 / ps.

Type Quantity

input_coordinate_file
Input - The file path to the starting coordinates. The default value of this attribute is not set and must be
set by the user..

Type str

508 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

parameterized_system
Input - The parameterized system object which encodes the systems potential energy function. The default
value of this attribute is not set and must be set by the user..

Type ParameterizedSystem

enable_pbc
Input - If true, periodic boundary conditions will be enabled. The default value of this attribute is True.

Type bool

allow_gpu_platforms
Input - If true, the simulation will be performed using a GPU if available, otherwise it will be constrained
to only using CPUs. The default value of this attribute is True.

Type bool

high_precision
Input - If true, the simulation will be run using double precision. The default value of this attribute is
False.

Type bool

gradient_parameters
Input - An optional list of parameters to differentiate the evaluated energies with respect to.

Type list

output_coordinate_file
Output - The file path to the coordinates of the final system configuration. The default value of this attribute
is not set and must be set by the user..

Type str

trajectory_file_path
Output - The file path to the trajectory sampled during the simulation. The default value of this attribute
is not set and must be set by the user..

Type str

observables
Output - The observables collected during the simulation. The default value of this attribute is not set and
must be set by the user..

Type ObservableFrame

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

2.32. API 509

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

510 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 511

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

512 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Storage

UnpackStoredSimulationData Loads a StoredSimulationData object from disk, and
makes its attributes easily accessible to other protocols.

UnpackStoredSimulationData

class openff.evaluator.protocols.storage.UnpackStoredSimulationData(protocol_id)
Loads a StoredSimulationData object from disk, and makes its attributes easily accessible to other protocols.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

coordinate_file_path Output - A path to the stored simulation output co-
ordinates.

dependencies A list of pointers to the protocols which this protocol
takes input from.

continues on next page

2.32. API 513

OpenFF Evaluator Documentation

Table 359 – continued from previous page
force_field_path Output - A path to the force field parameters used to

generate the stored data.
id The unique id of this protocol.
observables Output - The stored observables frame.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
simulation_data_path Input - A list / tuple which contains both the path

to the simulation data object, it's ancillary data direc-
tory, and the force field which was used to generate
the stored data.

substance Output - The substance which was stored.
thermodynamic_state Output - The thermodynamic state which was stored.
total_number_of_molecules Output - The total number of molecules in the stored

system.
trajectory_file_path Output - A path to the stored simulation trajectory.

simulation_data_path
Input - A list / tuple which contains both the path to the simulation data object, it’s ancillary data directory,
and the force field which was used to generate the stored data. The default value of this attribute is not set
and must be set by the user..

Type typing.Union[list, tuple]

substance
Output - The substance which was stored. The default value of this attribute is not set and must be set by
the user..

Type Substance

total_number_of_molecules
Output - The total number of molecules in the stored system. The default value of this attribute is not set
and must be set by the user..

Type int

thermodynamic_state
Output - The thermodynamic state which was stored. The default value of this attribute is not set and must
be set by the user..

Type ThermodynamicState

observables
Output - The stored observables frame. The default value of this attribute is not set and must be set by the
user..

Type ObservableFrame

coordinate_file_path
Output - A path to the stored simulation output coordinates. The default value of this attribute is not set
and must be set by the user..

Type str

trajectory_file_path
Output - A path to the stored simulation trajectory. The default value of this attribute is not set and must
be set by the user..

Type str

514 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

force_field_path
Output - A path to the force field parameters used to generate the stored data. The default value of this
attribute is not set and must be set by the user..

Type str

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

2.32. API 515

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

516 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

2.32. API 517

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

YANK Free Energies

BaseYankProtocol An abstract base class for protocols which will performs
a set of alchemical free energy simulations using the
YANK framework.

LigandReceptorYankProtocol A protocol for performing ligand-receptor alchemical
free energy calculations using the YANK framework.

SolvationYankProtocol A protocol for estimating the change in free energy upon
transferring a solute into a solvent (referred to as solvent
1) from a second solvent (referred to as solvent 2) by
performing an alchemical free energy calculation using
the YANK framework.

BaseYankProtocol

class openff.evaluator.protocols.yank.BaseYankProtocol(protocol_id)
An abstract base class for protocols which will performs a set of alchemical free energy simulations using the
YANK framework.

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.

continues on next page

518 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

Table 361 – continued from previous page
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

checkpoint_interval Input - The number of iterations between saving
YANK checkpoint files.

dependencies A list of pointers to the protocols which this protocol
takes input from.

free_energy_difference Output - The estimated free energy difference be-
tween the two phases ofinterest.

gradient_parameters Input - An optional list of parameters to differentiate
the estimated free energy with respect to.

id The unique id of this protocol.
number_of_equilibration_iterations Input - The number of iterations used for equilibra-

tion before production run.
number_of_iterations Input - The number of YANK iterations to perform.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
setup_only Input - If true, YANK will only create and validate

the setup files, but not actually run any simulations.
steps_per_iteration Input - The number of steps per YANK iteration to

perform.
thermodynamic_state Input - The state at which to run the calculations.
timestep Input - The length of the timestep to take.
verbose Input - Controls whether or not to run YANK at high

verbosity.

thermodynamic_state
Input - The state at which to run the calculations. The default value of this attribute is not set and must be
set by the user..

2.32. API 519

OpenFF Evaluator Documentation

Type ThermodynamicState

number_of_equilibration_iterations
Input - The number of iterations used for equilibration before production run. Only post-equilibration
iterations are written to file. The default value of this attribute is 1.

Type int

number_of_iterations
Input - The number of YANK iterations to perform. The default value of this attribute is 5000.

Type int

steps_per_iteration
Input - The number of steps per YANK iteration to perform. The default value of this attribute is 500.

Type int

checkpoint_interval
Input - The number of iterations between saving YANK checkpoint files. When two protocols are merged,
the largest value of this attribute from either protocol is retained. The default value of this attribute is 1.

Type int

timestep
Input - The length of the timestep to take. When two protocols are merged, the largest value of this attribute
from either protocol is retained. The default value of this attribute is 2 fs.

Type Quantity

verbose
Input - Controls whether or not to run YANK at high verbosity. The default value of this attribute is False.

Type bool

setup_only
Input - If true, YANK will only create and validate the setup files, but not actually run any simulations.
This argument is mainly only to be used for testing purposes. The default value of this attribute is False.

Type bool

gradient_parameters
Input - An optional list of parameters to differentiate the estimated free energy with respect to.

Type list

free_energy_difference
Output - The estimated free energy difference between the two phases ofinterest. The default value of this
attribute is not set and must be set by the user..

Type Observable

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

520 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters

2.32. API 521

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

522 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

2.32. API 523

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

LigandReceptorYankProtocol

class openff.evaluator.protocols.yank.LigandReceptorYankProtocol(protocol_id)
A protocol for performing ligand-receptor alchemical free energy calculations using the YANK framework.

__init__(protocol_id)
Constructs a new LigandReceptorYankProtocol object.

Methods

__init__(protocol_id) Constructs a new LigandReceptorYankProtocol ob-
ject.

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

524 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

apply_restraints Input - Determines whether the ligand should be ex-
plicitly restrained to the receptor in order to stop the
ligand from temporarily unbinding.

checkpoint_interval Input - The number of iterations between saving
YANK checkpoint files.

complex_electrostatic_lambdas Input - The list of electrostatic alchemical states that
YANK should sample at when calculating the free
energy of the ligand in complex with the receptor.

complex_steric_lambdas Input - The list of steric alchemical states that YANK
should sample at when calculating the free energy of
the ligand in complex with the receptor.

dependencies A list of pointers to the protocols which this protocol
takes input from.

force_field_path Input - The path to the force field which defines the
charge method to use for the calculation.

free_energy_difference Output - The estimated free energy difference be-
tween the two phases ofinterest.

gradient_parameters Input - An optional list of parameters to differentiate
the estimated free energy with respect to.

id The unique id of this protocol.
ligand_electrostatic_lambdas Input - The list of electrostatic alchemical states that

YANK should sample at when calculating the free
energy of the solvated ligand.

ligand_residue_name Input - The residue name of the ligand.
ligand_steric_lambdas Input - The list of steric alchemical states that YANK

should sample at when calculating the free energy of
the solvated ligand.

number_of_equilibration_iterations Input - The number of iterations used for equilibra-
tion before production run.

number_of_iterations Input - The number of YANK iterations to perform.
outputs A dictionary of the outputs of this property.
receptor_residue_name Input - The residue name of the receptor.
required_inputs The inputs which must be set on this protocol.
restraint_type Input - The type of ligand restraint applied, provided

that apply_restraints is True The default value of this
attribute is RestraintType.Harmonic.

schema A serializable schema for this object.
setup_only Input - If true, YANK will only create and validate

the setup files, but not actually run any simulations.
solvated_complex_coordinates Input - The file path to the solvated complex coordi-

nates.
solvated_complex_system Input - The parameterized solvated complex system

object.
solvated_complex_trajectory_path Output - The file path to the generated ligand trajec-

tory.
solvated_ligand_coordinates Input - The file path to the solvated ligand coordi-

nates.
continues on next page

2.32. API 525

OpenFF Evaluator Documentation

Table 364 – continued from previous page
solvated_ligand_system Input - The parameterized solvated ligand system ob-

ject.
solvated_ligand_trajectory_path Output - The file path to the generated ligand trajec-

tory.
steps_per_iteration Input - The number of steps per YANK iteration to

perform.
thermodynamic_state Input - The state at which to run the calculations.
timestep Input - The length of the timestep to take.
verbose Input - Controls whether or not to run YANK at high

verbosity.

class RestraintType(value)
The types of ligand restraints available within yank.

ligand_residue_name
Input - The residue name of the ligand. The default value of this attribute is not set and must be set by the
user..

Type str

receptor_residue_name
Input - The residue name of the receptor. The default value of this attribute is not set and must be set by
the user..

Type str

solvated_ligand_coordinates
Input - The file path to the solvated ligand coordinates. The default value of this attribute is not set and
must be set by the user..

Type str

solvated_ligand_system
Input - The parameterized solvated ligand system object. The default value of this attribute is not set and
must be set by the user..

Type ParameterizedSystem

solvated_complex_coordinates
Input - The file path to the solvated complex coordinates. The default value of this attribute is not set and
must be set by the user..

Type str

solvated_complex_system
Input - The parameterized solvated complex system object. The default value of this attribute is not set
and must be set by the user..

Type ParameterizedSystem

force_field_path
Input - The path to the force field which defines the charge method to use for the calculation. The default
value of this attribute is not set and must be set by the user..

Type str

apply_restraints
Input - Determines whether the ligand should be explicitly restrained to the receptor in order to stop the
ligand from temporarily unbinding. The default value of this attribute is True.

Type bool

526 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

restraint_type
Input - The type of ligand restraint applied, provided that apply_restraints is True The default value of this
attribute is RestraintType.Harmonic.

Type LigandReceptorYankProtocol.RestraintType

ligand_electrostatic_lambdas
Input - The list of electrostatic alchemical states that YANK should sample at when calculating the free
energy of the solvated ligand. If no option is set, YANK will use trailblaze algorithm to determine this
option automatically. The default value of this attribute is not set. This attribute is optional.

Type list

ligand_steric_lambdas
Input - The list of steric alchemical states that YANK should sample at when calculating the free energy
of the solvated ligand. If no option is set, YANK will use trailblaze algorithm to determine this option
automatically. The default value of this attribute is not set. This attribute is optional.

Type list

complex_electrostatic_lambdas
Input - The list of electrostatic alchemical states that YANK should sample at when calculating the free
energy of the ligand in complex with the receptor. If no option is set, YANK will use trailblaze algorithm to
determine this option automatically. The default value of this attribute is not set. This attribute is optional.

Type list

complex_steric_lambdas
Input - The list of steric alchemical states that YANK should sample at when calculating the free energy of
the ligand in complex with the receptor. If no option is set, YANK will use trailblaze algorithm to determine
this option automatically. The default value of this attribute is not set. This attribute is optional.

Type list

solvated_ligand_trajectory_path
Output - The file path to the generated ligand trajectory. The default value of this attribute is not set and
must be set by the user..

Type str

solvated_complex_trajectory_path
Output - The file path to the generated ligand trajectory. The default value of this attribute is not set and
must be set by the user..

Type str

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

2.32. API 527

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

checkpoint_interval
Input - The number of iterations between saving YANK checkpoint files. When two protocols are merged,
the largest value of this attribute from either protocol is retained. The default value of this attribute is 1.

Type int

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

528 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

free_energy_difference
Output - The estimated free energy difference between the two phases ofinterest. The default value of this
attribute is not set and must be set by the user..

Type Observable

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

2.32. API 529

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

OpenFF Evaluator Documentation

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

gradient_parameters
Input - An optional list of parameters to differentiate the estimated free energy with respect to.

Type list

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

number_of_equilibration_iterations
Input - The number of iterations used for equilibration before production run. Only post-equilibration
iterations are written to file. The default value of this attribute is 1.

Type int

number_of_iterations
Input - The number of YANK iterations to perform. The default value of this attribute is 5000.

Type int

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

530 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

setup_only
Input - If true, YANK will only create and validate the setup files, but not actually run any simulations.
This argument is mainly only to be used for testing purposes. The default value of this attribute is False.

Type bool

steps_per_iteration
Input - The number of steps per YANK iteration to perform. The default value of this attribute is 500.

Type int

thermodynamic_state
Input - The state at which to run the calculations. The default value of this attribute is not set and must be
set by the user..

Type ThermodynamicState

timestep
Input - The length of the timestep to take. When two protocols are merged, the largest value of this attribute
from either protocol is retained. The default value of this attribute is 2 fs.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

2.32. API 531

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError

OpenFF Evaluator Documentation

verbose
Input - Controls whether or not to run YANK at high verbosity. The default value of this attribute is False.

Type bool

SolvationYankProtocol

class openff.evaluator.protocols.yank.SolvationYankProtocol(protocol_id)
A protocol for estimating the change in free energy upon transferring a solute into a solvent (referred to as solvent
1) from a second solvent (referred to as solvent 2) by performing an alchemical free energy calculation using the
YANK framework.

This protocol can be used for box solvation free energies (setting the solvent_1 input to the solvent of interest
and setting solvent_2 as an empty Substance) or transfer free energies (setting both the solvent_1 and solvent_2
inputs to different solvents).

__init__(protocol_id)

Methods

__init__(protocol_id)

apply_replicator(replicator, template_values) Applies a ProtocolReplicator to this protocol.
can_merge(other[, path_replacements]) Determines whether this protocol can be merged with

another.
execute([directory, available_resources]) Execute the protocol.
from_json(file_path) Create this object from a JSON file.
from_schema(schema) Initializes a protocol from it's schema definition.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
get_class_attribute(reference_path) Returns one of this protocols, or any of its children's,

attributes directly (rather than its value).
get_value(reference_path) Returns the value of one of this protocols inputs / out-

puts.
get_value_references(input_path) Returns a dictionary of references to the protocols

which one of this protocols inputs (specified by in-
put_path) takes its value from.

json([file_path, format]) Creates a JSON representation of this class.
merge(other) Merges another Protocol with this one.
parse_json(string_contents)

replace_protocol(old_id, new_id) Finds each input which came from a given protocol
set_uuid(value) Prepend a unique identifier to this protocols id.
set_value(reference_path, value) Sets the value of one of this protocols inputs.
validate([attribute_type]) Validate the values of the attributes.

532 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Attributes

allow_merging Input - Defines whether this protocols is allowed to
merge with other protocols.

checkpoint_interval Input - The number of iterations between saving
YANK checkpoint files.

dependencies A list of pointers to the protocols which this protocol
takes input from.

electrostatic_lambdas_1 Input - The list of electrostatic alchemical states that
YANK should sample at.

electrostatic_lambdas_2 Input - The list of electrostatic alchemical states that
YANK should sample at.

free_energy_difference Output - The estimated free energy difference be-
tween the solute in thefirst solvent and the second sol-
vent (i.e.

gradient_parameters Input - An optional list of parameters to differentiate
the estimated free energy with respect to.

id The unique id of this protocol.
number_of_equilibration_iterations Input - The number of iterations used for equilibra-

tion before production run.
number_of_iterations Input - The number of YANK iterations to perform.
outputs A dictionary of the outputs of this property.
required_inputs The inputs which must be set on this protocol.
schema A serializable schema for this object.
setup_only Input - If true, YANK will only create and validate

the setup files, but not actually run any simulations.
solute Input - The substance describing the composition of

the solute.
solution_1_coordinates Input - The file path to the coordinates of the solute

embedded in the first solvent.
solution_1_free_energy Output - The free energy change of transforming

the an ideal solute molecule into a fully interacting
molecule in the first solvent.

solution_1_system Input - The parameterized system object of the solute
embedded in the first solvent.

solution_1_trajectory_path Output - The file path to the trajectory containing the
solute in the first solvent.

solution_2_coordinates Input - The file path to the coordinates of the solute
embedded in the second solvent.

solution_2_free_energy Output - The free energy change of transforming
the an ideal solute molecule into a fully interacting
molecule in the second solvent.

solution_2_system Input - The parameterized system object of the solute
embedded in the second solvent.

solution_2_trajectory_path Output - The file path to the trajectory containing the
solute in the second solvent.

solvent_1 Input - The substance describing the composition of
the first solvent.

solvent_1_coordinate_path Output - The file path to the coordinates of only the
first solvent.

continues on next page

2.32. API 533

OpenFF Evaluator Documentation

Table 366 – continued from previous page
solvent_1_trajectory_path Output - The file path to the trajectory containing

only the first solvent.
solvent_2 Input - The substance describing the composition of

the second solvent.
solvent_2_coordinate_path Output - The file path to the coordinates of only the

second solvent.
solvent_2_trajectory_path Output - The file path to the trajectory containing

only the second solvent.
steps_per_iteration Input - The number of steps per YANK iteration to

perform.
steric_lambdas_1 Input - The list of steric alchemical states that YANK

should sample at.
steric_lambdas_2 Input - The list of steric alchemical states that YANK

should sample at.
thermodynamic_state Input - The state at which to run the calculations.
timestep Input - The length of the timestep to take.
verbose Input - Controls whether or not to run YANK at high

verbosity.

solute
Input - The substance describing the composition of the solute. This should include the solute molecule
as well as any counter ions. The default value of this attribute is not set and must be set by the user..

Type Substance

solvent_1
Input - The substance describing the composition of the first solvent. The default value of this attribute is
not set and must be set by the user..

Type Substance

solvent_2
Input - The substance describing the composition of the second solvent. The default value of this attribute
is not set and must be set by the user..

Type Substance

solution_1_coordinates
Input - The file path to the coordinates of the solute embedded in the first solvent. The default value of this
attribute is not set and must be set by the user..

Type str

solution_1_system
Input - The parameterized system object of the solute embedded in the first solvent. The default value of
this attribute is not set and must be set by the user..

Type ParameterizedSystem

solution_2_coordinates
Input - The file path to the coordinates of the solute embedded in the second solvent. The default value of
this attribute is not set and must be set by the user..

Type str

solution_2_system
Input - The parameterized system object of the solute embedded in the second solvent. The default value
of this attribute is not set and must be set by the user..

534 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type ParameterizedSystem

electrostatic_lambdas_1
Input - The list of electrostatic alchemical states that YANK should sample at. These values will be passed
to the YANK lambda_electrostatics option. If no option is set, YANK will use trailblaze algorithm to
determine this option automatically. The default value of this attribute is not set. This attribute is optional.

Type list

steric_lambdas_1
Input - The list of steric alchemical states that YANK should sample at. These values will be passed to the
YANK lambda_sterics option. If no option is set, YANK will use trailblaze algorithm to determine this
option automatically. The default value of this attribute is not set. This attribute is optional.

Type list

electrostatic_lambdas_2
Input - The list of electrostatic alchemical states that YANK should sample at. These values will be passed
to the YANK lambda_electrostatics option. If no option is set, YANK will use trailblaze algorithm to
determine this option automatically. The default value of this attribute is not set. This attribute is optional.

Type list

steric_lambdas_2
Input - The list of steric alchemical states that YANK should sample at. These values will be passed to the
YANK lambda_sterics option. If no option is set, YANK will use trailblaze algorithm to determine this
option automatically. The default value of this attribute is not set. This attribute is optional.

Type list

solution_1_free_energy
Output - The free energy change of transforming the an ideal solute molecule into a fully interacting
molecule in the first solvent. The default value of this attribute is not set and must be set by the user..

Type Observable

solvent_1_coordinate_path
Output - The file path to the coordinates of only the first solvent. The default value of this attribute is not
set and must be set by the user..

Type str

solvent_1_trajectory_path
Output - The file path to the trajectory containing only the first solvent. The default value of this attribute
is not set and must be set by the user..

Type str

solution_1_trajectory_path
Output - The file path to the trajectory containing the solute in the first solvent. The default value of this
attribute is not set and must be set by the user..

Type str

solution_2_free_energy
Output - The free energy change of transforming the an ideal solute molecule into a fully interacting
molecule in the second solvent. The default value of this attribute is not set and must be set by the user..

Type Observable

solvent_2_coordinate_path
Output - The file path to the coordinates of only the second solvent. The default value of this attribute is
not set and must be set by the user..

2.32. API 535

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type str

solvent_2_trajectory_path
Output - The file path to the trajectory containing only the second solvent. The default value of this attribute
is not set and must be set by the user..

Type str

solution_2_trajectory_path
Output - The file path to the trajectory containing the solute in the second solvent. The default value of
this attribute is not set and must be set by the user..

Type str

free_energy_difference
Output - The estimated free energy difference between the solute in thefirst solvent and the second solvent
(i.e. G = G_1 - G_2). The default value of this attribute is not set and must be set by the user..

Type Observable

allow_merging
Input - Defines whether this protocols is allowed to merge with other protocols. The default value of this
attribute is True.

Type bool

apply_replicator(replicator, template_values, template_index=- 1, template_value=None,
update_input_references=False)

Applies a ProtocolReplicator to this protocol. This method should clone any protocols whose id contains
the id of the replicator (in the format $(replicator.id)).

Parameters
• replicator (ProtocolReplicator) – The replicator to apply.

• template_values (list of Any) – A list of the values which will be inserted into the
newly replicated protocols.

This parameter is mutually exclusive with template_index and template_value

• template_index (int, optional) – A specific value which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_value.

• template_value (Any, optional) – A specific index which should be used for any
protocols flagged as to be replicated by the replicator. This option is mainly used when
replicating children of an already replicated protocol.

This parameter is mutually exclusive with template_values and must be set along with a
template_index.

• update_input_references (bool) – If true, any protocols which take their input from
a protocol which was flagged for replication will be updated to take input from the actually
replicated protocol. This should only be set to true if this protocol is not nested within a
workflow or a protocol group.

This option cannot be used when a specific template_index or template_value is providied.

Returns A dictionary of references to all of the protocols which have been replicated, with keys
of original protocol ids. Each value is comprised of a list of the replicated protocol ids, and
their index into the template_values array.

536 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Return type dict of ProtocolPath and list of tuple of ProtocolPath and int

can_merge(other, path_replacements=None)
Determines whether this protocol can be merged with another.

Parameters
• other (Protocol) – The protocol to compare against.

• path_replacements (list of tuple of str, optional) – Replacements to make
in any value reference protocol paths before comparing for equality.

Returns True if the two protocols are safe to merge.

Return type bool

checkpoint_interval
Input - The number of iterations between saving YANK checkpoint files. When two protocols are merged,
the largest value of this attribute from either protocol is retained. The default value of this attribute is 1.

Type int

property dependencies
A list of pointers to the protocols which this protocol takes input from.

Type list of ProtocolPath

execute(directory='', available_resources=None)
Execute the protocol.

Parameters
• directory (str) – The directory to store output data in.

• available_resources (ComputeResources) – The resources available to execute on.
If None, the protocol will be executed on a single CPU.

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

classmethod from_schema(schema)
Initializes a protocol from it’s schema definition.

Parameters schema (ProtocolSchema) – The schema to initialize the protocol using.

Returns The initialized protocol.

Return type cls

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

get_class_attribute(reference_path)
Returns one of this protocols, or any of its children’s, attributes directly (rather than its value).

2.32. API 537

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Parameters reference_path (ProtocolPath) – The path pointing to the attribute to return.

Returns The class attribute.

Return type object

get_value(reference_path)
Returns the value of one of this protocols inputs / outputs.

Parameters reference_path (ProtocolPath) – The path pointing to the value to return.

Returns The value of the input / output

Return type Any

get_value_references(input_path)
Returns a dictionary of references to the protocols which one of this protocols inputs (specified by in-
put_path) takes its value from.

Notes

Currently this method only functions correctly for an input value which is either currently a ProtocolPath,
or a list / dict which contains at least one ProtocolPath.

Parameters input_path (ProtocolPath) – The input value to check.

Returns A dictionary of the protocol paths that the input targeted by input_path depends upon.

Return type dict of ProtocolPath and ProtocolPath

gradient_parameters
Input - An optional list of parameters to differentiate the estimated free energy with respect to.

Type list

id
The unique id of this protocol. The default value of this attribute is not set and must be set by the user..

Type str

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

Returns The JSON representation of this class.

Return type str

merge(other)
Merges another Protocol with this one. The id of this protocol will remain unchanged.

Parameters other (Protocol) – The protocol to merge into this one.

Returns A map between any original protocol ids and their new merged values.

Return type Dict[str, str]

number_of_equilibration_iterations
Input - The number of iterations used for equilibration before production run. Only post-equilibration
iterations are written to file. The default value of this attribute is 1.

538 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Type int

number_of_iterations
Input - The number of YANK iterations to perform. The default value of this attribute is 5000.

Type int

property outputs
A dictionary of the outputs of this property.

Type dict of ProtocolPath and Any

replace_protocol(old_id, new_id)

Finds each input which came from a given protocol and redirects it to instead take input from a new
one.

Notes

This method is mainly intended to be used only when merging multiple protocols into one.

Parameters
• old_id (str) – The id of the old input protocol.

• new_id (str) – The id of the new input protocol.

property required_inputs
The inputs which must be set on this protocol.

Type list of ProtocolPath

property schema
A serializable schema for this object.

Type ProtocolSchema

set_uuid(value)
Prepend a unique identifier to this protocols id. If the id already has a prepended uuid, it will be overwritten
by this value.

Parameters value (str) – The uuid to prepend.

set_value(reference_path, value)
Sets the value of one of this protocols inputs.

Parameters
• reference_path (ProtocolPath) – The path pointing to the value to return.

• value (Any) – The value to set.

setup_only
Input - If true, YANK will only create and validate the setup files, but not actually run any simulations.
This argument is mainly only to be used for testing purposes. The default value of this attribute is False.

Type bool

steps_per_iteration
Input - The number of steps per YANK iteration to perform. The default value of this attribute is 500.

Type int

2.32. API 539

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

thermodynamic_state
Input - The state at which to run the calculations. The default value of this attribute is not set and must be
set by the user..

Type ThermodynamicState

timestep
Input - The length of the timestep to take. When two protocols are merged, the largest value of this attribute
from either protocol is retained. The default value of this attribute is 2 fs.

Type Quantity

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

verbose
Input - Controls whether or not to run YANK at high verbosity. The default value of this attribute is False.

Type bool

2.32.11 Workflow Construction Utilities

SimulationProtocols The common set of protocols which would be required to
estimate an observable by running a new molecule sim-
ulation.

ReweightingProtocols The common set of protocols which would be required
to re-weight an observable from cached simulation data.

generate_base_reweighting_protocols Constructs a set of protocols which, when combined in
a workflow schema, may be executed to reweight a set of
cached simulation data to estimate the average value of
an observable.

generate_reweighting_protocols

generate_simulation_protocols Constructs a set of protocols which, when combined in a
workflow schema, may be executed to run a single sim-
ulation to estimate the average value of an observable.

540 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

SimulationProtocols

class openff.evaluator.protocols.utils.SimulationProtocols(build_coordinates:
openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol,
assign_parameters:
openff.evaluator.protocols.forcefield.BaseBuildSystem,
energy_minimisation:
openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation,
equilibration_simulation:
openff.evaluator.protocols.openmm.OpenMMSimulation,
production_simulation:
openff.evaluator.protocols.openmm.OpenMMSimulation,
analysis_protocol:
openff.evaluator.protocols.utils.S,
converge_uncertainty:
openff.evaluator.workflow.protocols.ProtocolGroup,
decorrelate_trajectory:
openff.evaluator.protocols.analysis.DecorrelateTrajectory,
decorrelate_observables:
openff.evaluator.protocols.analysis.DecorrelateObservables)

The common set of protocols which would be required to estimate an observable by running a new molecule
simulation.

__init__(build_coordinates: openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol,
assign_parameters: openff.evaluator.protocols.forcefield.BaseBuildSystem, energy_minimisation:
openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation, equilibration_simulation:
openff.evaluator.protocols.openmm.OpenMMSimulation, production_simulation:
openff.evaluator.protocols.openmm.OpenMMSimulation, analysis_protocol:
openff.evaluator.protocols.utils.S, converge_uncertainty:
openff.evaluator.workflow.protocols.ProtocolGroup, decorrelate_trajectory:
openff.evaluator.protocols.analysis.DecorrelateTrajectory, decorrelate_observables:
openff.evaluator.protocols.analysis.DecorrelateObservables)→ None

Methods

__init__(build_coordinates, ...)

Attributes

build_coordinates

assign_parameters

energy_minimisation

equilibration_simulation

production_simulation

continues on next page

2.32. API 541

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Table 369 – continued from previous page
analysis_protocol

converge_uncertainty

decorrelate_trajectory

decorrelate_observables

ReweightingProtocols

class openff.evaluator.protocols.utils.ReweightingProtocols(unpack_stored_data:
openff.evaluator.protocols.storage.UnpackStoredSimulationData,
join_trajectories:
openff.evaluator.protocols.reweighting.ConcatenateTrajectories,
join_observables:
openff.evaluator.protocols.reweighting.ConcatenateObservables,
build_reference_system:
openff.evaluator.protocols.forcefield.BaseBuildSystem,
evaluate_reference_potential:
openff.evaluator.protocols.reweighting.BaseEvaluateEnergies,
build_target_system:
openff.evaluator.protocols.forcefield.BaseBuildSystem,
evaluate_target_potential:
openff.evaluator.protocols.reweighting.BaseEvaluateEnergies,
statistical_inefficiency:
openff.evaluator.protocols.utils.S,
replicate_statistics:
openff.evaluator.protocols.miscellaneous.DummyProtocol,
decorrelate_reference_potential:
openff.evaluator.protocols.analysis.DecorrelateObservables,
decorrelate_target_potential:
openff.evaluator.protocols.analysis.DecorrelateObservables,
decorrelate_observable:
openff.evaluator.protocols.analysis.DecorrelateObservables,
zero_gradients: Op-
tional[openff.evaluator.protocols.gradients.ZeroGradients],
reweight_observable:
openff.evaluator.protocols.utils.T)

The common set of protocols which would be required to re-weight an observable from cached simulation data.

542 Chapter 2. Supported Physical Properties

OpenFF Evaluator Documentation

__init__(unpack_stored_data: openff.evaluator.protocols.storage.UnpackStoredSimulationData,
join_trajectories: openff.evaluator.protocols.reweighting.ConcatenateTrajectories,
join_observables: openff.evaluator.protocols.reweighting.ConcatenateObservables,
build_reference_system: openff.evaluator.protocols.forcefield.BaseBuildSystem,
evaluate_reference_potential: openff.evaluator.protocols.reweighting.BaseEvaluateEnergies,
build_target_system: openff.evaluator.protocols.forcefield.BaseBuildSystem,
evaluate_target_potential: openff.evaluator.protocols.reweighting.BaseEvaluateEnergies,
statistical_inefficiency: openff.evaluator.protocols.utils.S, replicate_statistics:
openff.evaluator.protocols.miscellaneous.DummyProtocol, decorrelate_reference_potential:
openff.evaluator.protocols.analysis.DecorrelateObservables, decorrelate_target_potential:
openff.evaluator.protocols.analysis.DecorrelateObservables, decorrelate_observable:
openff.evaluator.protocols.analysis.DecorrelateObservables, zero_gradients:
Optional[openff.evaluator.protocols.gradients.ZeroGradients], reweight_observable:
openff.evaluator.protocols.utils.T)→ None

Methods

__init__(unpack_stored_data, ...)

Attributes

unpack_stored_data

join_trajectories

join_observables

build_reference_system

evaluate_reference_potential

build_target_system

evaluate_target_potential

statistical_inefficiency

replicate_statistics

decorrelate_reference_potential

decorrelate_target_potential

decorrelate_observable

zero_gradients

continues on next page

2.32. API 543

https://docs.python.org/3/library/constants.html#None

OpenFF Evaluator Documentation

Table 371 – continued from previous page
reweight_observable

generate_base_reweighting_protocols

openff.evaluator.protocols.utils.generate_base_reweighting_protocols(statistical_inefficiency:
openff.evaluator.protocols.utils.S,
reweight_observable:
openff.evaluator.protocols.utils.T,
replicator_id: str =
'data_replicator',
id_suffix: str = '')→ Tu-
ple[openff.evaluator.protocols.utils.ReweightingProtocols[openff.evaluator.protocols.utils.S,
openff.evaluator.protocols.utils.T],
openff.evaluator.workflow.schemas.ProtocolReplicator]

Constructs a set of protocols which, when combined in a workflow schema, may be executed to reweight a set of
cached simulation data to estimate the average value of an observable.

Parameters
• statistical_inefficiency – The protocol which will be used to compute the statistical

inefficiency and equilibration time of the observable of interest. This information will be
used to decorrelate the cached data prior to reweighting.

• reweight_observable – The MBAR reweighting protocol to use to reweight the observ-
able to the target state. This method will automatically set the reduced potentials on the
object.

• replicator_id (str) – The id to use for the cached data replicator.

• id_suffix (str) – A string suffix to append to each of the protocol ids.

Returns
• The protocols to add to the workflow, a reference to the average value of the

• estimated observable (an Observable object), and the replicator which will

• clone the workflow for each piece of cached simulation data.

generate_reweighting_protocols

openff.evaluator.protocols.utils.generate_reweighting_protocols(observable_type:
openff.evaluator.utils.observables.ObservableType,
replicator_id: str =
'data_replicator', id_suffix: str =
'')→ Tu-
ple[openff.evaluator.protocols.utils.ReweightingProtocols[openff.evaluator.protocols.analysis.AverageObservable,
openff.evaluator.protocols.reweighting.ReweightObservable],
openff.evaluator.workflow.schemas.ProtocolReplicator]

544 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

generate_simulation_protocols

openff.evaluator.protocols.utils.generate_simulation_protocols(analysis_protocol:
openff.evaluator.protocols.utils.S,
use_target_uncertainty: bool,
id_suffix: str = '',
conditional_group: Op-
tional[openff.evaluator.protocols.groups.ConditionalGroup]
= None, n_molecules: int = 1000)
→ Tu-
ple[openff.evaluator.protocols.utils.SimulationProtocols[openff.evaluator.protocols.utils.S],
openff.evaluator.workflow.utils.ProtocolPath,
openff.evaluator.storage.data.StoredSimulationData]

Constructs a set of protocols which, when combined in a workflow schema, may be executed to run a single
simulation to estimate the average value of an observable.

The protocols returned will:

1) Build a set of liquid coordinates for the property substance using packmol.

2) Assign a set of smirnoff force field parameters to the system.

3) Perform an energy minimisation on the system.

4) Run a short NPT equilibration simulation for 100000 steps using a timestep of 2fs.

5) Within a conditional group (up to a maximum of 100 times):

5a) Run a longer NPT production simulation for 1000000 steps using a timestep of 2fs

5b) Extract the average value of an observable and it’s uncertainty.

5c) If a convergence mode is set by the options, check if the target uncertainty has been met.
If not, repeat steps 5a), 5b) and 5c).

6) Extract uncorrelated configurations from a generated production simulation.

7) Extract uncorrelated statistics from a generated production simulation.

Parameters
• analysis_protocol – The protocol which will extract the observable of interest from the

generated simulation data.

• use_target_uncertainty – Whether to run the simulation until the observable is esti-
mated to within the target uncertainty.

• id_suffix (str) – A string suffix to append to each of the protocol ids.

• conditional_group (ProtocolGroup, optional) – A custom group to wrap the main
simulation / extraction protocols within. It is up to the caller of this method to manually
add the convergence conditions to this group. If None, a default group with uncertainty
convergence conditions is automatically constructed.

• n_molecules (int) – The number of molecules to use in the workflow.

Returns
• The protocols to add to the workflow, a reference to the average value of the

• estimated observable (an Observable object), and an object which describes

• the default data from a simulation to store, such as the uncorrelated statistics

2.32. API 545

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

• and configurations.

2.32.12 Attribute Utilities

Attribute A custom descriptor used to add useful metadata to class
attributes.

AttributeClass A base class for objects which require well defined at-
tributes with additional metadata.

UNDEFINED A custom type used to differentiate between None val-
ues, and an undeclared optional value.

PlaceholderValue A class to act as a place holder for an attribute whose
value is not known a priori, but will be set later by some
specialised code.

Attribute

class openff.evaluator.attributes.Attribute(docstring, type_hint, de-
fault_value=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, optional=False, read_only=False)

A custom descriptor used to add useful metadata to class attributes.

This decorator expects the object to have a matching private field in addition to the public attribute. For example
if an object has an attribute substance, the object must also have a _substance field.

Notes

The attribute class will automatically create this private attribute on the object and populate it with the default
value.

__init__(docstring, type_hint, default_value=<openff.evaluator.attributes.attributes.UndefinedAttribute
object>, optional=False, read_only=False)

Initializes a new Attribute object.

Parameters
• docstring (str) – A docstring describing the attributes purpose. This will automatically

be decorated with additional information such as type hints, default values, etc.

• type_hint (type, typing.Union) – The expected type of this attribute. This will be
used to help the workflow engine ensure that expected input types match corresponding
output values.

• default_value (Any) – The default value for this attribute.

• optional (bool) – Defines whether this is an optional input of a class. If true, the de-
fault_value should be set to UNDEFINED.

• read_only (bool) – Defines whether this attribute is read-only.

546 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Methods

__init__(docstring, type_hint[, ...]) Initializes a new Attribute object.

AttributeClass

class openff.evaluator.attributes.AttributeClass
A base class for objects which require well defined attributes with additional metadata.

__init__()

Methods

__init__()

from_json(file_path) Create this object from a JSON file.
get_attributes([attribute_type]) Returns all attributes of a specific attribute_type.
json([file_path, format]) Creates a JSON representation of this class.
parse_json(string_contents)

validate([attribute_type]) Validate the values of the attributes.

validate(attribute_type=None)
Validate the values of the attributes. If attribute_type is set, only attributes of that type will be validated.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
validate.

Raises ValueError or AssertionError –

classmethod get_attributes(attribute_type=None)
Returns all attributes of a specific attribute_type.

Parameters attribute_type (type of Attribute, optional) – The type of attribute to
search for.

Returns The names of the attributes of the specified type.

Return type list of str

classmethod from_json(file_path)
Create this object from a JSON file.

Parameters file_path (str) – The path to load the JSON from.

Returns The parsed class.

Return type cls

json(file_path=None, format=False)
Creates a JSON representation of this class.

Parameters
• file_path (str, optional) – The (optional) file path to save the JSON file to.

• format (bool) – Whether to format the JSON or not.

2.32. API 547

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

OpenFF Evaluator Documentation

Returns The JSON representation of this class.

Return type str

UNDEFINED

openff.evaluator.attributes.UNDEFINED =
<openff.evaluator.attributes.attributes.UndefinedAttribute object>

A custom type used to differentiate between None values, and an undeclared optional value.

PlaceholderValue

class openff.evaluator.attributes.PlaceholderValue
A class to act as a place holder for an attribute whose value is not known a priori, but will be set later by some
specialised code. This may include the input to a protocol which will be set by a workflow as the output of an
executed protocol.

__init__()

Methods

__init__()

2.32.13 Observable Utilities

Observable A class which stores the mean value of an observable as
well as the standard error in the mean.

ObservableArray A class which stores the value(s) of an observable ob-
tained via molecule simulation (or simulation data) as
well as optionally the derivatives of the value with re-
spect to certain force field parameters.

ObservableType An enumeration of the common observables which may
be extracted from molecular simulations (or simulation
data) and stored in an ObservableFrame.

ObservableFrame A data object for storing and retrieving frames of
the thermodynamic observables enumerated by the
ObservableType enum.

bootstrap Bootstrapping a set of observables to compute the aver-
age value of the observables as well as the the standard
error in the average.

548 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Observable

class openff.evaluator.utils.observables.Observable(value: Op-
tional[Union[openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity]] = None,
gradients: Op-
tional[List[openff.evaluator.forcefield.gradients.ParameterGradient]]
= None)

A class which stores the mean value of an observable as well as the standard error in the mean. Optionally, the
derivatives of the mean with respect to certain force field parameters may also be stored.

__init__(value: Optional[Union[openff.evaluator.utils.units.Measurement,
openff.evaluator.utils.units.Quantity]] = None, gradients:
Optional[List[openff.evaluator.forcefield.gradients.ParameterGradient]] = None)

Methods

__init__([value, gradients])

clear_gradients() Clears all gradient information.

Attributes

error

gradients

value

clear_gradients()
Clears all gradient information.

ObservableArray

class openff.evaluator.utils.observables.ObservableArray(value: Op-
tional[openff.evaluator.utils.units.Quantity]
= None, gradients: Op-
tional[List[openff.evaluator.forcefield.gradients.ParameterGradient]]
= None)

A class which stores the value(s) of an observable obtained via molecule simulation (or simulation data) as well
as optionally the derivatives of the value with respect to certain force field parameters.

__init__(value: Optional[openff.evaluator.utils.units.Quantity] = None, gradients:
Optional[List[openff.evaluator.forcefield.gradients.ParameterGradient]] = None)

2.32. API 549

OpenFF Evaluator Documentation

Methods

__init__([value, gradients])

clear_gradients() Clears all gradient information.
join(*observables) Concatenates multiple observables together in the or-

der that they appear in the args list.
subset(indices) Extracts the subset of the values stored for this ob-

servable at the specified indices.

Attributes

gradients

value The value(s) of the observable.

property value: openff.evaluator.utils.units.Quantity
The value(s) of the observable.

subset(indices: Iterable[int])→ openff.evaluator.utils.observables.ObservableArray
Extracts the subset of the values stored for this observable at the specified indices.

Parameters indices – The indices of the entries to extract.

Returns
Return type The subset of the observable values.

classmethod join(*observables: openff.evaluator.utils.observables.ObservableArray)→
openff.evaluator.utils.observables.ObservableArray

Concatenates multiple observables together in the order that they appear in the args list.

Parameters observables – The observables to join.

Returns
Return type The concatenated observable object.

clear_gradients()
Clears all gradient information.

ObservableType

class openff.evaluator.utils.observables.ObservableType(value)
An enumeration of the common observables which may be extracted from molecular simulations (or simulation
data) and stored in an ObservableFrame.

__init__()

550 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

Attributes

PotentialEnergy

KineticEnergy

TotalEnergy

Temperature

Volume

Density

Enthalpy

ReducedPotential

ObservableFrame

class openff.evaluator.utils.observables.ObservableFrame(observables: Optional[Dict[Union[str,
openff.evaluator.utils.observables.ObservableType],
openff.evaluator.utils.observables.ObservableArray]]
= None)

A data object for storing and retrieving frames of the thermodynamic observables enumerated by the
ObservableType enum.

__init__(observables: Optional[Dict[Union[str, openff.evaluator.utils.observables.ObservableType],
openff.evaluator.utils.observables.ObservableArray]] = None)

Methods

__init__([observables])

clear()

clear_gradients() Clears all gradient information for each observable in
the frame.

from_openmm(file_path[, pressure]) Creates an observable frame from the CSV output of
an OpenMM simulation.

get(k[,d])

items()

join(*observable_frames) Joins multiple observable frames together in the order
that they appear in the args list.

keys()

continues on next page

2.32. API 551

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

OpenFF Evaluator Documentation

Table 382 – continued from previous page
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised.
popitem() as a 2-tuple; but raise KeyError if D is empty.
setdefault(k[,d])

subset(indices) Extracts the subset of the the array which is located
at the specified indices.

update([E,]**F) If E present and has a .keys() method, does: for k in
E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is
followed by: for k, v in F.items(): D[k] = v

values()

classmethod from_openmm(file_path: str, pressure: Optional[openff.evaluator.utils.units.Quantity] =
None)→ openff.evaluator.utils.observables.ObservableFrame

Creates an observable frame from the CSV output of an OpenMM simulation.

Parameters
• file_path – The file path to the CSV file.

• pressure – The pressure at which the observables in the csv file were collected.

Returns
Return type The imported observables.

subset(indices: Iterable[int])→ openff.evaluator.utils.observables.ObservableFrame
Extracts the subset of the the array which is located at the specified indices.

Parameters indices – The indices of the entries to extract.

Returns
Return type The subset of data.

classmethod join(*observable_frames: openff.evaluator.utils.observables.ObservableFrame)→
openff.evaluator.utils.observables.ObservableFrame

Joins multiple observable frames together in the order that they appear in the args list.

Parameters observable_frames – The observable frames to join.

Returns
Return type The joined observable frame.

clear_gradients()
Clears all gradient information for each observable in the frame.

clear()→ None. Remove all items from D.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

552 Chapter 2. Supported Physical Properties

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

bootstrap

openff.evaluator.utils.observables.bootstrap(bootstrap_function: Callable, iterations: int = 200,
relative_sample_size: float = 1.0, sub_counts:
Optional[Iterable[int]] = None, **observables:
openff.evaluator.utils.observables.ObservableArray)→
openff.evaluator.utils.observables.Observable

Bootstrapping a set of observables to compute the average value of the observables as well as the the standard
error in the average.

Parameters
• bootstrap_function – The function to evaluate at each bootstrap iteration.

• iterations – The number of bootstrap iterations to perform.

• relative_sample_size – The percentage sample size to bootstrap over, relative to the size
of the full data set.

• sub_counts – If the data being bootstrapped contains arrays of concatenated sub data (such
as when reweighting), this variable can be used to specify the number of items which belong
to each subset. Data is then sampled with replacement so that the bootstrap sample contains
the correct proportion of data from each subset.

If the data to bootstrap is of the form [x0, x1, x2, y0, y1] for example, then
data_sub_counts=[3, 2] and a possible sample may look like [x0, x0, x2, y0, y0], but never
[x0, x1, y0, y1, y1].

The sub-counts must sum up to the total length of the data provided to observables.

• observables – The observables which will be passed to the bootstrap function. All observ-
ables must have the same length.

Returns
Return type The average of the data and the uncertainty in the average.

2.32.14 Plug-in Utilities

Plug-ins

register_default_plugins Registers the built-in workflow protocols, calculation
layers and physical properties with the plugin system.

register_external_plugins Registers any supported plugins found in external pack-
ages with the plugin system.

2.32. API 553

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

OpenFF Evaluator Documentation

register_default_plugins

openff.evaluator.plugins.register_default_plugins()
Registers the built-in workflow protocols, calculation layers and physical properties with the plugin system.

register_external_plugins

openff.evaluator.plugins.register_external_plugins()
Registers any supported plugins found in external packages with the plugin system.

2.33 Release History

Releases follow the major.minor.micro scheme recommended by PEP440, where

• major increments denote a change that may break API compatibility with previous major releases

• minor increments add features but do not break API compatibility

• micro increments represent bugfix releases or improvements in documentation

2.33.1 0.3.6

Bugfixes

• PR #375: Fix #374 - import from collections.abc

• PR #379: Fix #378 - ‘FilterDuplicates` unintentionally selects values without uncertainty if multiple are present

• PR #384: Fix #382 - Default keyword arguments result in error

• PR #387: Fix #380 - Recursion error in local file storage

New Features

• PR #385: Support custom OpenMM nonbonded forces

• PR #386: Migrate to new OpenMM namespace

2.33.2 0.3.5

Bugfixes

• PR #367: Fix #365 - to/from_pandas does not roundtrip.

• PR #368: Fix #364 - Parsing an invalid IUPAC name raises an exception rather than a warning.

• PR #371: Fix gradients of non-Quantity parameters.

554 Chapter 2. Supported Physical Properties

https://www.python.org/dev/peps/pep-0440/#final-releases
https://github.com/openforcefield/openff-evaluator/pull/375
https://github.com/openforcefield/openff-evaluator/pull/379
https://github.com/openforcefield/openff-evaluator/pull/384
https://github.com/openforcefield/openff-evaluator/pull/387
https://github.com/openforcefield/openff-evaluator/pull/385
https://github.com/openforcefield/openff-evaluator/pull/386
https://github.com/openforcefield/openff-evaluator/pull/367
https://github.com/openforcefield/openff-evaluator/pull/368
https://github.com/openforcefield/openff-evaluator/pull/371

OpenFF Evaluator Documentation

New Features

• PR #362: Support dask-jobqueue Slurm backend.

• PR #366: Support gradients of handler attributes.

2.33.3 0.3.4

A patch release which adds the option (and enables it by default) to remove working files, such as simulated trajectories,
when they are no longer needed.

Behaviour Changes

• PR #349: Working files are deleted by default after an estimation batch completes.

2.33.4 0.3.3

This release facilitates the migration of the openff-evaluator package from omnia to conda-forge. This mainly involves
changes which update the package to use the new namespaces introduced in the openff-tookit package, rather than the
old and now deprecated openforcefield namespaces.

Bugfixes

• PR #346: Remove the unsupported encoding json kwarg.

New Features

• PR #341: Replace usages of dynamic Pint classes with internal static variants.

• PR #343: Migrate to the new OpenFF Toolkit namespace.

• PR #345: Migrate all reference from omnia to conda-forge.

2.33.5 0.3.2

This release exposes the option to disable caching of simulation data by an evaluator server. The performance of the
local storage backend is currently poor when dealing with large amounts of cached data and hence it may be preferable
to disable caching in such cases.

New Features

• PR #337: Expose server option to dis/enable data caching.

2.33. Release History 555

https://github.com/openforcefield/openff-evaluator/pull/362
https://github.com/openforcefield/openff-evaluator/pull/366
https://github.com/openforcefield/openff-evaluator/pull/349
https://github.com/openforcefield/openff-evaluator/pull/346
https://github.com/openforcefield/openff-evaluator/pull/341
https://github.com/openforcefield/openff-evaluator/pull/343
https://github.com/openforcefield/openff-evaluator/pull/345
https://github.com/openforcefield/openff-evaluator/pull/337

OpenFF Evaluator Documentation

2.33.6 0.3.1

This release fixes a bug introduced in version 0.3.0 of this framework, whereby the default workflows for computing
excess properties could in rare cases be incorrectly merged leading to downstream protocols taking their inputs from
the wrong upstream protocol outputs.

While this bug should not affect most calculations, it is recommended that any production calculations performed using
version 0.3.0 of this framework be repeated using version 0.3.1.

Bugfixes

• PR #331: Fixes merging excess properties.

2.33.7 0.3.0

The main feature of this release is the overhauling of how the framework computes the gradients of observables with
respect to force field parameters.

In particular, from this release onwards all gradients will be computed using the fluctuation formula (also referred to
as the thermodynamic gradient), rather than calculation be the re-weighted finite difference approach (PR #280). In
general the two methods produce gradients which are numerically indistinguishable, and so this should not markedly
change any scientific output of this framework.

The change was made to, in future, enable better integration with automatic differentiation libraries such as jax, and
differentiable simulation engines such as timemachine which readily and rapidly give access to d𝑈/d𝜃𝑖.

Additionally, as of version 0.3.0 ‘known’ charges (i.e. those assigned to TIP3P water and ions) are no longer auto-
matically applied when using a SMIRNOFF based force field. This feature was originally included in the framework
as the OpenFF toolkit did not support defining charges on specific molecules in the force field itself. This is now fully
supported through the LibraryCharges section of a SMIRNOFF force field and hence this workaround is no longer
required. From now on all ion and water charges must be specified in the SMIRNOFF force field.

Finally, this release includes beta support for computing host-guest binding affinities using the attach-pull-release
(APR) method through integration with the pAPRika and taproom packages. This support was largely facilitated by
the efforts of the paprika authors - David R. Slochower and Jeffry Setiadi.

Bugfixes

• PR #285: Use merged protocols in workflow provenance.

• PR #287: Fix merging of nested protocol inputs

New Features

• PR #262: Initial host-guest binding affinity support via paprika and taproom.

• PR #280: Switch to computing thermodynamic gradients.

• PR #309: Add a date to the timestamp logging output.

• PR #311: Initial solvation free energy gradient support.

• PR #312: Support caching free energy data.

• PR #324: Adds new miscellaneous DummyProtocol protocol.

556 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/openff-evaluator/pull/331
https://github.com/openforcefield/openff-evaluator/pull/280
https://github.com/google/jax
https://github.com/proteneer/timemachine
https://github.com/slochower/pAPRika
https://github.com/slochower/host-guest-benchmarks
https://github.com/slochower
https://github.com/jeff231li
https://github.com/openforcefield/openff-evaluator/pull/285
https://github.com/openforcefield/openff-evaluator/pull/287
https://github.com/openforcefield/openff-evaluator/pull/262
https://github.com/openforcefield/openff-evaluator/pull/280
https://github.com/openforcefield/openff-evaluator/pull/309
https://github.com/openforcefield/openff-evaluator/pull/311
https://github.com/openforcefield/openff-evaluator/pull/312
https://github.com/openforcefield/openff-evaluator/pull/324

OpenFF Evaluator Documentation

Behaviour Changes

• PR #280: Migrate to thermodynamic gradients.

• PR #310: The SMIRNOFF protocol no longer applies ‘known’ charges (i.e. water and ions).

• PR #316: Add library charges to the TIP3P test data file.

• PR #328: Store workflow provenance as serialized string.

Breaking Changes

• The StatisticsArray array has been completely removed and replaced with a new set of observable
(Observable, ObservableArray, ObservableFrame objects (#279, #286).

• The following protocol inputs / outputs have been renamed:

– SolvationYankProtocol.solvent_X_system -> SolvationYankProtocol.solution_X_system

– SolvationYankProtocol.solvent_X_coordinates -> SolvationYankProtocol.
solution_X_coordinates

– SolvationYankProtocol.estimated_free_energy -> SolvationYankProtocol.
free_energy_difference

• The following classes have been renamed:

– OpenMMReducedPotentials -> OpenMMEvaluateEnergies.

– AveragePropertyProtocol -> BaseAverageObservable, ExtractAverageStatistic
-> AverageObservable, ExtractUncorrelatedData -> BaseDecorrelateProtocol,
ExtractUncorrelatedTrajectoryData -> DecorrelateTrajectory,
ExtractUncorrelatedStatisticsData -> DecorrelateObservables

– ConcatenateStatistics -> ConcatenateObservables, BaseReducedPotentials ->
BaseEvaluateEnergies, ReweightStatistics -> ReweightObservable

• The following classes have been removed:

– OpenMMGradientPotentials, BaseGradientPotentials, CentralDifferenceGradient

• The final value estimated by a workflow must now be an Observable object which contains any gradient infor-
mation to return. (#296).

2.33.8 0.2.2

This release adds documentation for how physical properties are computed within the framework (both for this, and for
previous releases.

2.33. Release History 557

https://github.com/openforcefield/openff-evaluator/pull/280
https://github.com/openforcefield/openff-evaluator/pull/310
https://github.com/openforcefield/openff-evaluator/pull/316
https://github.com/openforcefield/openff-evaluator/pull/328
https://github.com/openforcefield/openff-evaluator/pull/279
https://github.com/openforcefield/openff-evaluator/pull/279
https://github.com/openforcefield/openff-evaluator/pull/296

OpenFF Evaluator Documentation

Documentation

• PR #281: Initial pass at physical property documentation.

2.33.9 0.2.1

A patch release offering minor bug fixes and quality of life improvements.

Bugfixes

• PR #259: Adds is_file_and_not_empty and addresses OpenMM failure modes.

• PR #275: Workaround for N substance molecules > user specified maximum.

New Features

• PR #267: Adds workflow protocol to Boltzmann average free energies.

• PR #269: Expose exclude exact amount from max molecule cap.

2.33.10 0.2.0

This release overhauls the frameworks data curation abilities. In particular, it adds

• a significant amount of data filters, including to filter by state, substance composition and chemical functionali-
ties.

and components to

• easily import all of the ThermoML and FreeSolv archives.

• convert between property types (currently density <-> excess molar volume).

• select data points close to a set of target states, and substances which contain specific functionalities (i.e. select
only data points measured for ketones, alcohols or alkanes).

More information about the new curation abilities can be found in the documentation here.

New Features

• PR #260: Data set curation overhaul.

• PR #261: Adds PhysicalPropertyDataSet.from_pandas.

Breaking Changes

• All of the PhysicalPropertyDataSet.filter_by_XXX functions have now been removed in favor of the new
curation components. See the documentation for information about the newly available filters and more.

558 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/openff-evaluator/pull/281
https://github.com/openforcefield/propertyestimator/pull/259
https://github.com/openforcefield/propertyestimator/pull/275
https://github.com/openforcefield/propertyestimator/pull/267
https://github.com/openforcefield/propertyestimator/pull/269
https://github.com/openforcefield/propertyestimator/pull/260
https://github.com/openforcefield/propertyestimator/pull/261

OpenFF Evaluator Documentation

2.33.11 0.1.2

A patch release offering minor bug fixes and quality of life improvements.

Bugfixes

• PR #254: Fix incompatible protocols being merged due to an id replacement bug.

• PR #255: Fix recursive ThermodynamicState string representation.

• PR #256: Fix incorrect version when installing from tarballs.

2.33.12 0.1.1

A patch release offering minor bug fixes and quality of life improvements.

Bugfixes

• PR #249: Fix replacing protocols of non-existent workflow schema.

• PR #253: Fix antechamber truncating charge file.

Documentation

• PR #252: Use conda-forge for ambertools installation.

2.33.13 0.1.0 - OpenFF Evaluator

Introducing the OpenFF Evaluator! The release marks a significant milestone in the development of this project, and
constitutes an almost full redesign of the framework with a focus on stability and ease of use.

Note: because of the extensive changes made throughout the entire framework, this release should almost be considered
as an entirely new package. No files produced by previous versions of this will work with this new release.

Clearer Branding

First and foremost, this release marks the complete rebranding from the previously named propertyestimator to the
new openff-evaluator package. This change is accompanied by the introduction of a new openff namespace for the
package, signifying it’s position in the larger Open Force Field infrastructure and piplelines.

What was previously:

import propertyestimator

now becomes:

import openff.evaluator

The rebranded package is now shipped on conda under the new name of openff-evaluator:

conda install -c conda-forge -c omnia openff-evaluator

2.33. Release History 559

https://github.com/openforcefield/propertyestimator/pull/254
https://github.com/openforcefield/propertyestimator/pull/255
https://github.com/openforcefield/propertyestimator/pull/256
https://github.com/openforcefield/propertyestimator/pull/249
https://github.com/openforcefield/propertyestimator/pull/253
https://github.com/openforcefield/propertyestimator/pull/252

OpenFF Evaluator Documentation

Markedly Improved Documentation

In addition, the release includes for the first time a significant amount of documentation for using the `framework and
it's features`_ as well as a collection of user focused tutorials which can be ran directly in the browser.

Support for RDKit

This release almost entirely removes the dependence on OpenEye thanks to support for RDKit almost universally across
the framework.

The only remaining instance where OpenEye is still required is for host-guest binding affinity calculations where it is
used to perform docking.

Model Validation

Starting with this release almost all models, range from PhysicalProperty entries to ProtocolSchema objects, are
now heavily validated to help catch any typos or errors early on.

Batching of Similar Properties

The EvaluatorServer now more intelligently attempts to batch properties which may be computed using the same
simulations into a single batch to be estimated. While the behaviour was already supported for pure properties in
previous, this has now been significantly expanded to work well with mixture properties.

2.33.14 0.0.9 - Multi-state Reweighting Fix

This release implements a fix for calculating the gradients of properties being estimated by reweighting data cached
from multiple independant simulations.

Bugfixes

• PR #143: Fix for multi-state gradient calculations.

2.33.15 0.0.8 - ThermoML Improvements

This release is centered around cleaning up the ThermoML data set utilities. The main change is that ThermoML
archive files can now be loaded even if they don’t contain measurement uncertainties.

New Features

• PR #142: ThermoML archives without uncertainties can now be loaded.

560 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/propertyestimator/pull/143
https://github.com/openforcefield/propertyestimator/pull/142

OpenFF Evaluator Documentation

Breaking Changes

• PR #142: All ThermoMLXXX classes other than ThermoMLDataSet are now private.

2.33.16 0.0.7 - Bug Quick Fixes

This release aims to fix a number of minor bugs.

Bugfixes

• PR #136: Fix for comparing thermodynamic states with unset pressures.

• PR #138: Fix for a typo in the maximum number of minimization iterations.

2.33.17 0.0.6 - Solvation Free Energies

This release centers around two key changes -

i) a general refactoring of the protocol classes to be much cleaner and extensible through the removal of the old
stub functions and the addition of cleaner descriptors.

ii) the addition of workflows to estimate solvation free energies via the new SolvationYankProtocol and
SolvationFreeEnergy classes.

The implemented free energy workflow is still rather basic, and does not yet support calculating parameter gradients
or estimation from cached simulation data through reweighting.

A new table has been added to the documentation to make clear which built-in properties support which features.

New Features

• PR #110: Cleanup and refactor of protocol classes.

• PR #125: Support for PBS based HPC clusters.

• PR #127: Adds a basic workflow for estimating solvation free energies with YANK.

• PR #130: Adds a cleaner mechanism for restarting simulations from checkpoints.

• PR #134: Update to a more stable dask version.

Bugfixes

• PR #128: Removed the defunct dask backend processes kwarg.

• PR #133: Fix for tests failing on MacOS due to travis issues.

2.33. Release History 561

https://github.com/openforcefield/propertyestimator/pull/142
https://github.com/openforcefield/propertyestimator/pull/136
https://github.com/openforcefield/propertyestimator/pull/138
https://github.com/openforcefield/propertyestimator/pull/110
https://github.com/openforcefield/propertyestimator/pull/125
https://github.com/openforcefield/propertyestimator/pull/127
http://getyank.org/latest/
https://github.com/openforcefield/propertyestimator/pull/130
https://github.com/openforcefield/propertyestimator/pull/134
https://github.com/openforcefield/propertyestimator/pull/128
https://github.com/openforcefield/propertyestimator/pull/133

OpenFF Evaluator Documentation

Breaking Changes

• PR #130: The RunOpenMMSimulation.steps input has now been split into the steps_per_iteration and
total_number_of_iterations inputs.

Migration Guide

This release contained several public API breaking changes. For the most part, these can be remedied by the follow
steps:

• Replace all instances of run_openmm_simulation_protocol.steps to
run_openmm_simulation_protocol.steps_per_iteration

2.33.18 0.0.5 - Fix For Merging of Estimation Requests

This release implements a fix for a major bug which caused incorrect results to be returned when submitting multiple
estimation requests at the same time - namely, the returned results became jumbled between the different requests. As
an example, if a request was made to estimate a data set using the smirnoff99frosst force field, and then straight after
with the gaff 1.81 force field, the results of the smirnoff99frosst request may contain some properties estimated with
gaff 1.81 and vice versa.

This issue does not affect cases where only a single request was made and completed at a time (i.e the results of the
previous request completed before the next estimation request was made).

Bugfixes

• PR #119: Fixes gather task merging.

• PR #121: Update to distributed 2.5.1.

2.33.19 0.0.4 - Initial Support for Non-SMIRNOFF FFs

This release adds initial support for estimating property data sets using force fields not based on the SMIRNOFF specifi-
cation. In particular, initial AMBER force field support has been added, along with a protocol which applies said force
fields using tleap.

New Features

• PR #96: Adds a mechanism for specifying force fields not in the SMIRNOFF spec.

• PR #99: Adds support for applying AMBER force field parameters through tleap

• PR #111: Protocols now stream trajectories from disk, rather than pre-load the whole thing.

• PR #112: Specific types of protocols can now be easily be replaced using WorkflowOptions.

• PR #117: Adds support for converting PhysicalPropertyDataSet objects to pandas.DataFrame.

562 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/propertyestimator/pull/130
https://github.com/openforcefield/propertyestimator/pull/119
https://github.com/openforcefield/propertyestimator/pull/121
https://github.com/openforcefield/propertyestimator/pull/96
https://github.com/openforcefield/propertyestimator/pull/99
https://github.com/openforcefield/propertyestimator/pull/111
https://github.com/openforcefield/propertyestimator/pull/112
https://github.com/openforcefield/propertyestimator/pull/117

OpenFF Evaluator Documentation

Bugfixes

• PR #115: Fixes caching data for substances whose smiles contain forward slashes.

• PR #116: Fixes inconsistent mole fraction rounding.

Breaking Changes

• PR #96: The PropertyEstimatorClient.request_estimate(force_field=... argument has been re-
named to force_field_source.

Migration Guide

This release contained several public API breaking changes. For the most part, these can be remedied by the follow
steps:

• Change all instances of PropertyEstimatorClient.request_estimate(force_field=...) to
PropertyEstimatorClient.request_estimate(force_field_source=...)

2.33.20 0.0.3 - ExcessMolarVolume and Typing Improvements

This release implements a number of bug fixes and adds two key new features, namely built in support for estimating
excess molar volume measurements, and improved type checking for protocol inputs and outputs.

New Features

• PR #98: Substance objects may now have components with multiple amount types.

• PR #101: Added support for estimating ExcessMolarVolume measurements from simulations.

• PR #104: typing.Union is now a valid type arguemt to protocol_output and protocol_input.

Bugfixes

• PR #94: Fixes exception when testing equality of ProtocolPath objects.

• PR #100: Fixes precision issues when ensuring mole fractions are <= 1.0.

• PR #102: Fixes replicated input for children of replicated protocols.

• PR #105: Fixes excess properties weighting by the wrong mole fractions.

• PR #107: Fixes excess properties being converged to the wrong uncertainty.

• PR #108: Fixes calculating MBAR gradients of reweighted properties.

2.33. Release History 563

https://github.com/openforcefield/propertyestimator/pull/115
https://github.com/openforcefield/propertyestimator/pull/116
https://github.com/openforcefield/propertyestimator/pull/96
https://github.com/openforcefield/propertyestimator/pull/98
https://github.com/openforcefield/propertyestimator/pull/101
https://github.com/openforcefield/propertyestimator/pull/104
https://github.com/openforcefield/propertyestimator/pull/94
https://github.com/openforcefield/propertyestimator/pull/100
https://github.com/openforcefield/propertyestimator/pull/102
https://github.com/openforcefield/propertyestimator/pull/105
https://github.com/openforcefield/propertyestimator/pull/107
https://github.com/openforcefield/propertyestimator/pull/108

OpenFF Evaluator Documentation

Breaking Changes

• PR #98: Substance.get_amount renamed to Substance.get_amounts and now returns an immutable
frozenset of Amount objects, rather than a single Amount.

• PR #104: The DivideGradientByScalar, MultiplyGradientByScalar, AddGradients,
SubtractGradients and WeightGradientByMoleFraction protocols have been removed. The
WeightQuantityByMoleFraction protocol has been renamed to WeightByMoleFraction.

Migration Guide

This release contained several public API breaking changes. For the most part, these can be remedied by the follow
steps:

• Change all instances of Substance.get_amount to Substance.get_amounts and handle the newly returned
frozenset of amounts, rather than the previously returned single amount.

• Replace the now removed protocols as follows:

– DivideGradientByScalar -> DivideValue

– MultiplyGradientByScalar -> MultiplyValue

– AddGradients -> AddValues

– SubtractGradients -> SubtractValues

– WeightGradientByMoleFraction -> WeightByMoleFraction

– WeightQuantityByMoleFraction -> WeightByMoleFraction

2.33.21 0.0.2 - Replicator Quick Fixes

A minor release to fix a number of minor bugs related to replicating protocols.

Bugfixes

• PR #90: Fixes merging gradient protocols with the same id.

• PR #92: Fixes replicating protocols for more than 10 template values.

• PR #93: Fixes ConditionalGroup objects losing their conditions input.

2.33.22 0.0.1 - Initial Release

The initial pre-alpha release of the framework.

564 Chapter 2. Supported Physical Properties

https://github.com/openforcefield/propertyestimator/pull/98
https://github.com/openforcefield/propertyestimator/pull/104
https://github.com/openforcefield/propertyestimator/pull/90
https://github.com/openforcefield/propertyestimator/pull/92
https://github.com/openforcefield/propertyestimator/pull/93

OpenFF Evaluator Documentation

2.34 Release Process

This document aims to outline the steps needed to release the openff-evaluator on conda-forge. This should only
be done with the approval of the core maintainers.

2.34.1 1. Update the Release History

If no PR has been submitted, create a new one to keep track of changes to the release notes only. Only the
releasehistory.rst file may be edited in this PR.

Ensure that the release history file is up to date, and conforms to the below template:

X.Y.Z - Descriptive Title

This release...

New Features
""""""""""""

* PR #X: Feature summary

Bugfixes
""""""""

* PR #Y: Fix Summary

Breaking Changes
""""""""""""""""

* PR #Z: Descriptive summary of the breaking change

Migration Guide
"""""""""""""""

This release contained several public API breaking changes. For the most part, these can␣
→˓be
remedied by the follow steps:

* A somewhat verbose guide on how users should upgrade their code given the new breaking␣
→˓changes.

2.34.2 2: Cut the Release on GitHub

To cut a new release on GitHub:

1) Go to the Releases tab on the front page of the repo and choose Create a new release.

2) Set the release tag using the form: X.Y.Z

3) Added a descriptive title using the form: X.Y.Z [Descriptive Title]

4) Ensure the This is a pre-release checkbox is ticked.

2.34. Release Process 565

OpenFF Evaluator Documentation

5) Reformat the release notes from part 1) into markdown and paste into the description box.

a) Append the following extra message above the New Features title:

A richer version of these release notes with live links to API documentation is available
on [our ReadTheDocs page](https://property-estimator.readthedocs.io/en/latest/
→˓releasehistory.html)

See our [installation instructions](https://property-estimator.readthedocs.io/en/latest/
→˓install.html).

Please report bugs, request features, or ask questions through our
[issue tracker](https://github.com/openforcefield/openff-evaluator/issues).

**Please note that this is a pre-alpha release and there will still be major changes to␣
→˓the API
prior to a stable 1.0.0 release.**

Note - You do not need to upload any files. The source code will automatically be added as a `.tar.gz` file.

2.34.3 3: Trigger a New Build on Conda Forge

To trigger the build on conda-forge:

1) Create a fork of the openff-evaluator-feedstock and make the following changes to the recipe/meta.yaml file:

a) Update the version to match the release.

b) Set build to 0

c) Update any dependencies in the requirements section

d) Update the sha256 hash to the output of curl -sL https://github.com/openforcefield/
openff-evaluator/archive/{{ version }}.tar.gz | openssl sha256

2) Open PR to merge the fork into the main feedstock:

a) The PR title should have the format Release X.Y.Z

b) No PR body text is needed

c) The CI will run on this PR (~30 minutes) and attempt to build the package.

d) If the build is successful the PR should be reviewed and merged by the feedstock maintainers.

e) Once merged the package is built again on and uploaded to anaconda.

3) Test the conda-forge package:

a) conda install -c conda-forge openff-evaluator

566 Chapter 2. Supported Physical Properties

https://github.com/conda-forge/openff-evaluator-feedstock

OpenFF Evaluator Documentation

2.34.4 4: Update the ReadTheDocs Build Versions

To ensure that the read the docs pages are updated:

1) Trigger a RTD build of latest.

2) Under the Versions tab add the new release version to the list of built versions and save.

3) Verify the new version docs have been built and pushed correctly

4) Under Admin | Advanced Settings: Set the new release version as Default version to display and save.

2.34. Release Process 567

OpenFF Evaluator Documentation

568 Chapter 2. Supported Physical Properties

BIBLIOGRAPHY

[1] Alice Glättli, Xavier Daura, and Wilfred F van Gunsteren. Derivation of an improved simple point charge model
for liquid water: spc/a and spc/l. The Journal of chemical physics, 116(22):9811–9828, 2002.

[2] Kyle A Beauchamp, Julie M Behr, Ariën S Rustenburg, Christopher I Bayly, Kenneth Kroenlein, and John D
Chodera. Toward automated benchmarking of atomistic force fields: neat liquid densities and static dielectric con-
stants from the thermoml data archive. The Journal of Physical Chemistry B, 119(40):12912–12920, 2015.

[3] Junmei Wang and Tingjun Hou. Application of molecular dynamics simulations in molecular property prediction.
1. density and heat of vaporization. Journal of chemical theory and computation, 7(7):2151–2165, 2011.

[4] David R Slochower, Niel M Henriksen, Lee-Ping Wang, John D Chodera, David L Mobley, and Michael K Gilson.
Binding thermodynamics of host–guest systems with smirnoff99frosst 1.0. 5 from the open force field initiative.
Journal of Chemical Theory and Computation, 15(11):6225–6242, 2019.

[1] John D Chodera. A simple method for automated equilibration detection in molecular simulations. Journal of
chemical theory and computation, 12(4):1799–1805, 2016.

[2] Richard A Messerly, S Mostafa Razavi, and Michael R Shirts. Configuration-sampling-based surrogate mod-
els for rapid parameterization of non-bonded interactions. Journal of Chemical Theory and Computation,
14(6):3144–3162, 2018.

[1] Lee-Ping Wang, Teresa Head-Gordon, Jay W Ponder, Pengyu Ren, John D Chodera, Peter K Eastman, Todd J
Martinez, and Vijay S Pande. Systematic improvement of a classical molecular model of water. The Journal of
Physical Chemistry B, 117(34):9956–9972, 2013.

569

OpenFF Evaluator Documentation

570 Bibliography

INDEX

Symbols
__init__() (openff.evaluator.attributes.Attribute

method), 546
__init__() (openff.evaluator.attributes.AttributeClass

method), 547
__init__() (openff.evaluator.attributes.PlaceholderValue

method), 548
__init__() (openff.evaluator.backends.CalculationBackend

method), 198
__init__() (openff.evaluator.backends.ComputeResources

method), 199
__init__() (openff.evaluator.backends.QueueWorkerResources

method), 200
__init__() (openff.evaluator.backends.dask.BaseDaskBackend

method), 202
__init__() (openff.evaluator.backends.dask.BaseDaskJobQueueBackend

method), 203
__init__() (openff.evaluator.backends.dask.DaskLSFBackend

method), 206
__init__() (openff.evaluator.backends.dask.DaskLocalCluster

method), 205
__init__() (openff.evaluator.backends.dask.DaskPBSBackend

method), 208
__init__() (openff.evaluator.client.BatchMode

method), 80
__init__() (openff.evaluator.client.ConnectionOptions

method), 80
__init__() (openff.evaluator.client.EvaluatorClient

method), 78
__init__() (openff.evaluator.client.Request method), 82
__init__() (openff.evaluator.client.RequestOptions

method), 84
__init__() (openff.evaluator.client.RequestResult

method), 85
__init__() (openff.evaluator.datasets.CalculationSource

method), 97
__init__() (openff.evaluator.datasets.MeasurementSource

method), 98
__init__() (openff.evaluator.datasets.PhysicalProperty

method), 92
__init__() (openff.evaluator.datasets.PhysicalPropertyDataSet

method), 134

__init__() (openff.evaluator.datasets.PropertyPhase
method), 95

__init__() (openff.evaluator.datasets.Source method),
96

__init__() (openff.evaluator.datasets.curation.components.CurationComponent
method), 148

__init__() (openff.evaluator.datasets.curation.components.CurationComponentSchema
method), 149

__init__() (openff.evaluator.datasets.curation.components.conversion.ConvertExcessDensityData
method), 176

__init__() (openff.evaluator.datasets.curation.components.conversion.ConvertExcessDensityDataSchema
method), 175

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByCharged
method), 160

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByChargedSchema
method), 160

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByElements
method), 157

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByElementsSchema
method), 157

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByEnvironments
method), 167

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByEnvironmentsSchema
method), 167

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByIonicLiquid
method), 161

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByIonicLiquidSchema
method), 161

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByMoleFraction
method), 155

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByMoleFractionSchema
method), 155

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByNComponents
method), 165

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByNComponentsSchema
method), 164

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByPressure
method), 154

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByPressureSchema
method), 154

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByPropertyTypes
method), 158

571

OpenFF Evaluator Documentation

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByPropertyTypesSchema
method), 158

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByRacemic
method), 156

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByRacemicSchema
method), 156

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterBySmiles
method), 162

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterBySmilesSchema
method), 162

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterBySmirks
method), 163

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterBySmirksSchema
method), 163

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByStereochemistry
method), 159

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByStereochemistrySchema
method), 159

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterBySubstances
method), 166

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterBySubstancesSchema
method), 165

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByTemperature
method), 153

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterByTemperatureSchema
method), 153

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterDuplicates
method), 152

__init__() (openff.evaluator.datasets.curation.components.filtering.FilterDuplicatesSchema
method), 152

__init__() (openff.evaluator.datasets.curation.components.freesolv.ImportFreeSolv
method), 169

__init__() (openff.evaluator.datasets.curation.components.freesolv.ImportFreeSolvSchema
method), 168

__init__() (openff.evaluator.datasets.curation.components.selection.FingerPrintType
method), 175

__init__() (openff.evaluator.datasets.curation.components.selection.SelectDataPoints
method), 173

__init__() (openff.evaluator.datasets.curation.components.selection.SelectDataPointsSchema
method), 172

__init__() (openff.evaluator.datasets.curation.components.selection.SelectSubstances
method), 172

__init__() (openff.evaluator.datasets.curation.components.selection.SelectSubstancesSchema
method), 171

__init__() (openff.evaluator.datasets.curation.components.selection.State
method), 173

__init__() (openff.evaluator.datasets.curation.components.selection.TargetState
method), 174

__init__() (openff.evaluator.datasets.curation.components.thermoml.ImportThermoMLData
method), 170

__init__() (openff.evaluator.datasets.curation.components.thermoml.ImportThermoMLDataSchema
method), 169

__init__() (openff.evaluator.datasets.curation.workflow.CurationWorkflow
method), 149

__init__() (openff.evaluator.datasets.curation.workflow.CurationWorkflowSchema
method), 150

__init__() (openff.evaluator.datasets.taproom.TaproomDataSet
method), 143

__init__() (openff.evaluator.datasets.taproom.TaproomSource
method), 147

__init__() (openff.evaluator.datasets.thermoml.ThermoMLDataSet
method), 138

__init__() (openff.evaluator.forcefield.ForceFieldSource
method), 177

__init__() (openff.evaluator.forcefield.LigParGenForceFieldSource
method), 181

__init__() (openff.evaluator.forcefield.ParameterGradient
method), 184

__init__() (openff.evaluator.forcefield.ParameterGradientKey
method), 183

__init__() (openff.evaluator.forcefield.SmirnoffForceFieldSource
method), 178

__init__() (openff.evaluator.forcefield.TLeapForceFieldSource
method), 179

__init__() (openff.evaluator.layers.CalculationLayer
method), 184

__init__() (openff.evaluator.layers.CalculationLayerResult
method), 185

__init__() (openff.evaluator.layers.CalculationLayerSchema
method), 187

__init__() (openff.evaluator.layers.reweighting.ReweightingLayer
method), 194

__init__() (openff.evaluator.layers.reweighting.ReweightingSchema
method), 196

__init__() (openff.evaluator.layers.simulation.SimulationLayer
method), 192

__init__() (openff.evaluator.layers.simulation.SimulationSchema
method), 193

__init__() (openff.evaluator.layers.workflow.WorkflowCalculationLayer
method), 189

__init__() (openff.evaluator.layers.workflow.WorkflowCalculationSchema
method), 190

__init__() (openff.evaluator.properties.Density
method), 99

__init__() (openff.evaluator.properties.DielectricConstant
method), 106

__init__() (openff.evaluator.properties.EnthalpyOfMixing
method), 109

__init__() (openff.evaluator.properties.EnthalpyOfVaporization
method), 112

__init__() (openff.evaluator.properties.ExcessMolarVolume
method), 102

__init__() (openff.evaluator.properties.HostGuestBindingAffinity
method), 118

__init__() (openff.evaluator.properties.SolvationFreeEnergy
method), 115

__init__() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 288

572 Index

OpenFF Evaluator Documentation

__init__() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 294

__init__() (openff.evaluator.protocols.analysis.AverageObservable
method), 283

__init__() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 277

__init__() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 303

__init__() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 299

__init__() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 313

__init__() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 308

__init__() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 318

__init__() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 330

__init__() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 324

__init__() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 336

__init__() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 346

__init__() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 340

__init__() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 351

__init__() (openff.evaluator.protocols.gradients.ZeroGradients
method), 357

__init__() (openff.evaluator.protocols.groups.ConditionalGroup
method), 362

__init__() (openff.evaluator.protocols.miscellaneous.AddValues
method), 368

__init__() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 382

__init__() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 396

__init__() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 392

__init__() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 377

__init__() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 372

__init__() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 387

__init__() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 401

__init__() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 413

__init__() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 406

__init__() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 454

__init__() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 464

__init__() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 459

__init__() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 429

__init__() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 418

__init__() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 424

__init__() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 449

__init__() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 434

__init__() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 439

__init__() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 444

__init__() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 478

__init__() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 484

__init__() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 474

__init__() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 469

__init__() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 495

__init__() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 489

__init__() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 501

__init__() (openff.evaluator.protocols.simulation.BaseSimulation
method), 506

__init__() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 513

__init__() (openff.evaluator.protocols.utils.ReweightingProtocols
method), 542

__init__() (openff.evaluator.protocols.utils.SimulationProtocols
method), 541

__init__() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 518

__init__() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 524

__init__() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 532

__init__() (openff.evaluator.server.Batch method), 90
__init__() (openff.evaluator.server.EvaluatorServer

method), 89
__init__() (openff.evaluator.storage.LocalFileStorage

method), 212
__init__() (openff.evaluator.storage.StorageBackend

method), 210
__init__() (openff.evaluator.storage.attributes.FilePath

Index 573

OpenFF Evaluator Documentation

method), 240
__init__() (openff.evaluator.storage.attributes.QueryAttribute

method), 246
__init__() (openff.evaluator.storage.attributes.StorageAttribute

method), 246
__init__() (openff.evaluator.storage.data.BaseSimulationData

method), 220
__init__() (openff.evaluator.storage.data.BaseStoredData

method), 214
__init__() (openff.evaluator.storage.data.ForceFieldData

method), 217
__init__() (openff.evaluator.storage.data.HashableStoredData

method), 215
__init__() (openff.evaluator.storage.data.ReplaceableData

method), 218
__init__() (openff.evaluator.storage.data.StoredFreeEnergyData

method), 225
__init__() (openff.evaluator.storage.data.StoredSimulationData

method), 222
__init__() (openff.evaluator.storage.query.BaseDataQuery

method), 228
__init__() (openff.evaluator.storage.query.BaseSimulationDataQuery

method), 232
__init__() (openff.evaluator.storage.query.ForceFieldQuery

method), 231
__init__() (openff.evaluator.storage.query.FreeEnergyDataQuery

method), 237
__init__() (openff.evaluator.storage.query.SimulationDataQuery

method), 235
__init__() (openff.evaluator.storage.query.SubstanceQuery

method), 230
__init__() (openff.evaluator.substances.Amount

method), 127
__init__() (openff.evaluator.substances.Component

method), 126
__init__() (openff.evaluator.substances.ExactAmount

method), 129
__init__() (openff.evaluator.substances.MoleFraction

method), 131
__init__() (openff.evaluator.substances.Substance

method), 123
__init__() (openff.evaluator.thermodynamics.ThermodynamicState

method), 133
__init__() (openff.evaluator.utils.observables.Observable

method), 549
__init__() (openff.evaluator.utils.observables.ObservableArray

method), 549
__init__() (openff.evaluator.utils.observables.ObservableFrame

method), 551
__init__() (openff.evaluator.utils.observables.ObservableType

method), 550
__init__() (openff.evaluator.workflow.Protocol

method), 254
__init__() (openff.evaluator.workflow.ProtocolGraph

method), 258
__init__() (openff.evaluator.workflow.ProtocolGroup

method), 259
__init__() (openff.evaluator.workflow.Workflow

method), 247
__init__() (openff.evaluator.workflow.WorkflowGraph

method), 251
__init__() (openff.evaluator.workflow.WorkflowResult

method), 252
__init__() (openff.evaluator.workflow.attributes.BaseMergeBehaviour

method), 272
__init__() (openff.evaluator.workflow.attributes.InequalityMergeBehaviour

method), 273
__init__() (openff.evaluator.workflow.attributes.InputAttribute

method), 274
__init__() (openff.evaluator.workflow.attributes.MergeBehaviour

method), 272
__init__() (openff.evaluator.workflow.attributes.OutputAttribute

method), 274
__init__() (openff.evaluator.workflow.schemas.ProtocolGroupSchema

method), 266
__init__() (openff.evaluator.workflow.schemas.ProtocolReplicator

method), 268
__init__() (openff.evaluator.workflow.schemas.ProtocolSchema

method), 264
__init__() (openff.evaluator.workflow.schemas.WorkflowSchema

method), 270
__init__() (openff.evaluator.workflow.utils.ProtocolPath

method), 275
__init__() (openff.evaluator.workflow.utils.ReplicatorValue

method), 275

A
absolute_tolerance (openff.evaluator.layers.CalculationLayerSchema

attribute), 187
absolute_tolerance (openff.evaluator.layers.reweighting.ReweightingSchema

attribute), 197
absolute_tolerance (openff.evaluator.layers.simulation.SimulationSchema

attribute), 193
absolute_tolerance (openff.evaluator.layers.workflow.WorkflowCalculationSchema

attribute), 191
activate_site_location

(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 331

add_component() (openff.evaluator.substances.Substance
method), 124

add_condition() (openff.evaluator.protocols.groups.ConditionalGroup
method), 364

add_properties() (openff.evaluator.datasets.PhysicalPropertyDataSet
method), 136

add_properties() (openff.evaluator.datasets.taproom.TaproomDataSet
method), 144

add_properties() (openff.evaluator.datasets.thermoml.ThermoMLDataSet
method), 139

574 Index

OpenFF Evaluator Documentation

add_protocols() (openff.evaluator.protocols.groups.ConditionalGroup
method), 364

add_protocols() (openff.evaluator.workflow.ProtocolGraph
method), 258

add_protocols() (openff.evaluator.workflow.ProtocolGroup
method), 261

add_schema() (openff.evaluator.client.RequestOptions
method), 84

add_workflows() (openff.evaluator.workflow.WorkflowGraph
method), 251

AddDummyAtoms (class in
openff.evaluator.protocols.paprika.coordinates),
429

AddValues (class in openff.evaluator.protocols.miscellaneous),
368

allow_gpu_platforms
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 408

allow_gpu_platforms
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 509

allow_merging (openff.evaluator.protocols.analysis.AverageDielectricConstant
attribute), 289

allow_merging (openff.evaluator.protocols.analysis.AverageFreeEnergies
attribute), 295

allow_merging (openff.evaluator.protocols.analysis.AverageObservable
attribute), 284

allow_merging (openff.evaluator.protocols.analysis.BaseAverageObservable
attribute), 279

allow_merging (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
attribute), 304

allow_merging (openff.evaluator.protocols.analysis.ComputeDipoleMoments
attribute), 300

allow_merging (openff.evaluator.protocols.analysis.DecorrelateObservables
attribute), 314

allow_merging (openff.evaluator.protocols.analysis.DecorrelateTrajectory
attribute), 309

allow_merging (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 320

allow_merging (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 332

allow_merging (openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 325

allow_merging (openff.evaluator.protocols.forcefield.BaseBuildSystem
attribute), 337

allow_merging (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
attribute), 347

allow_merging (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
attribute), 341

allow_merging (openff.evaluator.protocols.forcefield.BuildTLeapSystem
attribute), 352

allow_merging (openff.evaluator.protocols.gradients.ZeroGradients
attribute), 358

allow_merging (openff.evaluator.protocols.groups.ConditionalGroup

attribute), 364
allow_merging (openff.evaluator.protocols.miscellaneous.AddValues

attribute), 369
allow_merging (openff.evaluator.protocols.miscellaneous.DivideValue

attribute), 383
allow_merging (openff.evaluator.protocols.miscellaneous.DummyProtocol

attribute), 398
allow_merging (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

attribute), 393
allow_merging (openff.evaluator.protocols.miscellaneous.MultiplyValue

attribute), 378
allow_merging (openff.evaluator.protocols.miscellaneous.SubtractValues

attribute), 374
allow_merging (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

attribute), 388
allow_merging (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

attribute), 402
allow_merging (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies

attribute), 414
allow_merging (openff.evaluator.protocols.openmm.OpenMMSimulation

attribute), 408
allow_merging (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

attribute), 456
allow_merging (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

attribute), 465
allow_merging (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

attribute), 460
allow_merging (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

attribute), 430
allow_merging (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

attribute), 420
allow_merging (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

attribute), 425
allow_merging (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

attribute), 450
allow_merging (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints

attribute), 435
allow_merging (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

attribute), 440
allow_merging (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints

attribute), 445
allow_merging (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

attribute), 480
allow_merging (openff.evaluator.protocols.reweighting.BaseMBARProtocol

attribute), 486
allow_merging (openff.evaluator.protocols.reweighting.ConcatenateObservables

attribute), 475
allow_merging (openff.evaluator.protocols.reweighting.ConcatenateTrajectories

attribute), 470
allow_merging (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

attribute), 496
allow_merging (openff.evaluator.protocols.reweighting.ReweightObservable

attribute), 490
allow_merging (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

Index 575

OpenFF Evaluator Documentation

attribute), 502
allow_merging (openff.evaluator.protocols.simulation.BaseSimulation

attribute), 509
allow_merging (openff.evaluator.protocols.storage.UnpackStoredSimulationData

attribute), 515
allow_merging (openff.evaluator.protocols.yank.BaseYankProtocol

attribute), 520
allow_merging (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

attribute), 527
allow_merging (openff.evaluator.protocols.yank.SolvationYankProtocol

attribute), 536
allow_merging (openff.evaluator.workflow.Protocol at-

tribute), 254
allow_merging (openff.evaluator.workflow.ProtocolGroup

attribute), 262
Amount (class in openff.evaluator.substances), 127
amounts (openff.evaluator.substances.Substance at-

tribute), 124
AnalyzeAPRPhase (class in

openff.evaluator.protocols.paprika.analysis),
454

append_uuid() (openff.evaluator.workflow.utils.ProtocolPath
method), 276

apply() (openff.evaluator.datasets.curation.components.conversion.ConvertExcessDensityData
class method), 176

apply() (openff.evaluator.datasets.curation.components.CurationComponent
class method), 148

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByCharged
class method), 160

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByElements
class method), 157

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByEnvironments
class method), 168

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByIonicLiquid
class method), 161

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByMoleFraction
class method), 155

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByNComponents
class method), 165

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByPressure
class method), 154

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByPropertyTypes
class method), 158

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByRacemic
class method), 156

apply() (openff.evaluator.datasets.curation.components.filtering.FilterBySmiles
class method), 162

apply() (openff.evaluator.datasets.curation.components.filtering.FilterBySmirks
class method), 164

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByStereochemistry
class method), 159

apply() (openff.evaluator.datasets.curation.components.filtering.FilterBySubstances
class method), 166

apply() (openff.evaluator.datasets.curation.components.filtering.FilterByTemperature

class method), 153
apply() (openff.evaluator.datasets.curation.components.filtering.FilterDuplicates

class method), 152
apply() (openff.evaluator.datasets.curation.components.freesolv.ImportFreeSolv

class method), 169
apply() (openff.evaluator.datasets.curation.components.selection.SelectDataPoints

class method), 173
apply() (openff.evaluator.datasets.curation.components.selection.SelectSubstances

class method), 172
apply() (openff.evaluator.datasets.curation.components.thermoml.ImportThermoMLData

class method), 170
apply() (openff.evaluator.datasets.curation.workflow.CurationWorkflow

class method), 149
apply() (openff.evaluator.storage.query.BaseDataQuery

method), 229
apply() (openff.evaluator.storage.query.BaseSimulationDataQuery

method), 234
apply() (openff.evaluator.storage.query.ForceFieldQuery

method), 231
apply() (openff.evaluator.storage.query.FreeEnergyDataQuery

method), 238
apply() (openff.evaluator.storage.query.SimulationDataQuery

method), 235
apply() (openff.evaluator.workflow.schemas.ProtocolReplicator

method), 268
apply_replicator() (openff.evaluator.protocols.analysis.AverageDielectricConstant

method), 290
apply_replicator() (openff.evaluator.protocols.analysis.AverageFreeEnergies

method), 295
apply_replicator() (openff.evaluator.protocols.analysis.AverageObservable

method), 284
apply_replicator() (openff.evaluator.protocols.analysis.BaseAverageObservable

method), 279
apply_replicator() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol

method), 305
apply_replicator() (openff.evaluator.protocols.analysis.ComputeDipoleMoments

method), 300
apply_replicator() (openff.evaluator.protocols.analysis.DecorrelateObservables

method), 314
apply_replicator() (openff.evaluator.protocols.analysis.DecorrelateTrajectory

method), 309
apply_replicator() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

method), 320
apply_replicator() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates

method), 332
apply_replicator() (openff.evaluator.protocols.coordinates.SolvateExistingStructure

method), 325
apply_replicator() (openff.evaluator.protocols.forcefield.BaseBuildSystem

method), 337
apply_replicator() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem

method), 347
apply_replicator() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem

method), 341
apply_replicator() (openff.evaluator.protocols.forcefield.BuildTLeapSystem

576 Index

OpenFF Evaluator Documentation

method), 352
apply_replicator() (openff.evaluator.protocols.gradients.ZeroGradients

method), 358
apply_replicator() (openff.evaluator.protocols.groups.ConditionalGroup

method), 364
apply_replicator() (openff.evaluator.protocols.miscellaneous.AddValues

method), 369
apply_replicator() (openff.evaluator.protocols.miscellaneous.DivideValue

method), 383
apply_replicator() (openff.evaluator.protocols.miscellaneous.DummyProtocol

method), 398
apply_replicator() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

method), 393
apply_replicator() (openff.evaluator.protocols.miscellaneous.MultiplyValue

method), 379
apply_replicator() (openff.evaluator.protocols.miscellaneous.SubtractValues

method), 374
apply_replicator() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

method), 388
apply_replicator() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

method), 402
apply_replicator() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies

method), 414
apply_replicator() (openff.evaluator.protocols.openmm.OpenMMSimulation

method), 408
apply_replicator() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

method), 456
apply_replicator() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

method), 465
apply_replicator() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

method), 461
apply_replicator() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

method), 430
apply_replicator() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

method), 420
apply_replicator() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

method), 425
apply_replicator() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

method), 450
apply_replicator() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints

method), 435
apply_replicator() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

method), 440
apply_replicator() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints

method), 445
apply_replicator() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

method), 480
apply_replicator() (openff.evaluator.protocols.reweighting.BaseMBARProtocol

method), 486
apply_replicator() (openff.evaluator.protocols.reweighting.ConcatenateObservables

method), 475
apply_replicator() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories

method), 470
apply_replicator() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

method), 496
apply_replicator() (openff.evaluator.protocols.reweighting.ReweightObservable

method), 490
apply_replicator() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

method), 503
apply_replicator() (openff.evaluator.protocols.simulation.BaseSimulation

method), 509
apply_replicator() (openff.evaluator.protocols.storage.UnpackStoredSimulationData

method), 515
apply_replicator() (openff.evaluator.protocols.yank.BaseYankProtocol

method), 520
apply_replicator() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

method), 527
apply_replicator() (openff.evaluator.protocols.yank.SolvationYankProtocol

method), 536
apply_replicator() (openff.evaluator.workflow.Protocol

method), 256
apply_replicator() (openff.evaluator.workflow.ProtocolGroup

method), 263
apply_restraints (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

attribute), 526
ApplyRestraints (class in

openff.evaluator.protocols.paprika.restraints),
449

assigned_residue_names
(openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 320

assigned_residue_names
(openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 326

attach_lambdas (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
attribute), 435

attach_lambdas (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
attribute), 441

Attribute (class in openff.evaluator.attributes), 546
AttributeClass (class in openff.evaluator.attributes),

547
AverageDielectricConstant (class in

openff.evaluator.protocols.analysis), 288
AverageFreeEnergies (class in

openff.evaluator.protocols.analysis), 294
AverageObservable (class in

openff.evaluator.protocols.analysis), 283

B
BaseAverageObservable (class in

openff.evaluator.protocols.analysis), 277
BaseBuildSystem (class in

openff.evaluator.protocols.forcefield), 336
BaseDaskBackend (class in

openff.evaluator.backends.dask), 202
BaseDaskJobQueueBackend (class in

openff.evaluator.backends.dask), 203

Index 577

OpenFF Evaluator Documentation

BaseDataQuery (class in
openff.evaluator.storage.query), 228

BaseDecorrelateProtocol (class in
openff.evaluator.protocols.analysis), 303

BaseEnergyMinimisation (class in
openff.evaluator.protocols.simulation), 501

BaseEvaluateEnergies (class in
openff.evaluator.protocols.reweighting), 478

BaseMBARProtocol (class in
openff.evaluator.protocols.reweighting), 484

BaseMergeBehaviour (class in
openff.evaluator.workflow.attributes), 272

BaseSimulation (class in
openff.evaluator.protocols.simulation), 506

BaseSimulationData (class in
openff.evaluator.storage.data), 220

BaseSimulationDataQuery (class in
openff.evaluator.storage.query), 232

BaseStoredData (class in
openff.evaluator.storage.data), 214

BaseYankProtocol (class in
openff.evaluator.protocols.yank), 518

Batch (class in openff.evaluator.server), 90
batch_mode (openff.evaluator.client.RequestOptions at-

tribute), 84
BatchMode (class in openff.evaluator.client), 80
beta (openff.evaluator.thermodynamics.ThermodynamicState

property), 133
bootstrap() (in module

openff.evaluator.utils.observables), 553
bootstrap_cycles (openff.evaluator.protocols.analysis.AverageFreeEnergies

attribute), 295
bootstrap_iterations

(openff.evaluator.protocols.analysis.AverageDielectricConstant
attribute), 290

bootstrap_iterations
(openff.evaluator.protocols.analysis.AverageObservable
attribute), 285

bootstrap_iterations
(openff.evaluator.protocols.analysis.BaseAverageObservable
attribute), 279

bootstrap_iterations
(openff.evaluator.protocols.reweighting.BaseMBARProtocol
attribute), 485

bootstrap_iterations
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 497

bootstrap_iterations
(openff.evaluator.protocols.reweighting.ReweightObservable
attribute), 491

bootstrap_sample_size
(openff.evaluator.protocols.analysis.AverageDielectricConstant
attribute), 290

bootstrap_sample_size

(openff.evaluator.protocols.analysis.AverageObservable
attribute), 285

bootstrap_sample_size
(openff.evaluator.protocols.analysis.BaseAverageObservable
attribute), 279

bootstrap_uncertainties
(openff.evaluator.protocols.reweighting.BaseMBARProtocol
attribute), 485

bootstrap_uncertainties
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 496

bootstrap_uncertainties
(openff.evaluator.protocols.reweighting.ReweightObservable
attribute), 491

box_aspect_ratio (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 319

box_aspect_ratio (openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 326

BuildCoordinatesPackmol (class in
openff.evaluator.protocols.coordinates), 318

BuildDockedCoordinates (class in
openff.evaluator.protocols.coordinates), 330

BuildDockedCoordinates.ActivateSiteLocation
(class in openff.evaluator.protocols.coordinates),
331

BuildLigParGenSystem (class in
openff.evaluator.protocols.forcefield), 345

BuildLigParGenSystem.WaterModel (class in
openff.evaluator.protocols.forcefield), 347

BuildSmirnoffSystem (class in
openff.evaluator.protocols.forcefield), 340

BuildTLeapSystem (class in
openff.evaluator.protocols.forcefield), 351

BuildTLeapSystem.ChargeBackend (class in
openff.evaluator.protocols.forcefield), 352

BuildTLeapSystem.WaterModel (class in
openff.evaluator.protocols.forcefield), 352

C
calculate_aqueous_ionic_mole_fraction()

(openff.evaluator.substances.Substance static
method), 125

calculation_layer() (in module
openff.evaluator.layers), 188

calculation_layers (openff.evaluator.client.RequestOptions
attribute), 84

calculation_schemas
(openff.evaluator.client.RequestOptions at-
tribute), 84

CalculationBackend (class in
openff.evaluator.backends), 198

CalculationLayer (class in openff.evaluator.layers),
184

578 Index

OpenFF Evaluator Documentation

CalculationLayerResult (class in
openff.evaluator.layers), 185

CalculationLayerSchema (class in
openff.evaluator.layers), 187

CalculationSource (class in
openff.evaluator.datasets), 97

can_merge() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 290

can_merge() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 296

can_merge() (openff.evaluator.protocols.analysis.AverageObservable
method), 285

can_merge() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 280

can_merge() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 305

can_merge() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 301

can_merge() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 315

can_merge() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 310

can_merge() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 321

can_merge() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 333

can_merge() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 326

can_merge() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 338

can_merge() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 348

can_merge() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 342

can_merge() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 353

can_merge() (openff.evaluator.protocols.gradients.ZeroGradients
method), 359

can_merge() (openff.evaluator.protocols.groups.ConditionalGroup
method), 365

can_merge() (openff.evaluator.protocols.miscellaneous.AddValues
method), 370

can_merge() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 384

can_merge() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 398

can_merge() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 394

can_merge() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 379

can_merge() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 374

can_merge() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 389

can_merge() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 403

can_merge() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 415

can_merge() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 409

can_merge() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 456

can_merge() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 466

can_merge() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 461

can_merge() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 431

can_merge() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 421

can_merge() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 426

can_merge() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 451

can_merge() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 436

can_merge() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 441

can_merge() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 446

can_merge() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 481

can_merge() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 486

can_merge() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 476

can_merge() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 471

can_merge() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 497

can_merge() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 491

can_merge() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 503

can_merge() (openff.evaluator.protocols.simulation.BaseSimulation
method), 510

can_merge() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 515

can_merge() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 521

can_merge() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 528

can_merge() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 537

can_merge() (openff.evaluator.workflow.Protocol
method), 255

can_merge() (openff.evaluator.workflow.ProtocolGroup
method), 261

Index 579

OpenFF Evaluator Documentation

capitalize() (openff.evaluator.storage.attributes.FilePath
method), 241

casefold() (openff.evaluator.storage.attributes.FilePath
method), 241

center() (openff.evaluator.storage.attributes.FilePath
method), 241

center_solute_in_box
(openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 325

charge_backend (openff.evaluator.protocols.forcefield.BuildTLeapSystem
attribute), 352

checkpoint_frequency
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 409

checkpoint_frequency
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

checkpoint_interval
(openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

checkpoint_interval
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 528

checkpoint_interval
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 537

clear() (openff.evaluator.utils.observables.ObservableFrame
method), 552

clear_gradients() (openff.evaluator.utils.observables.Observable
method), 549

clear_gradients() (openff.evaluator.utils.observables.ObservableArray
method), 550

clear_gradients() (openff.evaluator.utils.observables.ObservableFrame
method), 552

complex_coordinate_path
(openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
attribute), 435

complex_coordinate_path
(openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
attribute), 441

complex_electrostatic_lambdas
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 527

complex_file_path (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
attribute), 421

complex_file_path (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
attribute), 426

complex_steric_lambdas
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 527

Component (class in openff.evaluator.substances), 126
component (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

attribute), 388
Component.Role (class in openff.evaluator.substances),

126
component_roles (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

attribute), 393
components (openff.evaluator.substances.Substance at-

tribute), 123
components_only (openff.evaluator.storage.query.SubstanceQuery

attribute), 230
ComputeDipoleMoments (class in

openff.evaluator.protocols.analysis), 299
ComputeReferenceWork (class in

openff.evaluator.protocols.paprika.analysis),
464

ComputeResources (class in
openff.evaluator.backends), 199

ComputeResources.GPUToolkit (class in
openff.evaluator.backends), 200

ComputeSymmetryCorrection (class in
openff.evaluator.protocols.paprika.analysis),
459

ConcatenateObservables (class in
openff.evaluator.protocols.reweighting), 474

ConcatenateTrajectories (class in
openff.evaluator.protocols.reweighting), 469

ConditionalGroup (class in
openff.evaluator.protocols.groups), 362

ConditionalGroup.Condition (class in
openff.evaluator.protocols.groups), 363

ConditionalGroup.Condition.Type (class in
openff.evaluator.protocols.groups), 363

conditions (openff.evaluator.protocols.groups.ConditionalGroup
attribute), 363

confidence_intervals
(openff.evaluator.protocols.analysis.AverageFreeEnergies
attribute), 295

connection_options (openff.evaluator.client.Request
attribute), 82

ConnectionOptions (class in openff.evaluator.client),
80

ConvertExcessDensityData (class in
openff.evaluator.datasets.curation.components.conversion),
176

ConvertExcessDensityDataSchema (class in
openff.evaluator.datasets.curation.components.conversion),
175

coordinate_file_name
(openff.evaluator.storage.data.StoredSimulationData
attribute), 223

coordinate_file_path
(openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 320

coordinate_file_path
(openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 326

coordinate_file_path

580 Index

OpenFF Evaluator Documentation

(openff.evaluator.protocols.forcefield.BaseBuildSystem
attribute), 337

coordinate_file_path
(openff.evaluator.protocols.forcefield.BuildLigParGenSystem
attribute), 348

coordinate_file_path
(openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
attribute), 342

coordinate_file_path
(openff.evaluator.protocols.forcefield.BuildTLeapSystem
attribute), 353

coordinate_file_path
(openff.evaluator.protocols.storage.UnpackStoredSimulationData
attribute), 514

copy() (openff.evaluator.workflow.utils.ProtocolPath
method), 276

count() (openff.evaluator.storage.attributes.FilePath
method), 242

count_exact_amount (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 319

count_exact_amount (openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 326

CurationComponent (class in
openff.evaluator.datasets.curation.components),
148

CurationComponentSchema (class in
openff.evaluator.datasets.curation.components),
149

CurationWorkflow (class in
openff.evaluator.datasets.curation.workflow),
149

CurationWorkflowSchema (class in
openff.evaluator.datasets.curation.workflow),
150

current_iteration (openff.evaluator.protocols.groups.ConditionalGroup
attribute), 364

cutoff (openff.evaluator.forcefield.LigParGenForceFieldSource
property), 182

cutoff (openff.evaluator.forcefield.TLeapForceFieldSource
property), 180

D
DaskLocalCluster (class in

openff.evaluator.backends.dask), 205
DaskLSFBackend (class in

openff.evaluator.backends.dask), 206
DaskPBSBackend (class in

openff.evaluator.backends.dask), 208
data_class() (openff.evaluator.storage.query.BaseDataQuery

class method), 228
data_class() (openff.evaluator.storage.query.BaseSimulationDataQuery

class method), 234
data_to_store (openff.evaluator.layers.CalculationLayerResult

attribute), 186

data_to_store (openff.evaluator.workflow.WorkflowResult
attribute), 252

DecorrelateObservables (class in
openff.evaluator.protocols.analysis), 313

DecorrelateTrajectory (class in
openff.evaluator.protocols.analysis), 308

default_paprika_schema()
(openff.evaluator.properties.HostGuestBindingAffinity
class method), 120

default_request_options()
(openff.evaluator.client.EvaluatorClient static
method), 78

default_reweighting_schema()
(openff.evaluator.properties.Density static
method), 101

default_reweighting_schema()
(openff.evaluator.properties.DielectricConstant
static method), 107

default_reweighting_schema()
(openff.evaluator.properties.EnthalpyOfVaporization
class method), 113

default_reweighting_schema()
(openff.evaluator.properties.ExcessMolarVolume
class method), 103

default_simulation_schema()
(openff.evaluator.properties.Density static
method), 100

default_simulation_schema()
(openff.evaluator.properties.DielectricConstant
static method), 107

default_simulation_schema()
(openff.evaluator.properties.EnthalpyOfMixing
class method), 110

default_simulation_schema()
(openff.evaluator.properties.EnthalpyOfVaporization
static method), 113

default_simulation_schema()
(openff.evaluator.properties.ExcessMolarVolume
class method), 104

default_simulation_schema()
(openff.evaluator.properties.SolvationFreeEnergy
static method), 116

default_storage_query() (in module
openff.evaluator.layers.reweighting), 198

default_unit() (openff.evaluator.datasets.PhysicalProperty
class method), 93

default_yank_schema()
(openff.evaluator.properties.HostGuestBindingAffinity
static method), 119

Density (class in openff.evaluator.properties), 99
dependencies (openff.evaluator.protocols.analysis.AverageDielectricConstant

property), 291
dependencies (openff.evaluator.protocols.analysis.AverageFreeEnergies

property), 296

Index 581

OpenFF Evaluator Documentation

dependencies (openff.evaluator.protocols.analysis.AverageObservable
property), 285

dependencies (openff.evaluator.protocols.analysis.BaseAverageObservable
property), 280

dependencies (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
property), 305

dependencies (openff.evaluator.protocols.analysis.ComputeDipoleMoments
property), 301

dependencies (openff.evaluator.protocols.analysis.DecorrelateObservables
property), 315

dependencies (openff.evaluator.protocols.analysis.DecorrelateTrajectory
property), 310

dependencies (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
property), 321

dependencies (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
property), 333

dependencies (openff.evaluator.protocols.coordinates.SolvateExistingStructure
property), 327

dependencies (openff.evaluator.protocols.forcefield.BaseBuildSystem
property), 338

dependencies (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
property), 348

dependencies (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
property), 342

dependencies (openff.evaluator.protocols.forcefield.BuildTLeapSystem
property), 353

dependencies (openff.evaluator.protocols.gradients.ZeroGradients
property), 359

dependencies (openff.evaluator.protocols.groups.ConditionalGroup
property), 365

dependencies (openff.evaluator.protocols.miscellaneous.AddValues
property), 370

dependencies (openff.evaluator.protocols.miscellaneous.DivideValue
property), 384

dependencies (openff.evaluator.protocols.miscellaneous.DummyProtocol
property), 398

dependencies (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
property), 394

dependencies (openff.evaluator.protocols.miscellaneous.MultiplyValue
property), 379

dependencies (openff.evaluator.protocols.miscellaneous.SubtractValues
property), 375

dependencies (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
property), 389

dependencies (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
property), 403

dependencies (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
property), 415

dependencies (openff.evaluator.protocols.openmm.OpenMMSimulation
property), 409

dependencies (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
property), 457

dependencies (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
property), 466

dependencies (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
property), 461

dependencies (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
property), 431

dependencies (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
property), 421

dependencies (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
property), 426

dependencies (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
property), 451

dependencies (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
property), 436

dependencies (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
property), 441

dependencies (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
property), 446

dependencies (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
property), 481

dependencies (openff.evaluator.protocols.reweighting.BaseMBARProtocol
property), 487

dependencies (openff.evaluator.protocols.reweighting.ConcatenateObservables
property), 476

dependencies (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
property), 471

dependencies (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
property), 497

dependencies (openff.evaluator.protocols.reweighting.ReweightObservable
property), 491

dependencies (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
property), 503

dependencies (openff.evaluator.protocols.simulation.BaseSimulation
property), 510

dependencies (openff.evaluator.protocols.storage.UnpackStoredSimulationData
property), 516

dependencies (openff.evaluator.protocols.yank.BaseYankProtocol
property), 521

dependencies (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
property), 528

dependencies (openff.evaluator.protocols.yank.SolvationYankProtocol
property), 537

dependencies (openff.evaluator.workflow.Protocol
property), 255

dependencies (openff.evaluator.workflow.ProtocolGroup
property), 260

DielectricConstant (class in
openff.evaluator.properties), 106

dipole_moments (openff.evaluator.protocols.analysis.AverageDielectricConstant
attribute), 289

dipole_moments (openff.evaluator.protocols.analysis.ComputeDipoleMoments
attribute), 300

dipole_moments (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 496

DivideValue (class in
openff.evaluator.protocols.miscellaneous),

582 Index

OpenFF Evaluator Documentation

382
divisor (openff.evaluator.protocols.analysis.AverageObservable

attribute), 284
divisor (openff.evaluator.protocols.miscellaneous.DivideValue

attribute), 383
docked_complex_coordinate_path

(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 332

docked_ligand_coordinate_path
(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 331

doi (openff.evaluator.datasets.MeasurementSource at-
tribute), 98

download_url (openff.evaluator.forcefield.LigParGenForceFieldSource
property), 182

DummyProtocol (class in
openff.evaluator.protocols.miscellaneous),
396

E
effective_samples (openff.evaluator.protocols.reweighting.BaseMBARProtocol

attribute), 485
effective_samples (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

attribute), 497
effective_samples (openff.evaluator.protocols.reweighting.ReweightObservable

attribute), 491
electrostatic_lambdas_1

(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

electrostatic_lambdas_2
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

enable_data_caching (openff.evaluator.server.Batch
attribute), 91

enable_pbc (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
attribute), 403

enable_pbc (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
attribute), 415

enable_pbc (openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 409

enable_pbc (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
attribute), 480

enable_pbc (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
attribute), 502

enable_pbc (openff.evaluator.protocols.simulation.BaseSimulation
attribute), 509

encode() (openff.evaluator.storage.attributes.FilePath
method), 242

end_state_trajectory
(openff.evaluator.storage.data.StoredFreeEnergyData
attribute), 226

endswith() (openff.evaluator.storage.attributes.FilePath
method), 242

ensemble (openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 409

ensemble (openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

EnthalpyOfMixing (class in
openff.evaluator.properties), 109

EnthalpyOfVaporization (class in
openff.evaluator.properties), 112

estimated_properties
(openff.evaluator.client.RequestResult at-
tribute), 86

estimated_properties (openff.evaluator.server.Batch
attribute), 91

EvaluatorClient (class in openff.evaluator.client), 76
EvaluatorException, 87
EvaluatorServer (class in openff.evaluator.server), 88
ExactAmount (class in openff.evaluator.substances), 129
exceptions (openff.evaluator.client.RequestResult at-

tribute), 86
exceptions (openff.evaluator.layers.CalculationLayerResult

attribute), 186
exceptions (openff.evaluator.server.Batch attribute), 91
exceptions (openff.evaluator.workflow.WorkflowResult

attribute), 252
ExcessMolarVolume (class in

openff.evaluator.properties), 102
execute() (openff.evaluator.protocols.analysis.AverageDielectricConstant

method), 291
execute() (openff.evaluator.protocols.analysis.AverageFreeEnergies

method), 296
execute() (openff.evaluator.protocols.analysis.AverageObservable

method), 285
execute() (openff.evaluator.protocols.analysis.BaseAverageObservable

method), 280
execute() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol

method), 305
execute() (openff.evaluator.protocols.analysis.ComputeDipoleMoments

method), 301
execute() (openff.evaluator.protocols.analysis.DecorrelateObservables

method), 315
execute() (openff.evaluator.protocols.analysis.DecorrelateTrajectory

method), 310
execute() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

method), 321
execute() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates

method), 333
execute() (openff.evaluator.protocols.coordinates.SolvateExistingStructure

method), 327
execute() (openff.evaluator.protocols.forcefield.BaseBuildSystem

method), 338
execute() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem

method), 348
execute() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem

method), 342

Index 583

OpenFF Evaluator Documentation

execute() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 353

execute() (openff.evaluator.protocols.gradients.ZeroGradients
method), 359

execute() (openff.evaluator.protocols.groups.ConditionalGroup
method), 365

execute() (openff.evaluator.protocols.miscellaneous.AddValues
method), 370

execute() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 384

execute() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 399

execute() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 394

execute() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 379

execute() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 375

execute() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 389

execute() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 403

execute() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 415

execute() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 409

execute() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 457

execute() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 466

execute() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 461

execute() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 431

execute() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 421

execute() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 426

execute() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 451

execute() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 436

execute() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 441

execute() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 446

execute() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 481

execute() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 487

execute() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 476

execute() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 471

execute() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 497

execute() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 492

execute() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 503

execute() (openff.evaluator.protocols.simulation.BaseSimulation
method), 510

execute() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 516

execute() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 521

execute() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 528

execute() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 537

execute() (openff.evaluator.workflow.Protocol method),
257

execute() (openff.evaluator.workflow.ProtocolGraph
method), 259

execute() (openff.evaluator.workflow.ProtocolGroup
method), 262

execute() (openff.evaluator.workflow.Workflow
method), 249

execute() (openff.evaluator.workflow.WorkflowGraph
method), 251

expandtabs() (openff.evaluator.storage.attributes.FilePath
method), 242

expected_components
(openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
attribute), 393

F
fidelity (openff.evaluator.datasets.CalculationSource

attribute), 97
FilePath (class in openff.evaluator.storage.attributes),

240
FilterByCharged (class in

openff.evaluator.datasets.curation.components.filtering),
160

FilterByChargedSchema (class in
openff.evaluator.datasets.curation.components.filtering),
160

FilterByElements (class in
openff.evaluator.datasets.curation.components.filtering),
157

FilterByElementsSchema (class in
openff.evaluator.datasets.curation.components.filtering),
157

FilterByEnvironments (class in
openff.evaluator.datasets.curation.components.filtering),
167

FilterByEnvironmentsSchema (class in
openff.evaluator.datasets.curation.components.filtering),

584 Index

OpenFF Evaluator Documentation

167
FilterByIonicLiquid (class in

openff.evaluator.datasets.curation.components.filtering),
161

FilterByIonicLiquidSchema (class in
openff.evaluator.datasets.curation.components.filtering),
161

FilterByMoleFraction (class in
openff.evaluator.datasets.curation.components.filtering),
155

FilterByMoleFractionSchema (class in
openff.evaluator.datasets.curation.components.filtering),
155

FilterByNComponents (class in
openff.evaluator.datasets.curation.components.filtering),
165

FilterByNComponentsSchema (class in
openff.evaluator.datasets.curation.components.filtering),
164

FilterByPressure (class in
openff.evaluator.datasets.curation.components.filtering),
154

FilterByPressureSchema (class in
openff.evaluator.datasets.curation.components.filtering),
154

FilterByPropertyTypes (class in
openff.evaluator.datasets.curation.components.filtering),
158

FilterByPropertyTypesSchema (class in
openff.evaluator.datasets.curation.components.filtering),
158

FilterByRacemic (class in
openff.evaluator.datasets.curation.components.filtering),
156

FilterByRacemicSchema (class in
openff.evaluator.datasets.curation.components.filtering),
156

FilterBySmiles (class in
openff.evaluator.datasets.curation.components.filtering),
162

FilterBySmilesSchema (class in
openff.evaluator.datasets.curation.components.filtering),
162

FilterBySmirks (class in
openff.evaluator.datasets.curation.components.filtering),
163

FilterBySmirksSchema (class in
openff.evaluator.datasets.curation.components.filtering),
163

FilterByStereochemistry (class in
openff.evaluator.datasets.curation.components.filtering),
159

FilterByStereochemistrySchema (class in
openff.evaluator.datasets.curation.components.filtering),

159
FilterBySubstances (class in

openff.evaluator.datasets.curation.components.filtering),
166

FilterBySubstancesSchema (class in
openff.evaluator.datasets.curation.components.filtering),
165

FilterByTemperature (class in
openff.evaluator.datasets.curation.components.filtering),
153

FilterByTemperatureSchema (class in
openff.evaluator.datasets.curation.components.filtering),
153

FilterDuplicates (class in
openff.evaluator.datasets.curation.components.filtering),
152

FilterDuplicatesSchema (class in
openff.evaluator.datasets.curation.components.filtering),
152

filtered_substance (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
attribute), 393

FilterSubstanceByRole (class in
openff.evaluator.protocols.miscellaneous),
392

final_value_source (openff.evaluator.workflow.schemas.WorkflowSchema
attribute), 271

final_value_source (openff.evaluator.workflow.Workflow
property), 248

find() (openff.evaluator.storage.attributes.FilePath
method), 242

FingerPrintType (class in
openff.evaluator.datasets.curation.components.selection),
175

force_field_id (openff.evaluator.server.Batch at-
tribute), 90

force_field_id (openff.evaluator.storage.data.BaseSimulationData
attribute), 221

force_field_id (openff.evaluator.storage.data.StoredFreeEnergyData
attribute), 227

force_field_id (openff.evaluator.storage.data.StoredSimulationData
attribute), 224

force_field_id (openff.evaluator.storage.query.BaseSimulationDataQuery
attribute), 234

force_field_id (openff.evaluator.storage.query.FreeEnergyDataQuery
attribute), 238

force_field_id (openff.evaluator.storage.query.SimulationDataQuery
attribute), 236

force_field_path (openff.evaluator.protocols.forcefield.BaseBuildSystem
attribute), 337

force_field_path (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
attribute), 348

force_field_path (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
attribute), 343

force_field_path (openff.evaluator.protocols.forcefield.BuildTLeapSystem

Index 585

OpenFF Evaluator Documentation

attribute), 354
force_field_path (openff.evaluator.protocols.gradients.ZeroGradients

attribute), 358
force_field_path (openff.evaluator.protocols.storage.UnpackStoredSimulationData

attribute), 514
force_field_path (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

attribute), 526
force_field_source (openff.evaluator.storage.data.ForceFieldData

attribute), 217
force_field_source (openff.evaluator.storage.query.ForceFieldQuery

attribute), 231
ForceFieldData (class in

openff.evaluator.storage.data), 217
ForceFieldQuery (class in

openff.evaluator.storage.query), 231
ForceFieldSource (class in

openff.evaluator.forcefield), 177
format() (openff.evaluator.storage.attributes.FilePath

method), 242
format_map() (openff.evaluator.storage.attributes.FilePath

method), 242
frame_counts (openff.evaluator.protocols.reweighting.BaseMBARProtocol

attribute), 485
frame_counts (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

attribute), 498
frame_counts (openff.evaluator.protocols.reweighting.ReweightObservable

attribute), 492
free_energy_difference

(openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

free_energy_difference
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 528

free_energy_difference
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 536

free_energy_difference
(openff.evaluator.storage.data.StoredFreeEnergyData
attribute), 226

FreeEnergyDataQuery (class in
openff.evaluator.storage.query), 237

from_components() (openff.evaluator.substances.Substance
class method), 124

from_data_object() (openff.evaluator.storage.query.BaseDataQuery
class method), 229

from_data_object() (openff.evaluator.storage.query.BaseSimulationDataQuery
class method), 234

from_data_object() (openff.evaluator.storage.query.ForceFieldQuery
class method), 231

from_data_object() (openff.evaluator.storage.query.FreeEnergyDataQuery
class method), 238

from_data_object() (openff.evaluator.storage.query.SimulationDataQuery
class method), 236

from_doi() (openff.evaluator.datasets.thermoml.ThermoMLDataSet

class method), 139
from_exception() (openff.evaluator.utils.exceptions.EvaluatorException

class method), 87
from_exception() (openff.evaluator.workflow.WorkflowException

class method), 250
from_file() (openff.evaluator.datasets.thermoml.ThermoMLDataSet

class method), 139
from_json() (openff.evaluator.attributes.AttributeClass

class method), 547
from_json() (openff.evaluator.client.ConnectionOptions

class method), 81
from_json() (openff.evaluator.client.Request class

method), 83
from_json() (openff.evaluator.client.RequestOptions

class method), 85
from_json() (openff.evaluator.client.RequestResult

class method), 86
from_json() (openff.evaluator.datasets.CalculationSource

class method), 97
from_json() (openff.evaluator.datasets.MeasurementSource

class method), 98
from_json() (openff.evaluator.datasets.PhysicalProperty

class method), 94
from_json() (openff.evaluator.datasets.PhysicalPropertyDataSet

class method), 137
from_json() (openff.evaluator.datasets.Source class

method), 96
from_json() (openff.evaluator.datasets.taproom.TaproomDataSet

class method), 144
from_json() (openff.evaluator.datasets.taproom.TaproomSource

class method), 147
from_json() (openff.evaluator.datasets.thermoml.ThermoMLDataSet

class method), 139
from_json() (openff.evaluator.forcefield.ForceFieldSource

class method), 177
from_json() (openff.evaluator.forcefield.LigParGenForceFieldSource

class method), 182
from_json() (openff.evaluator.forcefield.SmirnoffForceFieldSource

class method), 179
from_json() (openff.evaluator.forcefield.TLeapForceFieldSource

class method), 180
from_json() (openff.evaluator.layers.CalculationLayerResult

class method), 186
from_json() (openff.evaluator.layers.CalculationLayerSchema

class method), 187
from_json() (openff.evaluator.layers.reweighting.ReweightingSchema

class method), 197
from_json() (openff.evaluator.layers.simulation.SimulationSchema

class method), 193
from_json() (openff.evaluator.layers.workflow.WorkflowCalculationSchema

class method), 191
from_json() (openff.evaluator.properties.Density class

method), 101
from_json() (openff.evaluator.properties.DielectricConstant

586 Index

OpenFF Evaluator Documentation

class method), 107
from_json() (openff.evaluator.properties.EnthalpyOfMixing

class method), 111
from_json() (openff.evaluator.properties.EnthalpyOfVaporization

class method), 114
from_json() (openff.evaluator.properties.ExcessMolarVolume

class method), 104
from_json() (openff.evaluator.properties.HostGuestBindingAffinity

class method), 120
from_json() (openff.evaluator.properties.SolvationFreeEnergy

class method), 117
from_json() (openff.evaluator.protocols.analysis.AverageDielectricConstant

class method), 291
from_json() (openff.evaluator.protocols.analysis.AverageFreeEnergies

class method), 296
from_json() (openff.evaluator.protocols.analysis.AverageObservable

class method), 285
from_json() (openff.evaluator.protocols.analysis.BaseAverageObservable

class method), 280
from_json() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol

class method), 306
from_json() (openff.evaluator.protocols.analysis.ComputeDipoleMoments

class method), 301
from_json() (openff.evaluator.protocols.analysis.DecorrelateObservables

class method), 315
from_json() (openff.evaluator.protocols.analysis.DecorrelateTrajectory

class method), 310
from_json() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

class method), 321
from_json() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates

class method), 333
from_json() (openff.evaluator.protocols.coordinates.SolvateExistingStructure

class method), 327
from_json() (openff.evaluator.protocols.forcefield.BaseBuildSystem

class method), 338
from_json() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem

class method), 348
from_json() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem

class method), 343
from_json() (openff.evaluator.protocols.forcefield.BuildTLeapSystem

class method), 354
from_json() (openff.evaluator.protocols.gradients.ZeroGradients

class method), 359
from_json() (openff.evaluator.protocols.groups.ConditionalGroup

class method), 365
from_json() (openff.evaluator.protocols.groups.ConditionalGroup.Condition

class method), 363
from_json() (openff.evaluator.protocols.miscellaneous.AddValues

class method), 370
from_json() (openff.evaluator.protocols.miscellaneous.DivideValue

class method), 384
from_json() (openff.evaluator.protocols.miscellaneous.DummyProtocol

class method), 399
from_json() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

class method), 394
from_json() (openff.evaluator.protocols.miscellaneous.MultiplyValue

class method), 380
from_json() (openff.evaluator.protocols.miscellaneous.SubtractValues

class method), 375
from_json() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

class method), 389
from_json() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

class method), 403
from_json() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies

class method), 415
from_json() (openff.evaluator.protocols.openmm.OpenMMSimulation

class method), 410
from_json() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

class method), 457
from_json() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

class method), 466
from_json() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

class method), 462
from_json() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

class method), 431
from_json() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

class method), 421
from_json() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

class method), 426
from_json() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

class method), 452
from_json() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints

class method), 436
from_json() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

class method), 441
from_json() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints

class method), 446
from_json() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

class method), 481
from_json() (openff.evaluator.protocols.reweighting.BaseMBARProtocol

class method), 487
from_json() (openff.evaluator.protocols.reweighting.ConcatenateObservables

class method), 476
from_json() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories

class method), 471
from_json() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

class method), 498
from_json() (openff.evaluator.protocols.reweighting.ReweightObservable

class method), 492
from_json() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

class method), 504
from_json() (openff.evaluator.protocols.simulation.BaseSimulation

class method), 510
from_json() (openff.evaluator.protocols.storage.UnpackStoredSimulationData

class method), 516
from_json() (openff.evaluator.protocols.yank.BaseYankProtocol

class method), 522
from_json() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

Index 587

OpenFF Evaluator Documentation

class method), 529
from_json() (openff.evaluator.protocols.yank.SolvationYankProtocol

class method), 537
from_json() (openff.evaluator.server.Batch class

method), 91
from_json() (openff.evaluator.storage.data.BaseSimulationData

class method), 221
from_json() (openff.evaluator.storage.data.BaseStoredData

class method), 215
from_json() (openff.evaluator.storage.data.ForceFieldData

class method), 217
from_json() (openff.evaluator.storage.data.HashableStoredData

class method), 216
from_json() (openff.evaluator.storage.data.ReplaceableData

class method), 219
from_json() (openff.evaluator.storage.data.StoredFreeEnergyData

class method), 227
from_json() (openff.evaluator.storage.data.StoredSimulationData

class method), 224
from_json() (openff.evaluator.storage.query.BaseDataQuery

class method), 229
from_json() (openff.evaluator.storage.query.BaseSimulationDataQuery

class method), 234
from_json() (openff.evaluator.storage.query.ForceFieldQuery

class method), 232
from_json() (openff.evaluator.storage.query.FreeEnergyDataQuery

class method), 238
from_json() (openff.evaluator.storage.query.SimulationDataQuery

class method), 236
from_json() (openff.evaluator.storage.query.SubstanceQuery

class method), 230
from_json() (openff.evaluator.substances.Amount class

method), 128
from_json() (openff.evaluator.substances.Component

class method), 127
from_json() (openff.evaluator.substances.ExactAmount

class method), 130
from_json() (openff.evaluator.substances.MoleFraction

class method), 132
from_json() (openff.evaluator.substances.Substance

class method), 125
from_json() (openff.evaluator.thermodynamics.ThermodynamicState

class method), 134
from_json() (openff.evaluator.utils.exceptions.EvaluatorException

class method), 87
from_json() (openff.evaluator.workflow.Protocol class

method), 257
from_json() (openff.evaluator.workflow.ProtocolGroup

class method), 262
from_json() (openff.evaluator.workflow.schemas.ProtocolGroupSchema

class method), 267
from_json() (openff.evaluator.workflow.schemas.ProtocolReplicator

class method), 269
from_json() (openff.evaluator.workflow.schemas.ProtocolSchema

class method), 265
from_json() (openff.evaluator.workflow.schemas.WorkflowSchema

class method), 271
from_json() (openff.evaluator.workflow.WorkflowException

class method), 250
from_json() (openff.evaluator.workflow.WorkflowResult

class method), 253
from_object() (openff.evaluator.forcefield.SmirnoffForceFieldSource

class method), 178
from_openmm() (openff.evaluator.utils.observables.ObservableFrame

class method), 552
from_pandas() (openff.evaluator.datasets.PhysicalPropertyDataSet

class method), 137
from_pandas() (openff.evaluator.datasets.taproom.TaproomDataSet

class method), 144
from_pandas() (openff.evaluator.datasets.thermoml.ThermoMLDataSet

class method), 139
from_path() (openff.evaluator.forcefield.SmirnoffForceFieldSource

class method), 178
from_schema() (openff.evaluator.protocols.analysis.AverageDielectricConstant

class method), 291
from_schema() (openff.evaluator.protocols.analysis.AverageFreeEnergies

class method), 296
from_schema() (openff.evaluator.protocols.analysis.AverageObservable

class method), 285
from_schema() (openff.evaluator.protocols.analysis.BaseAverageObservable

class method), 280
from_schema() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol

class method), 306
from_schema() (openff.evaluator.protocols.analysis.ComputeDipoleMoments

class method), 301
from_schema() (openff.evaluator.protocols.analysis.DecorrelateObservables

class method), 315
from_schema() (openff.evaluator.protocols.analysis.DecorrelateTrajectory

class method), 310
from_schema() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

class method), 322
from_schema() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates

class method), 333
from_schema() (openff.evaluator.protocols.coordinates.SolvateExistingStructure

class method), 327
from_schema() (openff.evaluator.protocols.forcefield.BaseBuildSystem

class method), 338
from_schema() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem

class method), 348
from_schema() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem

class method), 343
from_schema() (openff.evaluator.protocols.forcefield.BuildTLeapSystem

class method), 354
from_schema() (openff.evaluator.protocols.gradients.ZeroGradients

class method), 359
from_schema() (openff.evaluator.protocols.groups.ConditionalGroup

class method), 366
from_schema() (openff.evaluator.protocols.miscellaneous.AddValues

588 Index

OpenFF Evaluator Documentation

class method), 370
from_schema() (openff.evaluator.protocols.miscellaneous.DivideValue

class method), 384
from_schema() (openff.evaluator.protocols.miscellaneous.DummyProtocol

class method), 399
from_schema() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

class method), 394
from_schema() (openff.evaluator.protocols.miscellaneous.MultiplyValue

class method), 380
from_schema() (openff.evaluator.protocols.miscellaneous.SubtractValues

class method), 375
from_schema() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

class method), 389
from_schema() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

class method), 404
from_schema() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies

class method), 416
from_schema() (openff.evaluator.protocols.openmm.OpenMMSimulation

class method), 410
from_schema() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

class method), 457
from_schema() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

class method), 466
from_schema() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

class method), 462
from_schema() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

class method), 432
from_schema() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

class method), 421
from_schema() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

class method), 426
from_schema() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

class method), 452
from_schema() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints

class method), 436
from_schema() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

class method), 441
from_schema() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints

class method), 446
from_schema() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

class method), 481
from_schema() (openff.evaluator.protocols.reweighting.BaseMBARProtocol

class method), 487
from_schema() (openff.evaluator.protocols.reweighting.ConcatenateObservables

class method), 476
from_schema() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories

class method), 472
from_schema() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

class method), 498
from_schema() (openff.evaluator.protocols.reweighting.ReweightObservable

class method), 492
from_schema() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

class method), 504
from_schema() (openff.evaluator.protocols.simulation.BaseSimulation

class method), 510
from_schema() (openff.evaluator.protocols.storage.UnpackStoredSimulationData

class method), 516
from_schema() (openff.evaluator.protocols.yank.BaseYankProtocol

class method), 522
from_schema() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

class method), 529
from_schema() (openff.evaluator.protocols.yank.SolvationYankProtocol

class method), 537
from_schema() (openff.evaluator.workflow.Protocol

class method), 255
from_schema() (openff.evaluator.workflow.ProtocolGroup

class method), 262
from_schema() (openff.evaluator.workflow.Workflow

class method), 249
from_string() (openff.evaluator.datasets.PropertyPhase

class method), 95
from_url() (openff.evaluator.datasets.thermoml.ThermoMLDataSet

class method), 139
from_xml() (openff.evaluator.datasets.thermoml.ThermoMLDataSet

class method), 140
full_path (openff.evaluator.workflow.utils.ProtocolPath

property), 276
full_substance (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

attribute), 388

G
generate_base_reweighting_protocols() (in mod-

ule openff.evaluator.protocols.utils), 544
generate_default_metadata()

(openff.evaluator.workflow.Workflow static
method), 248

generate_reweighting_protocols() (in module
openff.evaluator.protocols.utils), 544

generate_simulation_protocols() (in module
openff.evaluator.protocols.utils), 545

GenerateAttachRestraints (class in
openff.evaluator.protocols.paprika.restraints),
434

GeneratePullRestraints (class in
openff.evaluator.protocols.paprika.restraints),
439

GenerateReleaseRestraints (class in
openff.evaluator.protocols.paprika.restraints),
444

get() (openff.evaluator.utils.observables.ObservableFrame
method), 552

get_amounts() (openff.evaluator.substances.Substance
method), 124

get_attributes() (openff.evaluator.attributes.AttributeClass
class method), 547

get_attributes() (openff.evaluator.client.ConnectionOptions
class method), 81

Index 589

OpenFF Evaluator Documentation

get_attributes() (openff.evaluator.client.Request
class method), 83

get_attributes() (openff.evaluator.client.RequestOptions
class method), 85

get_attributes() (openff.evaluator.client.RequestResult
class method), 87

get_attributes() (openff.evaluator.datasets.PhysicalProperty
class method), 94

get_attributes() (openff.evaluator.layers.CalculationLayerResult
class method), 186

get_attributes() (openff.evaluator.layers.CalculationLayerSchema
class method), 188

get_attributes() (openff.evaluator.layers.reweighting.ReweightingSchema
class method), 197

get_attributes() (openff.evaluator.layers.simulation.SimulationSchema
class method), 193

get_attributes() (openff.evaluator.layers.workflow.WorkflowCalculationSchema
class method), 191

get_attributes() (openff.evaluator.properties.Density
class method), 101

get_attributes() (openff.evaluator.properties.DielectricConstant
class method), 108

get_attributes() (openff.evaluator.properties.EnthalpyOfMixing
class method), 111

get_attributes() (openff.evaluator.properties.EnthalpyOfVaporization
class method), 114

get_attributes() (openff.evaluator.properties.ExcessMolarVolume
class method), 104

get_attributes() (openff.evaluator.properties.HostGuestBindingAffinity
class method), 121

get_attributes() (openff.evaluator.properties.SolvationFreeEnergy
class method), 117

get_attributes() (openff.evaluator.protocols.analysis.AverageDielectricConstant
class method), 291

get_attributes() (openff.evaluator.protocols.analysis.AverageFreeEnergies
class method), 297

get_attributes() (openff.evaluator.protocols.analysis.AverageObservable
class method), 286

get_attributes() (openff.evaluator.protocols.analysis.BaseAverageObservable
class method), 281

get_attributes() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
class method), 306

get_attributes() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
class method), 301

get_attributes() (openff.evaluator.protocols.analysis.DecorrelateObservables
class method), 315

get_attributes() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
class method), 311

get_attributes() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
class method), 322

get_attributes() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
class method), 333

get_attributes() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
class method), 327

get_attributes() (openff.evaluator.protocols.forcefield.BaseBuildSystem
class method), 338

get_attributes() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
class method), 349

get_attributes() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
class method), 343

get_attributes() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
class method), 354

get_attributes() (openff.evaluator.protocols.gradients.ZeroGradients
class method), 359

get_attributes() (openff.evaluator.protocols.groups.ConditionalGroup
class method), 366

get_attributes() (openff.evaluator.protocols.groups.ConditionalGroup.Condition
class method), 363

get_attributes() (openff.evaluator.protocols.miscellaneous.AddValues
class method), 370

get_attributes() (openff.evaluator.protocols.miscellaneous.DivideValue
class method), 385

get_attributes() (openff.evaluator.protocols.miscellaneous.DummyProtocol
class method), 399

get_attributes() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
class method), 394

get_attributes() (openff.evaluator.protocols.miscellaneous.MultiplyValue
class method), 380

get_attributes() (openff.evaluator.protocols.miscellaneous.SubtractValues
class method), 375

get_attributes() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
class method), 389

get_attributes() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
class method), 404

get_attributes() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
class method), 416

get_attributes() (openff.evaluator.protocols.openmm.OpenMMSimulation
class method), 410

get_attributes() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
class method), 457

get_attributes() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
class method), 467

get_attributes() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
class method), 462

get_attributes() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
class method), 432

get_attributes() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
class method), 422

get_attributes() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
class method), 426

get_attributes() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
class method), 452

get_attributes() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
class method), 437

get_attributes() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
class method), 442

get_attributes() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
class method), 446

590 Index

OpenFF Evaluator Documentation

get_attributes() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
class method), 482

get_attributes() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
class method), 487

get_attributes() (openff.evaluator.protocols.reweighting.ConcatenateObservables
class method), 476

get_attributes() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
class method), 472

get_attributes() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
class method), 498

get_attributes() (openff.evaluator.protocols.reweighting.ReweightObservable
class method), 492

get_attributes() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
class method), 504

get_attributes() (openff.evaluator.protocols.simulation.BaseSimulation
class method), 511

get_attributes() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
class method), 516

get_attributes() (openff.evaluator.protocols.yank.BaseYankProtocol
class method), 522

get_attributes() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
class method), 529

get_attributes() (openff.evaluator.protocols.yank.SolvationYankProtocol
class method), 537

get_attributes() (openff.evaluator.server.Batch class
method), 91

get_attributes() (openff.evaluator.storage.data.BaseSimulationData
class method), 221

get_attributes() (openff.evaluator.storage.data.BaseStoredData
class method), 215

get_attributes() (openff.evaluator.storage.data.ForceFieldData
class method), 218

get_attributes() (openff.evaluator.storage.data.HashableStoredData
class method), 216

get_attributes() (openff.evaluator.storage.data.ReplaceableData
class method), 219

get_attributes() (openff.evaluator.storage.data.StoredFreeEnergyData
class method), 227

get_attributes() (openff.evaluator.storage.data.StoredSimulationData
class method), 224

get_attributes() (openff.evaluator.storage.query.BaseDataQuery
class method), 229

get_attributes() (openff.evaluator.storage.query.BaseSimulationDataQuery
class method), 234

get_attributes() (openff.evaluator.storage.query.ForceFieldQuery
class method), 232

get_attributes() (openff.evaluator.storage.query.FreeEnergyDataQuery
class method), 238

get_attributes() (openff.evaluator.storage.query.SimulationDataQuery
class method), 236

get_attributes() (openff.evaluator.storage.query.SubstanceQuery
class method), 230

get_attributes() (openff.evaluator.substances.Amount
class method), 128

get_attributes() (openff.evaluator.substances.Component
class method), 127

get_attributes() (openff.evaluator.substances.ExactAmount
class method), 130

get_attributes() (openff.evaluator.substances.MoleFraction
class method), 132

get_attributes() (openff.evaluator.substances.Substance
class method), 125

get_attributes() (openff.evaluator.thermodynamics.ThermodynamicState
class method), 134

get_attributes() (openff.evaluator.workflow.Protocol
class method), 257

get_attributes() (openff.evaluator.workflow.ProtocolGroup
class method), 262

get_attributes() (openff.evaluator.workflow.schemas.ProtocolGroupSchema
class method), 267

get_attributes() (openff.evaluator.workflow.schemas.ProtocolSchema
class method), 265

get_attributes() (openff.evaluator.workflow.schemas.WorkflowSchema
class method), 271

get_attributes() (openff.evaluator.workflow.WorkflowResult
class method), 253

get_class_attribute()
(openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 291

get_class_attribute()
(openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 297

get_class_attribute()
(openff.evaluator.protocols.analysis.AverageObservable
method), 286

get_class_attribute()
(openff.evaluator.protocols.analysis.BaseAverageObservable
method), 281

get_class_attribute()
(openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 306

get_class_attribute()
(openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 302

get_class_attribute()
(openff.evaluator.protocols.analysis.DecorrelateObservables
method), 316

get_class_attribute()
(openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 311

get_class_attribute()
(openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 322

get_class_attribute()
(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 333

get_class_attribute()
(openff.evaluator.protocols.coordinates.SolvateExistingStructure

Index 591

OpenFF Evaluator Documentation

method), 327
get_class_attribute()

(openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 339

get_class_attribute()
(openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 349

get_class_attribute()
(openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 343

get_class_attribute()
(openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 354

get_class_attribute()
(openff.evaluator.protocols.gradients.ZeroGradients
method), 360

get_class_attribute()
(openff.evaluator.protocols.groups.ConditionalGroup
method), 366

get_class_attribute()
(openff.evaluator.protocols.miscellaneous.AddValues
method), 371

get_class_attribute()
(openff.evaluator.protocols.miscellaneous.DivideValue
method), 385

get_class_attribute()
(openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 399

get_class_attribute()
(openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 395

get_class_attribute()
(openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 380

get_class_attribute()
(openff.evaluator.protocols.miscellaneous.SubtractValues
method), 375

get_class_attribute()
(openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 390

get_class_attribute()
(openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 404

get_class_attribute()
(openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 416

get_class_attribute()
(openff.evaluator.protocols.openmm.OpenMMSimulation
method), 410

get_class_attribute()
(openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 457

get_class_attribute()
(openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

method), 467
get_class_attribute()

(openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 462

get_class_attribute()
(openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 432

get_class_attribute()
(openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 422

get_class_attribute()
(openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 427

get_class_attribute()
(openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 452

get_class_attribute()
(openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 437

get_class_attribute()
(openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 442

get_class_attribute()
(openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 447

get_class_attribute()
(openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 482

get_class_attribute()
(openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 487

get_class_attribute()
(openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 477

get_class_attribute()
(openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 472

get_class_attribute()
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 498

get_class_attribute()
(openff.evaluator.protocols.reweighting.ReweightObservable
method), 492

get_class_attribute()
(openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 504

get_class_attribute()
(openff.evaluator.protocols.simulation.BaseSimulation
method), 511

get_class_attribute()
(openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 516

get_class_attribute()
(openff.evaluator.protocols.yank.BaseYankProtocol

592 Index

OpenFF Evaluator Documentation

method), 522
get_class_attribute()

(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 529

get_class_attribute()
(openff.evaluator.protocols.yank.SolvationYankProtocol
method), 537

get_class_attribute()
(openff.evaluator.workflow.Protocol method),
256

get_class_attribute()
(openff.evaluator.workflow.ProtocolGroup
method), 262

get_molecules_per_component()
(openff.evaluator.substances.Substance
method), 124

get_value() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 291

get_value() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 297

get_value() (openff.evaluator.protocols.analysis.AverageObservable
method), 286

get_value() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 281

get_value() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 306

get_value() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 302

get_value() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 316

get_value() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 311

get_value() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 322

get_value() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 333

get_value() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 327

get_value() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 339

get_value() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 349

get_value() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 343

get_value() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 354

get_value() (openff.evaluator.protocols.gradients.ZeroGradients
method), 360

get_value() (openff.evaluator.protocols.groups.ConditionalGroup
method), 366

get_value() (openff.evaluator.protocols.miscellaneous.AddValues
method), 371

get_value() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 385

get_value() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 399

get_value() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 395

get_value() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 380

get_value() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 375

get_value() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 390

get_value() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 404

get_value() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 416

get_value() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 410

get_value() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 457

get_value() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 467

get_value() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 462

get_value() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 432

get_value() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 422

get_value() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 427

get_value() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 452

get_value() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 437

get_value() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 442

get_value() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 447

get_value() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 482

get_value() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 487

get_value() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 477

get_value() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 472

get_value() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 498

get_value() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 492

get_value() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 504

get_value() (openff.evaluator.protocols.simulation.BaseSimulation
method), 511

get_value() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 516

Index 593

OpenFF Evaluator Documentation

get_value() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 522

get_value() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 529

get_value() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 538

get_value() (openff.evaluator.workflow.Protocol
method), 256

get_value() (openff.evaluator.workflow.ProtocolGroup
method), 262

get_value_references()
(openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 291

get_value_references()
(openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 297

get_value_references()
(openff.evaluator.protocols.analysis.AverageObservable
method), 286

get_value_references()
(openff.evaluator.protocols.analysis.BaseAverageObservable
method), 281

get_value_references()
(openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 306

get_value_references()
(openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 302

get_value_references()
(openff.evaluator.protocols.analysis.DecorrelateObservables
method), 316

get_value_references()
(openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 311

get_value_references()
(openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 322

get_value_references()
(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 334

get_value_references()
(openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 327

get_value_references()
(openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 339

get_value_references()
(openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 349

get_value_references()
(openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 343

get_value_references()
(openff.evaluator.protocols.forcefield.BuildTLeapSystem

method), 354
get_value_references()

(openff.evaluator.protocols.gradients.ZeroGradients
method), 360

get_value_references()
(openff.evaluator.protocols.groups.ConditionalGroup
method), 364

get_value_references()
(openff.evaluator.protocols.miscellaneous.AddValues
method), 371

get_value_references()
(openff.evaluator.protocols.miscellaneous.DivideValue
method), 385

get_value_references()
(openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 399

get_value_references()
(openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 395

get_value_references()
(openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 380

get_value_references()
(openff.evaluator.protocols.miscellaneous.SubtractValues
method), 376

get_value_references()
(openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 390

get_value_references()
(openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 404

get_value_references()
(openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 416

get_value_references()
(openff.evaluator.protocols.openmm.OpenMMSimulation
method), 410

get_value_references()
(openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 457

get_value_references()
(openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 467

get_value_references()
(openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 462

get_value_references()
(openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 432

get_value_references()
(openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 422

get_value_references()
(openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

594 Index

OpenFF Evaluator Documentation

method), 427
get_value_references()

(openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 452

get_value_references()
(openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 437

get_value_references()
(openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 442

get_value_references()
(openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 447

get_value_references()
(openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 482

get_value_references()
(openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 487

get_value_references()
(openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 477

get_value_references()
(openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 472

get_value_references()
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 498

get_value_references()
(openff.evaluator.protocols.reweighting.ReweightObservable
method), 493

get_value_references()
(openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 504

get_value_references()
(openff.evaluator.protocols.simulation.BaseSimulation
method), 511

get_value_references()
(openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 516

get_value_references()
(openff.evaluator.protocols.yank.BaseYankProtocol
method), 522

get_value_references()
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 529

get_value_references()
(openff.evaluator.protocols.yank.SolvationYankProtocol
method), 538

get_value_references()
(openff.evaluator.workflow.Protocol method),
256

get_value_references()
(openff.evaluator.workflow.ProtocolGroup

method), 261
gpu_device_indices (openff.evaluator.backends.ComputeResources

property), 200
gpu_device_indices (openff.evaluator.backends.QueueWorkerResources

property), 201
gradient_parameters

(openff.evaluator.protocols.analysis.ComputeDipoleMoments
attribute), 300

gradient_parameters
(openff.evaluator.protocols.gradients.ZeroGradients
attribute), 358

gradient_parameters
(openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
attribute), 416

gradient_parameters
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 410

gradient_parameters
(openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
attribute), 480

gradient_parameters
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 509

gradient_parameters
(openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

gradient_parameters
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 530

gradient_parameters
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 538

gradients (openff.evaluator.datasets.PhysicalProperty
attribute), 94

gradients (openff.evaluator.properties.Density at-
tribute), 101

gradients (openff.evaluator.properties.DielectricConstant
attribute), 108

gradients (openff.evaluator.properties.EnthalpyOfMixing
attribute), 111

gradients (openff.evaluator.properties.EnthalpyOfVaporization
attribute), 114

gradients (openff.evaluator.properties.ExcessMolarVolume
attribute), 104

gradients (openff.evaluator.properties.HostGuestBindingAffinity
attribute), 121

gradients (openff.evaluator.properties.SolvationFreeEnergy
attribute), 117

gradients (openff.evaluator.workflow.WorkflowResult
attribute), 252

guest_orientation_mask
(openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
attribute), 420

Index 595

OpenFF Evaluator Documentation

H
has_ancillary_data()

(openff.evaluator.storage.data.BaseStoredData
class method), 214

has_ancillary_data()
(openff.evaluator.storage.data.HashableStoredData
class method), 216

has_ancillary_data()
(openff.evaluator.storage.data.ReplaceableData
class method), 219

has_force_field() (openff.evaluator.storage.LocalFileStorage
method), 212

has_force_field() (openff.evaluator.storage.StorageBackend
method), 211

has_object() (openff.evaluator.storage.LocalFileStorage
method), 212

has_object() (openff.evaluator.storage.StorageBackend
method), 211

HashableStoredData (class in
openff.evaluator.storage.data), 215

high_precision (openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 411

high_precision (openff.evaluator.protocols.simulation.BaseSimulation
attribute), 509

host_coordinate_path
(openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
attribute), 445

HostGuestBindingAffinity (class in
openff.evaluator.properties), 118

I
id (openff.evaluator.client.Request attribute), 82
id (openff.evaluator.datasets.PhysicalProperty attribute),

93
id (openff.evaluator.properties.Density attribute), 101
id (openff.evaluator.properties.DielectricConstant

attribute), 108
id (openff.evaluator.properties.EnthalpyOfMixing

attribute), 111
id (openff.evaluator.properties.EnthalpyOfVaporization

attribute), 114
id (openff.evaluator.properties.ExcessMolarVolume at-

tribute), 105
id (openff.evaluator.properties.HostGuestBindingAffinity

attribute), 121
id (openff.evaluator.properties.SolvationFreeEnergy at-

tribute), 117
id (openff.evaluator.protocols.analysis.AverageDielectricConstant

attribute), 292
id (openff.evaluator.protocols.analysis.AverageFreeEnergies

attribute), 297
id (openff.evaluator.protocols.analysis.AverageObservable

attribute), 286

id (openff.evaluator.protocols.analysis.BaseAverageObservable
attribute), 281

id (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
attribute), 307

id (openff.evaluator.protocols.analysis.ComputeDipoleMoments
attribute), 302

id (openff.evaluator.protocols.analysis.DecorrelateObservables
attribute), 316

id (openff.evaluator.protocols.analysis.DecorrelateTrajectory
attribute), 311

id (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 322

id (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 334

id (openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 328

id (openff.evaluator.protocols.forcefield.BaseBuildSystem
attribute), 339

id (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
attribute), 349

id (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
attribute), 344

id (openff.evaluator.protocols.forcefield.BuildTLeapSystem
attribute), 355

id (openff.evaluator.protocols.gradients.ZeroGradients
attribute), 360

id (openff.evaluator.protocols.groups.ConditionalGroup
attribute), 366

id (openff.evaluator.protocols.miscellaneous.AddValues
attribute), 371

id (openff.evaluator.protocols.miscellaneous.DivideValue
attribute), 385

id (openff.evaluator.protocols.miscellaneous.DummyProtocol
attribute), 400

id (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
attribute), 395

id (openff.evaluator.protocols.miscellaneous.MultiplyValue
attribute), 381

id (openff.evaluator.protocols.miscellaneous.SubtractValues
attribute), 376

id (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
attribute), 390

id (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
attribute), 404

id (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
attribute), 416

id (openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 411

id (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
attribute), 458

id (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
attribute), 467

id (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
attribute), 463

596 Index

OpenFF Evaluator Documentation

id (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
attribute), 432

id (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
attribute), 422

id (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
attribute), 427

id (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
attribute), 453

id (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
attribute), 437

id (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
attribute), 442

id (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
attribute), 447

id (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
attribute), 482

id (openff.evaluator.protocols.reweighting.BaseMBARProtocol
attribute), 488

id (openff.evaluator.protocols.reweighting.ConcatenateObservables
attribute), 477

id (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
attribute), 472

id (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 499

id (openff.evaluator.protocols.reweighting.ReweightObservable
attribute), 493

id (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
attribute), 505

id (openff.evaluator.protocols.simulation.BaseSimulation
attribute), 511

id (openff.evaluator.protocols.storage.UnpackStoredSimulationData
attribute), 517

id (openff.evaluator.protocols.yank.BaseYankProtocol at-
tribute), 523

id (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 530

id (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 538

id (openff.evaluator.server.Batch attribute), 90
id (openff.evaluator.workflow.Protocol attribute), 255
id (openff.evaluator.workflow.ProtocolGroup attribute),

263
id (openff.evaluator.workflow.schemas.ProtocolGroupSchema

attribute), 267
id (openff.evaluator.workflow.schemas.ProtocolSchema

attribute), 265
identifier (openff.evaluator.substances.Amount prop-

erty), 128
identifier (openff.evaluator.substances.Component

property), 127
identifier (openff.evaluator.substances.ExactAmount

property), 130
identifier (openff.evaluator.substances.MoleFraction

property), 131

identifier (openff.evaluator.substances.Substance
property), 124

ImportFreeSolv (class in
openff.evaluator.datasets.curation.components.freesolv),
169

ImportFreeSolvSchema (class in
openff.evaluator.datasets.curation.components.freesolv),
168

ImportThermoMLData (class in
openff.evaluator.datasets.curation.components.thermoml),
170

ImportThermoMLDataSchema (class in
openff.evaluator.datasets.curation.components.thermoml),
169

index() (openff.evaluator.storage.attributes.FilePath
method), 242

InequalityMergeBehaviour (class in
openff.evaluator.workflow.attributes), 273

input_coordinate_file
(openff.evaluator.protocols.analysis.DecorrelateTrajectory
attribute), 309

input_coordinate_file
(openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
attribute), 404

input_coordinate_file
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 411

input_coordinate_file
(openff.evaluator.protocols.simulation.BaseEnergyMinimisation
attribute), 502

input_coordinate_file
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

input_coordinate_path
(openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
attribute), 430

input_coordinate_paths
(openff.evaluator.protocols.reweighting.ConcatenateTrajectories
attribute), 470

input_observables (openff.evaluator.protocols.analysis.DecorrelateObservables
attribute), 314

input_observables (openff.evaluator.protocols.gradients.ZeroGradients
attribute), 358

input_observables (openff.evaluator.protocols.reweighting.ConcatenateObservables
attribute), 475

input_substance (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
attribute), 393

input_system (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
attribute), 430

input_system (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
attribute), 450

input_trajectory_path
(openff.evaluator.protocols.analysis.DecorrelateTrajectory
attribute), 309

Index 597

OpenFF Evaluator Documentation

input_trajectory_paths
(openff.evaluator.protocols.reweighting.ConcatenateTrajectories
attribute), 470

input_value (openff.evaluator.protocols.miscellaneous.DummyProtocol
attribute), 397

InputAttribute (class in
openff.evaluator.workflow.attributes), 273

inputs (openff.evaluator.workflow.schemas.ProtocolGroupSchema
attribute), 267

inputs (openff.evaluator.workflow.schemas.ProtocolSchema
attribute), 265

inverse_beta (openff.evaluator.thermodynamics.ThermodynamicState
property), 133

isalnum() (openff.evaluator.storage.attributes.FilePath
method), 242

isalpha() (openff.evaluator.storage.attributes.FilePath
method), 242

isascii() (openff.evaluator.storage.attributes.FilePath
method), 242

isdecimal() (openff.evaluator.storage.attributes.FilePath
method), 242

isdigit() (openff.evaluator.storage.attributes.FilePath
method), 243

isidentifier() (openff.evaluator.storage.attributes.FilePath
method), 243

islower() (openff.evaluator.storage.attributes.FilePath
method), 243

isnumeric() (openff.evaluator.storage.attributes.FilePath
method), 243

isprintable() (openff.evaluator.storage.attributes.FilePath
method), 243

isspace() (openff.evaluator.storage.attributes.FilePath
method), 243

istitle() (openff.evaluator.storage.attributes.FilePath
method), 243

isupper() (openff.evaluator.storage.attributes.FilePath
method), 243

items() (openff.evaluator.utils.observables.ObservableFrame
method), 552

J
job_script() (openff.evaluator.backends.dask.BaseDaskJobQueueBackend

method), 204
job_script() (openff.evaluator.backends.dask.DaskLSFBackend

method), 207
job_script() (openff.evaluator.backends.dask.DaskPBSBackend

method), 209
join() (openff.evaluator.storage.attributes.FilePath

method), 243
join() (openff.evaluator.utils.observables.ObservableArray

class method), 550
join() (openff.evaluator.utils.observables.ObservableFrame

class method), 552

json() (openff.evaluator.attributes.AttributeClass
method), 547

json() (openff.evaluator.client.ConnectionOptions
method), 81

json() (openff.evaluator.client.Request method), 83
json() (openff.evaluator.client.RequestOptions method),

85
json() (openff.evaluator.client.RequestResult method),

87
json() (openff.evaluator.datasets.CalculationSource

method), 97
json() (openff.evaluator.datasets.MeasurementSource

method), 98
json() (openff.evaluator.datasets.PhysicalProperty

method), 94
json() (openff.evaluator.datasets.PhysicalPropertyDataSet

method), 137
json() (openff.evaluator.datasets.Source method), 96
json() (openff.evaluator.datasets.taproom.TaproomDataSet

method), 145
json() (openff.evaluator.datasets.taproom.TaproomSource

method), 147
json() (openff.evaluator.datasets.thermoml.ThermoMLDataSet

method), 140
json() (openff.evaluator.forcefield.ForceFieldSource

method), 177
json() (openff.evaluator.forcefield.LigParGenForceFieldSource

method), 182
json() (openff.evaluator.forcefield.SmirnoffForceFieldSource

method), 179
json() (openff.evaluator.forcefield.TLeapForceFieldSource

method), 180
json() (openff.evaluator.layers.CalculationLayerResult

method), 186
json() (openff.evaluator.layers.CalculationLayerSchema

method), 188
json() (openff.evaluator.layers.reweighting.ReweightingSchema

method), 197
json() (openff.evaluator.layers.simulation.SimulationSchema

method), 193
json() (openff.evaluator.layers.workflow.WorkflowCalculationSchema

method), 191
json() (openff.evaluator.properties.Density method),

101
json() (openff.evaluator.properties.DielectricConstant

method), 108
json() (openff.evaluator.properties.EnthalpyOfMixing

method), 111
json() (openff.evaluator.properties.EnthalpyOfVaporization

method), 114
json() (openff.evaluator.properties.ExcessMolarVolume

method), 105
json() (openff.evaluator.properties.HostGuestBindingAffinity

method), 121

598 Index

OpenFF Evaluator Documentation

json() (openff.evaluator.properties.SolvationFreeEnergy
method), 117

json() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 292

json() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 297

json() (openff.evaluator.protocols.analysis.AverageObservable
method), 286

json() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 281

json() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 307

json() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 302

json() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 316

json() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 311

json() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 322

json() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 334

json() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 328

json() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 339

json() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 349

json() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 344

json() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 355

json() (openff.evaluator.protocols.gradients.ZeroGradients
method), 360

json() (openff.evaluator.protocols.groups.ConditionalGroup
method), 366

json() (openff.evaluator.protocols.groups.ConditionalGroup.Condition
method), 363

json() (openff.evaluator.protocols.miscellaneous.AddValues
method), 371

json() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 385

json() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 400

json() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 395

json() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 381

json() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 376

json() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 390

json() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 405

json() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 416

json() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 411

json() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 458

json() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 467

json() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 463

json() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 432

json() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 422

json() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 427

json() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 453

json() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 437

json() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 442

json() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 447

json() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 482

json() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 488

json() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 477

json() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 472

json() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 499

json() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 493

json() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 505

json() (openff.evaluator.protocols.simulation.BaseSimulation
method), 511

json() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 517

json() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 523

json() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 530

json() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 538

json() (openff.evaluator.server.Batch method), 92
json() (openff.evaluator.storage.data.BaseSimulationData

method), 221
json() (openff.evaluator.storage.data.BaseStoredData

method), 215
json() (openff.evaluator.storage.data.ForceFieldData

Index 599

OpenFF Evaluator Documentation

method), 218
json() (openff.evaluator.storage.data.HashableStoredData

method), 216
json() (openff.evaluator.storage.data.ReplaceableData

method), 219
json() (openff.evaluator.storage.data.StoredFreeEnergyData

method), 227
json() (openff.evaluator.storage.data.StoredSimulationData

method), 224
json() (openff.evaluator.storage.query.BaseDataQuery

method), 229
json() (openff.evaluator.storage.query.BaseSimulationDataQuery

method), 234
json() (openff.evaluator.storage.query.ForceFieldQuery

method), 232
json() (openff.evaluator.storage.query.FreeEnergyDataQuery

method), 238
json() (openff.evaluator.storage.query.SimulationDataQuery

method), 236
json() (openff.evaluator.storage.query.SubstanceQuery

method), 230
json() (openff.evaluator.substances.Amount method),

129
json() (openff.evaluator.substances.Component

method), 127
json() (openff.evaluator.substances.ExactAmount

method), 130
json() (openff.evaluator.substances.MoleFraction

method), 132
json() (openff.evaluator.substances.Substance method),

125
json() (openff.evaluator.thermodynamics.ThermodynamicState

method), 134
json() (openff.evaluator.utils.exceptions.EvaluatorException

method), 87
json() (openff.evaluator.workflow.Protocol method),

257
json() (openff.evaluator.workflow.ProtocolGroup

method), 263
json() (openff.evaluator.workflow.schemas.ProtocolGroupSchema

method), 267
json() (openff.evaluator.workflow.schemas.ProtocolReplicator

method), 269
json() (openff.evaluator.workflow.schemas.ProtocolSchema

method), 266
json() (openff.evaluator.workflow.schemas.WorkflowSchema

method), 271
json() (openff.evaluator.workflow.WorkflowException

method), 250
json() (openff.evaluator.workflow.WorkflowResult

method), 253

K
keys() (openff.evaluator.utils.observables.ObservableFrame

method), 552

L
last_protocol (openff.evaluator.workflow.utils.ProtocolPath

property), 276
leap_source (openff.evaluator.forcefield.TLeapForceFieldSource

property), 180
left_hand_value (openff.evaluator.protocols.groups.ConditionalGroup.Condition

attribute), 363
ligand_electrostatic_lambdas

(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 527

ligand_residue_name
(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 332

ligand_residue_name
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 526

ligand_steric_lambdas
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 527

ligand_substance (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 331

LigandReceptorYankProtocol (class in
openff.evaluator.protocols.yank), 524

LigandReceptorYankProtocol.RestraintType
(class in openff.evaluator.protocols.yank), 526

LigParGenForceFieldSource (class in
openff.evaluator.forcefield), 181

LigParGenForceFieldSource.ChargeModel (class in
openff.evaluator.forcefield), 182

ljust() (openff.evaluator.storage.attributes.FilePath
method), 243

load_restraints() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
class method), 450

LocalFileStorage (class in openff.evaluator.storage),
212

lower() (openff.evaluator.storage.attributes.FilePath
method), 243

lstrip() (openff.evaluator.storage.attributes.FilePath
method), 243

M
maketrans() (openff.evaluator.storage.attributes.FilePath

static method), 244
mass_density (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

attribute), 319
mass_density (openff.evaluator.protocols.coordinates.SolvateExistingStructure

attribute), 328
max_iterations (openff.evaluator.protocols.groups.ConditionalGroup

attribute), 364
max_iterations (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

attribute), 405

600 Index

OpenFF Evaluator Documentation

max_iterations (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
attribute), 502

max_molecules (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 319

max_molecules (openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 328

maximum_data_points
(openff.evaluator.layers.reweighting.ReweightingSchema
attribute), 196

MeasurementSource (class in
openff.evaluator.datasets), 98

merge() (openff.evaluator.datasets.PhysicalPropertyDataSet
method), 135

merge() (openff.evaluator.datasets.taproom.TaproomDataSet
method), 145

merge() (openff.evaluator.datasets.thermoml.ThermoMLDataSet
method), 140

merge() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 292

merge() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 298

merge() (openff.evaluator.protocols.analysis.AverageObservable
method), 286

merge() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 282

merge() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 307

merge() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 302

merge() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 316

merge() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 312

merge() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 323

merge() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 334

merge() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 328

merge() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 339

merge() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 350

merge() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 344

merge() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 355

merge() (openff.evaluator.protocols.gradients.ZeroGradients
method), 360

merge() (openff.evaluator.protocols.groups.ConditionalGroup
method), 364

merge() (openff.evaluator.protocols.miscellaneous.AddValues
method), 371

merge() (openff.evaluator.protocols.miscellaneous.DivideValue

method), 386
merge() (openff.evaluator.protocols.miscellaneous.DummyProtocol

method), 400
merge() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

method), 395
merge() (openff.evaluator.protocols.miscellaneous.MultiplyValue

method), 381
merge() (openff.evaluator.protocols.miscellaneous.SubtractValues

method), 376
merge() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

method), 390
merge() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

method), 405
merge() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies

method), 417
merge() (openff.evaluator.protocols.openmm.OpenMMSimulation

method), 411
merge() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

method), 458
merge() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

method), 468
merge() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

method), 463
merge() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

method), 433
merge() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

method), 422
merge() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

method), 427
merge() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

method), 453
merge() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints

method), 438
merge() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

method), 443
merge() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints

method), 447
merge() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

method), 482
merge() (openff.evaluator.protocols.reweighting.BaseMBARProtocol

method), 488
merge() (openff.evaluator.protocols.reweighting.ConcatenateObservables

method), 477
merge() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories

method), 473
merge() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

method), 499
merge() (openff.evaluator.protocols.reweighting.ReweightObservable

method), 493
merge() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

method), 505
merge() (openff.evaluator.protocols.simulation.BaseSimulation

method), 512
merge() (openff.evaluator.protocols.storage.UnpackStoredSimulationData

Index 601

OpenFF Evaluator Documentation

method), 517
merge() (openff.evaluator.protocols.yank.BaseYankProtocol

method), 523
merge() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

method), 530
merge() (openff.evaluator.protocols.yank.SolvationYankProtocol

method), 538
merge() (openff.evaluator.workflow.Protocol method),

256
merge() (openff.evaluator.workflow.ProtocolGroup

method), 261
MergeBehaviour (class in

openff.evaluator.workflow.attributes), 272
metadata (openff.evaluator.datasets.PhysicalProperty

attribute), 93
metadata (openff.evaluator.properties.Density attribute),

101
metadata (openff.evaluator.properties.DielectricConstant

attribute), 108
metadata (openff.evaluator.properties.EnthalpyOfMixing

attribute), 111
metadata (openff.evaluator.properties.EnthalpyOfVaporization

attribute), 114
metadata (openff.evaluator.properties.ExcessMolarVolume

attribute), 105
metadata (openff.evaluator.properties.HostGuestBindingAffinity

attribute), 121
metadata (openff.evaluator.properties.SolvationFreeEnergy

attribute), 117
MoleFraction (class in openff.evaluator.substances),

131
most_information() (openff.evaluator.storage.data.BaseSimulationData

class method), 221
most_information() (openff.evaluator.storage.data.ReplaceableData

class method), 219
most_information() (openff.evaluator.storage.data.StoredFreeEnergyData

class method), 226
most_information() (openff.evaluator.storage.data.StoredSimulationData

class method), 223
multiplier (openff.evaluator.protocols.miscellaneous.MultiplyValue

attribute), 378
MultiplyValue (class in

openff.evaluator.protocols.miscellaneous),
377

N
n_microstates (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

attribute), 460
n_pull_windows (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

attribute), 420
n_pull_windows (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

attribute), 440
number_of_components

(openff.evaluator.substances.Substance prop-

erty), 124
number_of_equilibration_iterations

(openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

number_of_equilibration_iterations
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 530

number_of_equilibration_iterations
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 538

number_of_gpus (openff.evaluator.backends.ComputeResources
property), 200

number_of_gpus (openff.evaluator.backends.QueueWorkerResources
property), 201

number_of_iterations
(openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

number_of_iterations
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 530

number_of_iterations
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 539

number_of_ligand_conformers
(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 331

number_of_molecules
(openff.evaluator.storage.data.StoredSimulationData
attribute), 223

number_of_molecules
(openff.evaluator.storage.query.SimulationDataQuery
attribute), 235

number_of_threads (openff.evaluator.backends.ComputeResources
property), 200

number_of_threads (openff.evaluator.backends.QueueWorkerResources
property), 202

O
Observable (class in openff.evaluator.utils.observables),

549
observable (openff.evaluator.protocols.analysis.AverageObservable

attribute), 284
observable (openff.evaluator.protocols.reweighting.ReweightObservable

attribute), 490
ObservableArray (class in

openff.evaluator.utils.observables), 549
ObservableFrame (class in

openff.evaluator.utils.observables), 551
observables (openff.evaluator.protocols.openmm.OpenMMSimulation

attribute), 411
observables (openff.evaluator.protocols.simulation.BaseSimulation

attribute), 509
observables (openff.evaluator.protocols.storage.UnpackStoredSimulationData

attribute), 514

602 Index

OpenFF Evaluator Documentation

observables (openff.evaluator.storage.data.StoredSimulationData
attribute), 223

ObservableType (class in
openff.evaluator.utils.observables), 550

offset (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
attribute), 430

OpenMMEnergyMinimisation (class in
openff.evaluator.protocols.openmm), 401

OpenMMEvaluateEnergies (class in
openff.evaluator.protocols.openmm), 413

OpenMMSimulation (class in
openff.evaluator.protocols.openmm), 406

options (openff.evaluator.server.Batch attribute), 91
output_coordinate_file

(openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
attribute), 405

output_coordinate_file
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 411

output_coordinate_file
(openff.evaluator.protocols.simulation.BaseEnergyMinimisation
attribute), 502

output_coordinate_file
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 509

output_coordinate_path
(openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
attribute), 430

output_coordinate_path
(openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
attribute), 423

output_coordinate_path
(openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
attribute), 427

output_coordinate_path
(openff.evaluator.protocols.reweighting.ConcatenateTrajectories
attribute), 470

output_frequency (openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 411

output_frequency (openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

output_number_of_molecules
(openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 320

output_number_of_molecules
(openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 328

output_observables (openff.evaluator.protocols.analysis.DecorrelateObservables
attribute), 314

output_observables (openff.evaluator.protocols.gradients.ZeroGradients
attribute), 358

output_observables (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
attribute), 417

output_observables (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

attribute), 480
output_observables (openff.evaluator.protocols.reweighting.ConcatenateObservables

attribute), 475
output_substance (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

attribute), 320
output_substance (openff.evaluator.protocols.coordinates.SolvateExistingStructure

attribute), 328
output_system (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

attribute), 430
output_system (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

attribute), 450
output_trajectory_path

(openff.evaluator.protocols.analysis.DecorrelateTrajectory
attribute), 309

output_trajectory_path
(openff.evaluator.protocols.reweighting.ConcatenateTrajectories
attribute), 470

output_value (openff.evaluator.protocols.miscellaneous.DummyProtocol
attribute), 397

OutputAttribute (class in
openff.evaluator.workflow.attributes), 274

outputs (openff.evaluator.protocols.analysis.AverageDielectricConstant
property), 292

outputs (openff.evaluator.protocols.analysis.AverageFreeEnergies
property), 298

outputs (openff.evaluator.protocols.analysis.AverageObservable
property), 287

outputs (openff.evaluator.protocols.analysis.BaseAverageObservable
property), 282

outputs (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
property), 307

outputs (openff.evaluator.protocols.analysis.ComputeDipoleMoments
property), 302

outputs (openff.evaluator.protocols.analysis.DecorrelateObservables
property), 316

outputs (openff.evaluator.protocols.analysis.DecorrelateTrajectory
property), 312

outputs (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
property), 323

outputs (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
property), 334

outputs (openff.evaluator.protocols.coordinates.SolvateExistingStructure
property), 328

outputs (openff.evaluator.protocols.forcefield.BaseBuildSystem
property), 339

outputs (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
property), 350

outputs (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
property), 344

outputs (openff.evaluator.protocols.forcefield.BuildTLeapSystem
property), 355

outputs (openff.evaluator.protocols.gradients.ZeroGradients
property), 360

outputs (openff.evaluator.protocols.groups.ConditionalGroup

Index 603

OpenFF Evaluator Documentation

property), 366
outputs (openff.evaluator.protocols.miscellaneous.AddValues

property), 371
outputs (openff.evaluator.protocols.miscellaneous.DivideValue

property), 386
outputs (openff.evaluator.protocols.miscellaneous.DummyProtocol

property), 400
outputs (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

property), 395
outputs (openff.evaluator.protocols.miscellaneous.MultiplyValue

property), 381
outputs (openff.evaluator.protocols.miscellaneous.SubtractValues

property), 376
outputs (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

property), 390
outputs (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

property), 405
outputs (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies

property), 417
outputs (openff.evaluator.protocols.openmm.OpenMMSimulation

property), 411
outputs (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

property), 458
outputs (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

property), 468
outputs (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

property), 463
outputs (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

property), 433
outputs (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

property), 423
outputs (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

property), 428
outputs (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

property), 453
outputs (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints

property), 438
outputs (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

property), 443
outputs (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints

property), 448
outputs (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

property), 483
outputs (openff.evaluator.protocols.reweighting.BaseMBARProtocol

property), 488
outputs (openff.evaluator.protocols.reweighting.ConcatenateObservables

property), 477
outputs (openff.evaluator.protocols.reweighting.ConcatenateTrajectories

property), 473
outputs (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

property), 499
outputs (openff.evaluator.protocols.reweighting.ReweightObservable

property), 493
outputs (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

property), 505
outputs (openff.evaluator.protocols.simulation.BaseSimulation

property), 512
outputs (openff.evaluator.protocols.storage.UnpackStoredSimulationData

property), 517
outputs (openff.evaluator.protocols.yank.BaseYankProtocol

property), 523
outputs (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

property), 530
outputs (openff.evaluator.protocols.yank.SolvationYankProtocol

property), 539
outputs (openff.evaluator.workflow.Protocol property),

255
outputs (openff.evaluator.workflow.ProtocolGroup

property), 260
outputs_to_store (openff.evaluator.workflow.schemas.WorkflowSchema

attribute), 271
outputs_to_store (openff.evaluator.workflow.Workflow

property), 248

P
parameter_gradient_keys

(openff.evaluator.server.Batch attribute),
91

ParameterGradient (class in
openff.evaluator.forcefield), 184

ParameterGradientKey (class in
openff.evaluator.forcefield), 183

parameterized_system
(openff.evaluator.protocols.analysis.ComputeDipoleMoments
attribute), 300

parameterized_system
(openff.evaluator.protocols.forcefield.BaseBuildSystem
attribute), 337

parameterized_system
(openff.evaluator.protocols.forcefield.BuildLigParGenSystem
attribute), 350

parameterized_system
(openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
attribute), 344

parameterized_system
(openff.evaluator.protocols.forcefield.BuildTLeapSystem
attribute), 355

parameterized_system
(openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
attribute), 405

parameterized_system
(openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
attribute), 417

parameterized_system
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 411

parameterized_system
(openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

604 Index

OpenFF Evaluator Documentation

attribute), 480
parameterized_system

(openff.evaluator.protocols.simulation.BaseEnergyMinimisation
attribute), 502

parameterized_system
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

parse_json() (openff.evaluator.datasets.CalculationSource
class method), 97

parse_json() (openff.evaluator.datasets.MeasurementSource
class method), 99

parse_json() (openff.evaluator.datasets.PhysicalPropertyDataSet
class method), 137

parse_json() (openff.evaluator.datasets.Source class
method), 96

parse_json() (openff.evaluator.datasets.taproom.TaproomDataSet
class method), 145

parse_json() (openff.evaluator.datasets.taproom.TaproomSource
class method), 147

parse_json() (openff.evaluator.datasets.thermoml.ThermoMLDataSet
class method), 140

parse_json() (openff.evaluator.forcefield.ForceFieldSource
class method), 177

parse_json() (openff.evaluator.forcefield.LigParGenForceFieldSource
class method), 183

parse_json() (openff.evaluator.forcefield.SmirnoffForceFieldSource
class method), 179

parse_json() (openff.evaluator.forcefield.TLeapForceFieldSource
class method), 180

parse_json() (openff.evaluator.utils.exceptions.EvaluatorException
class method), 87

parse_json() (openff.evaluator.workflow.schemas.ProtocolReplicator
class method), 270

parse_json() (openff.evaluator.workflow.WorkflowException
class method), 250

partition() (openff.evaluator.storage.attributes.FilePath
method), 244

per_thread_memory_limit
(openff.evaluator.backends.QueueWorkerResources
property), 201

phase (openff.evaluator.datasets.PhysicalProperty
attribute), 93

phase (openff.evaluator.properties.Density attribute),
102

phase (openff.evaluator.properties.DielectricConstant
attribute), 108

phase (openff.evaluator.properties.EnthalpyOfMixing at-
tribute), 111

phase (openff.evaluator.properties.EnthalpyOfVaporization
attribute), 115

phase (openff.evaluator.properties.ExcessMolarVolume
attribute), 105

phase (openff.evaluator.properties.HostGuestBindingAffinity
attribute), 121

phase (openff.evaluator.properties.SolvationFreeEnergy
attribute), 118

phase (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
attribute), 455

phase (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
attribute), 450

physical_property (openff.evaluator.layers.CalculationLayerResult
attribute), 186

PhysicalProperty (class in openff.evaluator.datasets),
92

PhysicalPropertyDataSet (class in
openff.evaluator.datasets), 134

placeholder_id (openff.evaluator.workflow.schemas.ProtocolReplicator
property), 268

PlaceholderValue (class in
openff.evaluator.attributes), 548

pop() (openff.evaluator.utils.observables.ObservableFrame
method), 552

pop_next_in_path() (openff.evaluator.workflow.utils.ProtocolPath
method), 276

popitem() (openff.evaluator.utils.observables.ObservableFrame
method), 552

potential_energies (openff.evaluator.protocols.analysis.AverageDielectricConstant
attribute), 292

potential_energies (openff.evaluator.protocols.analysis.AverageObservable
attribute), 287

potential_energies (openff.evaluator.protocols.analysis.BaseAverageObservable
attribute), 279

preferred_charge_model
(openff.evaluator.forcefield.LigParGenForceFieldSource
property), 182

preferred_gpu_toolkit
(openff.evaluator.backends.ComputeResources
property), 200

preferred_gpu_toolkit
(openff.evaluator.backends.QueueWorkerResources
property), 202

PreparePullCoordinates (class in
openff.evaluator.protocols.paprika.coordinates),
418

PrepareReleaseCoordinates (class in
openff.evaluator.protocols.paprika.coordinates),
424

prepend_protocol_id()
(openff.evaluator.workflow.utils.ProtocolPath
method), 276

pressure (openff.evaluator.thermodynamics.ThermodynamicState
attribute), 133

properties (openff.evaluator.datasets.PhysicalPropertyDataSet
property), 135

properties (openff.evaluator.datasets.taproom.TaproomDataSet
property), 145

properties (openff.evaluator.datasets.thermoml.ThermoMLDataSet
property), 140

Index 605

OpenFF Evaluator Documentation

properties_by_substance()
(openff.evaluator.datasets.PhysicalPropertyDataSet
method), 136

properties_by_substance()
(openff.evaluator.datasets.taproom.TaproomDataSet
method), 145

properties_by_substance()
(openff.evaluator.datasets.thermoml.ThermoMLDataSet
method), 141

properties_by_type()
(openff.evaluator.datasets.PhysicalPropertyDataSet
method), 136

properties_by_type()
(openff.evaluator.datasets.taproom.TaproomDataSet
method), 145

properties_by_type()
(openff.evaluator.datasets.thermoml.ThermoMLDataSet
method), 141

property_name (openff.evaluator.workflow.utils.ProtocolPath
property), 276

property_phase (openff.evaluator.storage.data.BaseSimulationData
attribute), 220

property_phase (openff.evaluator.storage.data.StoredFreeEnergyData
attribute), 227

property_phase (openff.evaluator.storage.data.StoredSimulationData
attribute), 224

property_phase (openff.evaluator.storage.query.BaseSimulationDataQuery
attribute), 233

property_phase (openff.evaluator.storage.query.FreeEnergyDataQuery
attribute), 239

property_phase (openff.evaluator.storage.query.SimulationDataQuery
attribute), 236

property_types (openff.evaluator.datasets.PhysicalPropertyDataSet
property), 135

property_types (openff.evaluator.datasets.taproom.TaproomDataSet
property), 146

property_types (openff.evaluator.datasets.thermoml.ThermoMLDataSet
property), 141

PropertyPhase (class in openff.evaluator.datasets), 95
Protocol (class in openff.evaluator.workflow), 253
protocol_ids (openff.evaluator.workflow.utils.ProtocolPath

property), 276
protocol_path (openff.evaluator.workflow.utils.ProtocolPath

property), 276
protocol_replicators

(openff.evaluator.workflow.schemas.WorkflowSchema
attribute), 270

protocol_schemas (openff.evaluator.workflow.schemas.ProtocolGroupSchema
attribute), 266

protocol_schemas (openff.evaluator.workflow.schemas.WorkflowSchema
attribute), 270

ProtocolGraph (class in openff.evaluator.workflow),
258

ProtocolGroup (class in openff.evaluator.workflow),

259
ProtocolGroupSchema (class in

openff.evaluator.workflow.schemas), 266
ProtocolPath (class in openff.evaluator.workflow.utils),

275
ProtocolReplicator (class in

openff.evaluator.workflow.schemas), 268
protocols (openff.evaluator.protocols.groups.ConditionalGroup

property), 366
protocols (openff.evaluator.workflow.ProtocolGraph

property), 258
protocols (openff.evaluator.workflow.ProtocolGroup

property), 261
protocols (openff.evaluator.workflow.Workflow prop-

erty), 248
protocols (openff.evaluator.workflow.WorkflowGraph

property), 251
ProtocolSchema (class in

openff.evaluator.workflow.schemas), 264
provenance (openff.evaluator.datasets.CalculationSource

attribute), 97
pull_distance (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

attribute), 420
pull_window_index (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

attribute), 420

Q
query() (openff.evaluator.storage.LocalFileStorage

method), 213
query() (openff.evaluator.storage.StorageBackend

method), 211
QueryAttribute (class in

openff.evaluator.storage.attributes), 246
queued_properties (openff.evaluator.client.RequestResult

attribute), 86
queued_properties (openff.evaluator.server.Batch at-

tribute), 91
QueueWorkerResources (class in

openff.evaluator.backends), 200
QueueWorkerResources.GPUToolkit (class in

openff.evaluator.backends), 201

R
receptor_coordinate_file

(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 331

receptor_residue_name
(openff.evaluator.protocols.coordinates.BuildDockedCoordinates
attribute), 332

receptor_residue_name
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 526

reference (openff.evaluator.datasets.MeasurementSource
attribute), 98

606 Index

OpenFF Evaluator Documentation

reference_reduced_potentials
(openff.evaluator.protocols.reweighting.BaseMBARProtocol
attribute), 485

reference_reduced_potentials
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 499

reference_reduced_potentials
(openff.evaluator.protocols.reweighting.ReweightObservable
attribute), 493

register_calculation_layer() (in module
openff.evaluator.layers), 188

register_calculation_schema() (in module
openff.evaluator.layers), 188

register_default_plugins() (in module
openff.evaluator.plugins), 554

register_external_plugins() (in module
openff.evaluator.plugins), 554

register_thermoml_property() (in module
openff.evaluator.datasets.thermoml), 142

register_workflow_protocol() (in module
openff.evaluator.workflow), 264

relative_tolerance (openff.evaluator.layers.CalculationLayerSchema
attribute), 187

relative_tolerance (openff.evaluator.layers.reweighting.ReweightingSchema
attribute), 197

relative_tolerance (openff.evaluator.layers.simulation.SimulationSchema
attribute), 194

relative_tolerance (openff.evaluator.layers.workflow.WorkflowCalculationSchema
attribute), 191

release_lambdas (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
attribute), 445

replace() (openff.evaluator.storage.attributes.FilePath
method), 244

replace_protocol() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 292

replace_protocol() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 298

replace_protocol() (openff.evaluator.protocols.analysis.AverageObservable
method), 287

replace_protocol() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 282

replace_protocol() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 307

replace_protocol() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 302

replace_protocol() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 317

replace_protocol() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 312

replace_protocol() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 323

replace_protocol() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 334

replace_protocol() (openff.evaluator.protocols.coordinates.SolvateExistingStructure

method), 329
replace_protocol() (openff.evaluator.protocols.forcefield.BaseBuildSystem

method), 339
replace_protocol() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem

method), 350
replace_protocol() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem

method), 344
replace_protocol() (openff.evaluator.protocols.forcefield.BuildTLeapSystem

method), 355
replace_protocol() (openff.evaluator.protocols.gradients.ZeroGradients

method), 360
replace_protocol() (openff.evaluator.protocols.groups.ConditionalGroup

method), 367
replace_protocol() (openff.evaluator.protocols.miscellaneous.AddValues

method), 371
replace_protocol() (openff.evaluator.protocols.miscellaneous.DivideValue

method), 386
replace_protocol() (openff.evaluator.protocols.miscellaneous.DummyProtocol

method), 400
replace_protocol() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole

method), 396
replace_protocol() (openff.evaluator.protocols.miscellaneous.MultiplyValue

method), 381
replace_protocol() (openff.evaluator.protocols.miscellaneous.SubtractValues

method), 376
replace_protocol() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

method), 391
replace_protocol() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

method), 405
replace_protocol() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies

method), 417
replace_protocol() (openff.evaluator.protocols.openmm.OpenMMSimulation

method), 412
replace_protocol() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

method), 458
replace_protocol() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork

method), 468
replace_protocol() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection

method), 463
replace_protocol() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

method), 433
replace_protocol() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates

method), 423
replace_protocol() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates

method), 428
replace_protocol() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints

method), 453
replace_protocol() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints

method), 438
replace_protocol() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints

method), 443
replace_protocol() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints

method), 448
replace_protocol() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies

Index 607

OpenFF Evaluator Documentation

method), 483
replace_protocol() (openff.evaluator.protocols.reweighting.BaseMBARProtocol

method), 488
replace_protocol() (openff.evaluator.protocols.reweighting.ConcatenateObservables

method), 477
replace_protocol() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories

method), 473
replace_protocol() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

method), 499
replace_protocol() (openff.evaluator.protocols.reweighting.ReweightObservable

method), 493
replace_protocol() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

method), 505
replace_protocol() (openff.evaluator.protocols.simulation.BaseSimulation

method), 512
replace_protocol() (openff.evaluator.protocols.storage.UnpackStoredSimulationData

method), 517
replace_protocol() (openff.evaluator.protocols.yank.BaseYankProtocol

method), 523
replace_protocol() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

method), 530
replace_protocol() (openff.evaluator.protocols.yank.SolvationYankProtocol

method), 539
replace_protocol() (openff.evaluator.workflow.Protocol

method), 255
replace_protocol() (openff.evaluator.workflow.ProtocolGroup

method), 261
replace_protocol() (openff.evaluator.workflow.utils.ProtocolPath

method), 276
replace_protocol() (openff.evaluator.workflow.Workflow

method), 248
replace_protocol_types()

(openff.evaluator.workflow.schemas.WorkflowSchema
method), 271

ReplaceableData (class in
openff.evaluator.storage.data), 218

ReplicatorValue (class in
openff.evaluator.workflow.utils), 275

Request (class in openff.evaluator.client), 82
request_estimate() (openff.evaluator.client.EvaluatorClient

method), 79
request_url (openff.evaluator.forcefield.LigParGenForceFieldSource

property), 182
RequestOptions (class in openff.evaluator.client), 84
RequestResult (class in openff.evaluator.client), 85
required_effective_samples

(openff.evaluator.protocols.reweighting.BaseMBARProtocol
attribute), 485

required_effective_samples
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 500

required_effective_samples
(openff.evaluator.protocols.reweighting.ReweightObservable
attribute), 494

required_inputs (openff.evaluator.protocols.analysis.AverageDielectricConstant
property), 293

required_inputs (openff.evaluator.protocols.analysis.AverageFreeEnergies
property), 298

required_inputs (openff.evaluator.protocols.analysis.AverageObservable
property), 287

required_inputs (openff.evaluator.protocols.analysis.BaseAverageObservable
property), 282

required_inputs (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
property), 307

required_inputs (openff.evaluator.protocols.analysis.ComputeDipoleMoments
property), 303

required_inputs (openff.evaluator.protocols.analysis.DecorrelateObservables
property), 317

required_inputs (openff.evaluator.protocols.analysis.DecorrelateTrajectory
property), 312

required_inputs (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
property), 323

required_inputs (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
property), 335

required_inputs (openff.evaluator.protocols.coordinates.SolvateExistingStructure
property), 329

required_inputs (openff.evaluator.protocols.forcefield.BaseBuildSystem
property), 340

required_inputs (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
property), 350

required_inputs (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
property), 345

required_inputs (openff.evaluator.protocols.forcefield.BuildTLeapSystem
property), 356

required_inputs (openff.evaluator.protocols.gradients.ZeroGradients
property), 361

required_inputs (openff.evaluator.protocols.groups.ConditionalGroup
property), 367

required_inputs (openff.evaluator.protocols.miscellaneous.AddValues
property), 372

required_inputs (openff.evaluator.protocols.miscellaneous.DivideValue
property), 386

required_inputs (openff.evaluator.protocols.miscellaneous.DummyProtocol
property), 400

required_inputs (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
property), 396

required_inputs (openff.evaluator.protocols.miscellaneous.MultiplyValue
property), 381

required_inputs (openff.evaluator.protocols.miscellaneous.SubtractValues
property), 377

required_inputs (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
property), 391

required_inputs (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
property), 405

required_inputs (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
property), 417

required_inputs (openff.evaluator.protocols.openmm.OpenMMSimulation
property), 412

608 Index

OpenFF Evaluator Documentation

required_inputs (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
property), 459

required_inputs (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
property), 468

required_inputs (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
property), 463

required_inputs (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
property), 433

required_inputs (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
property), 423

required_inputs (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
property), 428

required_inputs (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
property), 453

required_inputs (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
property), 438

required_inputs (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
property), 443

required_inputs (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
property), 448

required_inputs (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
property), 483

required_inputs (openff.evaluator.protocols.reweighting.BaseMBARProtocol
property), 488

required_inputs (openff.evaluator.protocols.reweighting.ConcatenateObservables
property), 478

required_inputs (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
property), 473

required_inputs (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
property), 500

required_inputs (openff.evaluator.protocols.reweighting.ReweightObservable
property), 494

required_inputs (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
property), 505

required_inputs (openff.evaluator.protocols.simulation.BaseSimulation
property), 512

required_inputs (openff.evaluator.protocols.storage.UnpackStoredSimulationData
property), 517

required_inputs (openff.evaluator.protocols.yank.BaseYankProtocol
property), 523

required_inputs (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
property), 531

required_inputs (openff.evaluator.protocols.yank.SolvationYankProtocol
property), 539

required_inputs (openff.evaluator.workflow.Protocol
property), 255

required_inputs (openff.evaluator.workflow.ProtocolGroup
property), 260

required_schema_type()
(openff.evaluator.layers.CalculationLayer
class method), 185

required_schema_type()
(openff.evaluator.layers.workflow.WorkflowCalculationLayer
class method), 189

restraint_schemas (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
attribute), 438

restraint_schemas (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
attribute), 443

restraint_schemas (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
attribute), 448

restraint_type (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 527

restraints_path (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
attribute), 455

restraints_path (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
attribute), 465

restraints_path (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
attribute), 450

restraints_path (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
attribute), 438

restraints_path (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
attribute), 443

restraints_path (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
attribute), 448

result (openff.evaluator.protocols.analysis.AverageFreeEnergies
attribute), 295

result (openff.evaluator.protocols.miscellaneous.AddValues
attribute), 369

result (openff.evaluator.protocols.miscellaneous.DivideValue
attribute), 383

result (openff.evaluator.protocols.miscellaneous.MultiplyValue
attribute), 378

result (openff.evaluator.protocols.miscellaneous.SubtractValues
attribute), 374

result (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
attribute), 456

result (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
attribute), 465

result (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
attribute), 460

results() (openff.evaluator.client.Request method), 82
retain_packmol_files

(openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
attribute), 320

retain_packmol_files
(openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 329

retrieve_force_field()
(openff.evaluator.storage.LocalFileStorage
method), 213

retrieve_force_field()
(openff.evaluator.storage.StorageBackend
method), 211

retrieve_object() (openff.evaluator.storage.LocalFileStorage
method), 213

retrieve_object() (openff.evaluator.storage.StorageBackend
method), 211

retrieve_results() (openff.evaluator.client.EvaluatorClient

Index 609

OpenFF Evaluator Documentation

method), 79
ReweightDielectricConstant (class in

openff.evaluator.protocols.reweighting), 495
ReweightingLayer (class in

openff.evaluator.layers.reweighting), 194
ReweightingProtocols (class in

openff.evaluator.protocols.utils), 542
ReweightingSchema (class in

openff.evaluator.layers.reweighting), 196
ReweightObservable (class in

openff.evaluator.protocols.reweighting), 489
rfind() (openff.evaluator.storage.attributes.FilePath

method), 244
right_hand_value (openff.evaluator.protocols.groups.ConditionalGroup.Condition

attribute), 363
rindex() (openff.evaluator.storage.attributes.FilePath

method), 244
rjust() (openff.evaluator.storage.attributes.FilePath

method), 244
role (openff.evaluator.substances.Component attribute),

127
root_directory (openff.evaluator.storage.LocalFileStorage

property), 212
root_protocols (openff.evaluator.workflow.ProtocolGraph

property), 258
root_protocols (openff.evaluator.workflow.WorkflowGraph

property), 251
rpartition() (openff.evaluator.storage.attributes.FilePath

method), 244
rsplit() (openff.evaluator.storage.attributes.FilePath

method), 244
rstrip() (openff.evaluator.storage.attributes.FilePath

method), 244

S
schedule_calculation()

(openff.evaluator.layers.CalculationLayer
class method), 185

schedule_calculation()
(openff.evaluator.layers.reweighting.ReweightingLayer
class method), 195

schedule_calculation()
(openff.evaluator.layers.simulation.SimulationLayer
class method), 192

schedule_calculation()
(openff.evaluator.layers.workflow.WorkflowCalculationLayer
class method), 189

schema (openff.evaluator.protocols.analysis.AverageDielectricConstant
property), 293

schema (openff.evaluator.protocols.analysis.AverageFreeEnergies
property), 298

schema (openff.evaluator.protocols.analysis.AverageObservable
property), 287

schema (openff.evaluator.protocols.analysis.BaseAverageObservable
property), 282

schema (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
property), 307

schema (openff.evaluator.protocols.analysis.ComputeDipoleMoments
property), 303

schema (openff.evaluator.protocols.analysis.DecorrelateObservables
property), 317

schema (openff.evaluator.protocols.analysis.DecorrelateTrajectory
property), 312

schema (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
property), 323

schema (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
property), 335

schema (openff.evaluator.protocols.coordinates.SolvateExistingStructure
property), 329

schema (openff.evaluator.protocols.forcefield.BaseBuildSystem
property), 340

schema (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
property), 350

schema (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
property), 345

schema (openff.evaluator.protocols.forcefield.BuildTLeapSystem
property), 356

schema (openff.evaluator.protocols.gradients.ZeroGradients
property), 361

schema (openff.evaluator.protocols.groups.ConditionalGroup
property), 367

schema (openff.evaluator.protocols.miscellaneous.AddValues
property), 372

schema (openff.evaluator.protocols.miscellaneous.DivideValue
property), 386

schema (openff.evaluator.protocols.miscellaneous.DummyProtocol
property), 400

schema (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
property), 396

schema (openff.evaluator.protocols.miscellaneous.MultiplyValue
property), 381

schema (openff.evaluator.protocols.miscellaneous.SubtractValues
property), 377

schema (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
property), 391

schema (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
property), 406

schema (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
property), 417

schema (openff.evaluator.protocols.openmm.OpenMMSimulation
property), 412

schema (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
property), 459

schema (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
property), 468

schema (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
property), 463

610 Index

OpenFF Evaluator Documentation

schema (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
property), 433

schema (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
property), 423

schema (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
property), 428

schema (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
property), 453

schema (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
property), 438

schema (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
property), 443

schema (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
property), 448

schema (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
property), 483

schema (openff.evaluator.protocols.reweighting.BaseMBARProtocol
property), 488

schema (openff.evaluator.protocols.reweighting.ConcatenateObservables
property), 478

schema (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
property), 473

schema (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
property), 500

schema (openff.evaluator.protocols.reweighting.ReweightObservable
property), 494

schema (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
property), 505

schema (openff.evaluator.protocols.simulation.BaseSimulation
property), 512

schema (openff.evaluator.protocols.storage.UnpackStoredSimulationData
property), 517

schema (openff.evaluator.protocols.yank.BaseYankProtocol
property), 523

schema (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
property), 531

schema (openff.evaluator.protocols.yank.SolvationYankProtocol
property), 539

schema (openff.evaluator.workflow.Protocol property),
255

schema (openff.evaluator.workflow.ProtocolGroup prop-
erty), 263

SelectDataPoints (class in
openff.evaluator.datasets.curation.components.selection),
173

SelectDataPointsSchema (class in
openff.evaluator.datasets.curation.components.selection),
172

SelectSubstances (class in
openff.evaluator.datasets.curation.components.selection),
172

SelectSubstancesSchema (class in
openff.evaluator.datasets.curation.components.selection),
171

server_address (openff.evaluator.client.ConnectionOptions
attribute), 81

server_address (openff.evaluator.client.EvaluatorClient
property), 78

server_port (openff.evaluator.client.ConnectionOptions
attribute), 81

server_port (openff.evaluator.client.EvaluatorClient
property), 78

set_uuid() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 293

set_uuid() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 298

set_uuid() (openff.evaluator.protocols.analysis.AverageObservable
method), 287

set_uuid() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 282

set_uuid() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 308

set_uuid() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 303

set_uuid() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 317

set_uuid() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 312

set_uuid() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 323

set_uuid() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 335

set_uuid() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 329

set_uuid() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 340

set_uuid() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 350

set_uuid() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 345

set_uuid() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 356

set_uuid() (openff.evaluator.protocols.gradients.ZeroGradients
method), 361

set_uuid() (openff.evaluator.protocols.groups.ConditionalGroup
method), 367

set_uuid() (openff.evaluator.protocols.miscellaneous.AddValues
method), 372

set_uuid() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 386

set_uuid() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 401

set_uuid() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 396

set_uuid() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 382

set_uuid() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 377

Index 611

OpenFF Evaluator Documentation

set_uuid() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 391

set_uuid() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 406

set_uuid() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 417

set_uuid() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 412

set_uuid() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 459

set_uuid() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 468

set_uuid() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 464

set_uuid() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 433

set_uuid() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 423

set_uuid() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 428

set_uuid() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 454

set_uuid() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 438

set_uuid() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 443

set_uuid() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 448

set_uuid() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 483

set_uuid() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 489

set_uuid() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 478

set_uuid() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 473

set_uuid() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 500

set_uuid() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 494

set_uuid() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 506

set_uuid() (openff.evaluator.protocols.simulation.BaseSimulation
method), 512

set_uuid() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 518

set_uuid() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 524

set_uuid() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 531

set_uuid() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 539

set_uuid() (openff.evaluator.workflow.Protocol
method), 255

set_uuid() (openff.evaluator.workflow.ProtocolGroup
method), 261

set_value() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 293

set_value() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 298

set_value() (openff.evaluator.protocols.analysis.AverageObservable
method), 287

set_value() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 282

set_value() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 308

set_value() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 303

set_value() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 317

set_value() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 312

set_value() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 323

set_value() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 335

set_value() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 329

set_value() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 340

set_value() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 350

set_value() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 345

set_value() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 356

set_value() (openff.evaluator.protocols.gradients.ZeroGradients
method), 361

set_value() (openff.evaluator.protocols.groups.ConditionalGroup
method), 367

set_value() (openff.evaluator.protocols.miscellaneous.AddValues
method), 372

set_value() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 386

set_value() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 401

set_value() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 396

set_value() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 382

set_value() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 377

set_value() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 391

set_value() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 406

set_value() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 418

612 Index

OpenFF Evaluator Documentation

set_value() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 412

set_value() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 459

set_value() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 468

set_value() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 464

set_value() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 433

set_value() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 423

set_value() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 428

set_value() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 454

set_value() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 438

set_value() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 443

set_value() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 448

set_value() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 483

set_value() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 489

set_value() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 478

set_value() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 473

set_value() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 500

set_value() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 494

set_value() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 506

set_value() (openff.evaluator.protocols.simulation.BaseSimulation
method), 512

set_value() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 518

set_value() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 524

set_value() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 531

set_value() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 539

set_value() (openff.evaluator.workflow.Protocol
method), 256

set_value() (openff.evaluator.workflow.ProtocolGroup
method), 263

setdefault() (openff.evaluator.utils.observables.ObservableFrame
method), 553

setup_only (openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

setup_only (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 531

setup_only (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 539

simulation_data_path
(openff.evaluator.protocols.storage.UnpackStoredSimulationData
attribute), 514

SimulationDataQuery (class in
openff.evaluator.storage.query), 235

SimulationLayer (class in
openff.evaluator.layers.simulation), 192

SimulationProtocols (class in
openff.evaluator.protocols.utils), 541

SimulationSchema (class in
openff.evaluator.layers.simulation), 193

smiles (openff.evaluator.substances.Component at-
tribute), 126

SmirnoffForceFieldSource (class in
openff.evaluator.forcefield), 178

solute (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 534

solute_coordinate_file
(openff.evaluator.protocols.coordinates.SolvateExistingStructure
attribute), 325

solution_1_coordinates
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 534

solution_1_free_energy
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

solution_1_system (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 534

solution_1_trajectory_path
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

solution_2_coordinates
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 534

solution_2_free_energy
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

solution_2_system (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 534

solution_2_trajectory_path
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 536

solvated_complex_coordinates
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 526

solvated_complex_system
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 526

solvated_complex_trajectory_path
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol

Index 613

OpenFF Evaluator Documentation

attribute), 527
solvated_ligand_coordinates

(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 526

solvated_ligand_system
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 526

solvated_ligand_trajectory_path
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 527

SolvateExistingStructure (class in
openff.evaluator.protocols.coordinates), 324

SolvationFreeEnergy (class in
openff.evaluator.properties), 115

SolvationYankProtocol (class in
openff.evaluator.protocols.yank), 532

solvent_1 (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 534

solvent_1_coordinate_path
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

solvent_1_trajectory_path
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

solvent_2 (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 534

solvent_2_coordinate_path
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

solvent_2_trajectory_path
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 536

Source (class in openff.evaluator.datasets), 96
source (openff.evaluator.datasets.PhysicalProperty at-

tribute), 94
source (openff.evaluator.properties.Density attribute),

102
source (openff.evaluator.properties.DielectricConstant

attribute), 108
source (openff.evaluator.properties.EnthalpyOfMixing

attribute), 111
source (openff.evaluator.properties.EnthalpyOfVaporization

attribute), 115
source (openff.evaluator.properties.ExcessMolarVolume

attribute), 105
source (openff.evaluator.properties.HostGuestBindingAffinity

attribute), 121
source (openff.evaluator.properties.SolvationFreeEnergy

attribute), 118
source_calculation_id

(openff.evaluator.storage.data.BaseSimulationData
attribute), 221

source_calculation_id
(openff.evaluator.storage.data.StoredFreeEnergyData

attribute), 227
source_calculation_id

(openff.evaluator.storage.data.StoredSimulationData
attribute), 224

source_calculation_id
(openff.evaluator.storage.query.BaseSimulationDataQuery
attribute), 233

source_calculation_id
(openff.evaluator.storage.query.FreeEnergyDataQuery
attribute), 239

source_calculation_id
(openff.evaluator.storage.query.SimulationDataQuery
attribute), 236

sources (openff.evaluator.datasets.PhysicalPropertyDataSet
property), 135

sources (openff.evaluator.datasets.taproom.TaproomDataSet
property), 146

sources (openff.evaluator.datasets.thermoml.ThermoMLDataSet
property), 141

split() (openff.evaluator.storage.attributes.FilePath
method), 245

splitlines() (openff.evaluator.storage.attributes.FilePath
method), 245

start() (openff.evaluator.backends.CalculationBackend
method), 199

start() (openff.evaluator.backends.dask.BaseDaskBackend
method), 203

start() (openff.evaluator.backends.dask.BaseDaskJobQueueBackend
method), 204

start() (openff.evaluator.backends.dask.DaskLocalCluster
method), 205

start() (openff.evaluator.backends.dask.DaskLSFBackend
method), 207

start() (openff.evaluator.backends.dask.DaskPBSBackend
method), 209

start() (openff.evaluator.server.EvaluatorServer
method), 89

start_protocol (openff.evaluator.workflow.utils.ProtocolPath
property), 276

start_state_trajectory
(openff.evaluator.storage.data.StoredFreeEnergyData
attribute), 226

started (openff.evaluator.backends.CalculationBackend
property), 199

started (openff.evaluator.backends.dask.BaseDaskBackend
property), 203

started (openff.evaluator.backends.dask.BaseDaskJobQueueBackend
property), 205

started (openff.evaluator.backends.dask.DaskLocalCluster
property), 205

started (openff.evaluator.backends.dask.DaskLSFBackend
property), 207

started (openff.evaluator.backends.dask.DaskPBSBackend
property), 209

614 Index

OpenFF Evaluator Documentation

startswith() (openff.evaluator.storage.attributes.FilePath
method), 245

State (class in openff.evaluator.datasets.curation.components.selection),
173

statistical_inefficiency
(openff.evaluator.storage.data.StoredSimulationData
attribute), 223

steps_per_iteration
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 412

steps_per_iteration
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

steps_per_iteration
(openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

steps_per_iteration
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 531

steps_per_iteration
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 539

steric_lambdas_1 (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

steric_lambdas_2 (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 535

stop() (openff.evaluator.backends.CalculationBackend
method), 199

stop() (openff.evaluator.backends.dask.BaseDaskBackend
method), 203

stop() (openff.evaluator.backends.dask.BaseDaskJobQueueBackend
method), 205

stop() (openff.evaluator.backends.dask.DaskLocalCluster
method), 205

stop() (openff.evaluator.backends.dask.DaskLSFBackend
method), 207

stop() (openff.evaluator.backends.dask.DaskPBSBackend
method), 209

stop() (openff.evaluator.server.EvaluatorServer
method), 89

storage_queries (openff.evaluator.layers.reweighting.ReweightingSchema
attribute), 196

StorageAttribute (class in
openff.evaluator.storage.attributes), 246

StorageBackend (class in openff.evaluator.storage), 210
store_force_field()

(openff.evaluator.storage.LocalFileStorage
method), 213

store_force_field()
(openff.evaluator.storage.StorageBackend
method), 210

store_object() (openff.evaluator.storage.LocalFileStorage
method), 213

store_object() (openff.evaluator.storage.StorageBackend

method), 210
StoredFreeEnergyData (class in

openff.evaluator.storage.data), 225
StoredSimulationData (class in

openff.evaluator.storage.data), 222
strip() (openff.evaluator.storage.attributes.FilePath

method), 245
submit_task() (openff.evaluator.backends.CalculationBackend

method), 199
submit_task() (openff.evaluator.backends.dask.BaseDaskBackend

method), 203
submit_task() (openff.evaluator.backends.dask.BaseDaskJobQueueBackend

method), 204
submit_task() (openff.evaluator.backends.dask.DaskLocalCluster

method), 205
submit_task() (openff.evaluator.backends.dask.DaskLSFBackend

method), 207
submit_task() (openff.evaluator.backends.dask.DaskPBSBackend

method), 209
subset() (openff.evaluator.utils.observables.ObservableArray

method), 550
subset() (openff.evaluator.utils.observables.ObservableFrame

method), 552
Substance (class in openff.evaluator.substances), 122
substance (openff.evaluator.datasets.PhysicalProperty

attribute), 93
substance (openff.evaluator.properties.Density at-

tribute), 102
substance (openff.evaluator.properties.DielectricConstant

attribute), 108
substance (openff.evaluator.properties.EnthalpyOfMixing

attribute), 111
substance (openff.evaluator.properties.EnthalpyOfVaporization

attribute), 115
substance (openff.evaluator.properties.ExcessMolarVolume

attribute), 105
substance (openff.evaluator.properties.HostGuestBindingAffinity

attribute), 121
substance (openff.evaluator.properties.SolvationFreeEnergy

attribute), 118
substance (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

attribute), 319
substance (openff.evaluator.protocols.coordinates.SolvateExistingStructure

attribute), 329
substance (openff.evaluator.protocols.forcefield.BaseBuildSystem

attribute), 337
substance (openff.evaluator.protocols.forcefield.BuildLigParGenSystem

attribute), 350
substance (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem

attribute), 345
substance (openff.evaluator.protocols.forcefield.BuildTLeapSystem

attribute), 356
substance (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms

attribute), 430

Index 615

OpenFF Evaluator Documentation

substance (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
attribute), 423

substance (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
attribute), 428

substance (openff.evaluator.protocols.storage.UnpackStoredSimulationData
attribute), 514

substance (openff.evaluator.storage.data.BaseSimulationData
attribute), 220

substance (openff.evaluator.storage.data.StoredFreeEnergyData
attribute), 227

substance (openff.evaluator.storage.data.StoredSimulationData
attribute), 224

substance (openff.evaluator.storage.query.BaseSimulationDataQuery
attribute), 233

substance (openff.evaluator.storage.query.FreeEnergyDataQuery
attribute), 239

substance (openff.evaluator.storage.query.SimulationDataQuery
attribute), 237

substance_query (openff.evaluator.storage.query.BaseSimulationDataQuery
attribute), 233

substance_query (openff.evaluator.storage.query.FreeEnergyDataQuery
attribute), 239

substance_query (openff.evaluator.storage.query.SimulationDataQuery
attribute), 237

SubstanceQuery (class in
openff.evaluator.storage.query), 230

substances (openff.evaluator.datasets.PhysicalPropertyDataSet
property), 135

substances (openff.evaluator.datasets.taproom.TaproomDataSet
property), 146

substances (openff.evaluator.datasets.thermoml.ThermoMLDataSet
property), 141

SubtractValues (class in
openff.evaluator.protocols.miscellaneous),
372

swapcase() (openff.evaluator.storage.attributes.FilePath
method), 245

T
TaproomDataSet (class in

openff.evaluator.datasets.taproom), 143
TaproomSource (class in

openff.evaluator.datasets.taproom), 147
target_reduced_potentials

(openff.evaluator.protocols.reweighting.BaseMBARProtocol
attribute), 485

target_reduced_potentials
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 500

target_reduced_potentials
(openff.evaluator.protocols.reweighting.ReweightObservable
attribute), 494

TargetState (class in
openff.evaluator.datasets.curation.components.selection),

174
temperature (openff.evaluator.thermodynamics.ThermodynamicState

attribute), 133
temperature_cutoff (openff.evaluator.layers.reweighting.ReweightingSchema

attribute), 196
thermodynamic_state

(openff.evaluator.datasets.PhysicalProperty
attribute), 93

thermodynamic_state
(openff.evaluator.properties.Density attribute),
102

thermodynamic_state
(openff.evaluator.properties.DielectricConstant
attribute), 108

thermodynamic_state
(openff.evaluator.properties.EnthalpyOfMixing
attribute), 112

thermodynamic_state
(openff.evaluator.properties.EnthalpyOfVaporization
attribute), 115

thermodynamic_state
(openff.evaluator.properties.ExcessMolarVolume
attribute), 105

thermodynamic_state
(openff.evaluator.properties.HostGuestBindingAffinity
attribute), 121

thermodynamic_state
(openff.evaluator.properties.SolvationFreeEnergy
attribute), 118

thermodynamic_state
(openff.evaluator.protocols.analysis.AverageDielectricConstant
attribute), 293

thermodynamic_state
(openff.evaluator.protocols.analysis.AverageFreeEnergies
attribute), 295

thermodynamic_state
(openff.evaluator.protocols.analysis.AverageObservable
attribute), 287

thermodynamic_state
(openff.evaluator.protocols.analysis.BaseAverageObservable
attribute), 279

thermodynamic_state
(openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
attribute), 418

thermodynamic_state
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 412

thermodynamic_state
(openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
attribute), 465

thermodynamic_state
(openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
attribute), 460

thermodynamic_state

616 Index

OpenFF Evaluator Documentation

(openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
attribute), 480

thermodynamic_state
(openff.evaluator.protocols.reweighting.ReweightDielectricConstant
attribute), 496

thermodynamic_state
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

thermodynamic_state
(openff.evaluator.protocols.storage.UnpackStoredSimulationData
attribute), 514

thermodynamic_state
(openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 519

thermodynamic_state
(openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 531

thermodynamic_state
(openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 539

thermodynamic_state
(openff.evaluator.storage.data.BaseSimulationData
attribute), 220

thermodynamic_state
(openff.evaluator.storage.data.StoredFreeEnergyData
attribute), 227

thermodynamic_state
(openff.evaluator.storage.data.StoredSimulationData
attribute), 224

thermodynamic_state
(openff.evaluator.storage.query.BaseSimulationDataQuery
attribute), 233

thermodynamic_state
(openff.evaluator.storage.query.FreeEnergyDataQuery
attribute), 239

thermodynamic_state
(openff.evaluator.storage.query.SimulationDataQuery
attribute), 237

ThermodynamicState (class in
openff.evaluator.thermodynamics), 132

thermoml_property() (in module
openff.evaluator.datasets.thermoml), 142

ThermoMLDataSet (class in
openff.evaluator.datasets.thermoml), 138

thermostat_friction
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 412

thermostat_friction
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

time_series_statistics
(openff.evaluator.protocols.analysis.AverageDielectricConstant
attribute), 293

time_series_statistics

(openff.evaluator.protocols.analysis.AverageObservable
attribute), 288

time_series_statistics
(openff.evaluator.protocols.analysis.BaseAverageObservable
attribute), 279

time_series_statistics
(openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
attribute), 304

time_series_statistics
(openff.evaluator.protocols.analysis.DecorrelateObservables
attribute), 317

time_series_statistics
(openff.evaluator.protocols.analysis.DecorrelateTrajectory
attribute), 312

timestep (openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 413

timestep (openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

timestep (openff.evaluator.protocols.yank.BaseYankProtocol
attribute), 520

timestep (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
attribute), 531

timestep (openff.evaluator.protocols.yank.SolvationYankProtocol
attribute), 540

title() (openff.evaluator.storage.attributes.FilePath
method), 245

TLeapForceFieldSource (class in
openff.evaluator.forcefield), 179

to_force_field() (openff.evaluator.forcefield.SmirnoffForceFieldSource
method), 178

to_graph() (openff.evaluator.workflow.Workflow
method), 249

to_number_of_molecules()
(openff.evaluator.substances.Amount method),
128

to_number_of_molecules()
(openff.evaluator.substances.ExactAmount
method), 130

to_number_of_molecules()
(openff.evaluator.substances.MoleFraction
method), 131

to_pandas() (openff.evaluator.datasets.PhysicalPropertyDataSet
method), 136

to_pandas() (openff.evaluator.datasets.taproom.TaproomDataSet
method), 146

to_pandas() (openff.evaluator.datasets.thermoml.ThermoMLDataSet
method), 141

to_protocol() (openff.evaluator.workflow.schemas.ProtocolGroupSchema
method), 267

to_protocol() (openff.evaluator.workflow.schemas.ProtocolSchema
method), 265

to_storage_query() (openff.evaluator.storage.data.BaseSimulationData
method), 221

to_storage_query() (openff.evaluator.storage.data.BaseStoredData

Index 617

OpenFF Evaluator Documentation

method), 215
to_storage_query() (openff.evaluator.storage.data.ForceFieldData

method), 217
to_storage_query() (openff.evaluator.storage.data.HashableStoredData

method), 216
to_storage_query() (openff.evaluator.storage.data.ReplaceableData

method), 219
to_storage_query() (openff.evaluator.storage.data.StoredFreeEnergyData

method), 226
to_storage_query() (openff.evaluator.storage.data.StoredSimulationData

method), 224
tolerance (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

attribute), 320
tolerance (openff.evaluator.protocols.coordinates.SolvateExistingStructure

attribute), 329
tolerance (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation

attribute), 406
tolerance (openff.evaluator.protocols.simulation.BaseEnergyMinimisation

attribute), 502
topology_file_name (openff.evaluator.storage.data.StoredFreeEnergyData

attribute), 226
topology_path (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase

attribute), 455
total_number_of_iterations

(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 413

total_number_of_iterations
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 508

total_number_of_molecules
(openff.evaluator.protocols.storage.UnpackStoredSimulationData
attribute), 514

trajectory_file_name
(openff.evaluator.storage.data.StoredSimulationData
attribute), 223

trajectory_file_path
(openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
attribute), 418

trajectory_file_path
(openff.evaluator.protocols.openmm.OpenMMSimulation
attribute), 413

trajectory_file_path
(openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
attribute), 480

trajectory_file_path
(openff.evaluator.protocols.simulation.BaseSimulation
attribute), 509

trajectory_file_path
(openff.evaluator.protocols.storage.UnpackStoredSimulationData
attribute), 514

trajectory_path (openff.evaluator.protocols.analysis.ComputeDipoleMoments
attribute), 300

trajectory_paths (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
attribute), 455

translate() (openff.evaluator.storage.attributes.FilePath
method), 245

type (openff.evaluator.protocols.groups.ConditionalGroup.Condition
attribute), 363

type (openff.evaluator.workflow.schemas.ProtocolGroupSchema
attribute), 267

type (openff.evaluator.workflow.schemas.ProtocolSchema
attribute), 265

U
uncertainty (openff.evaluator.datasets.PhysicalProperty

attribute), 94
uncertainty (openff.evaluator.properties.Density

attribute), 102
uncertainty (openff.evaluator.properties.DielectricConstant

attribute), 109
uncertainty (openff.evaluator.properties.EnthalpyOfMixing

attribute), 112
uncertainty (openff.evaluator.properties.EnthalpyOfVaporization

attribute), 115
uncertainty (openff.evaluator.properties.ExcessMolarVolume

attribute), 105
uncertainty (openff.evaluator.properties.HostGuestBindingAffinity

attribute), 122
uncertainty (openff.evaluator.properties.SolvationFreeEnergy

attribute), 118
UNDEFINED (in module openff.evaluator.attributes), 548
UnpackStoredSimulationData (class in

openff.evaluator.protocols.storage), 513
unsuccessful_properties

(openff.evaluator.client.RequestResult at-
tribute), 86

unsuccessful_properties
(openff.evaluator.server.Batch attribute),
91

update() (openff.evaluator.utils.observables.ObservableFrame
method), 553

update_references()
(openff.evaluator.workflow.schemas.ProtocolReplicator
method), 269

upper() (openff.evaluator.storage.attributes.FilePath
method), 245

V
validate() (openff.evaluator.attributes.AttributeClass

method), 547
validate() (openff.evaluator.client.ConnectionOptions

method), 81
validate() (openff.evaluator.client.Request method), 83
validate() (openff.evaluator.client.RequestOptions

method), 85
validate() (openff.evaluator.client.RequestResult

method), 86

618 Index

OpenFF Evaluator Documentation

validate() (openff.evaluator.datasets.PhysicalProperty
method), 94

validate() (openff.evaluator.datasets.PhysicalPropertyDataSet
method), 136

validate() (openff.evaluator.datasets.taproom.TaproomDataSet
method), 146

validate() (openff.evaluator.datasets.thermoml.ThermoMLDataSet
method), 142

validate() (openff.evaluator.layers.CalculationLayerResult
method), 186

validate() (openff.evaluator.layers.CalculationLayerSchema
method), 187

validate() (openff.evaluator.layers.reweighting.ReweightingSchema
method), 197

validate() (openff.evaluator.layers.simulation.SimulationSchema
method), 194

validate() (openff.evaluator.layers.workflow.WorkflowCalculationSchema
method), 190

validate() (openff.evaluator.properties.Density
method), 102

validate() (openff.evaluator.properties.DielectricConstant
method), 109

validate() (openff.evaluator.properties.EnthalpyOfMixing
method), 112

validate() (openff.evaluator.properties.EnthalpyOfVaporization
method), 115

validate() (openff.evaluator.properties.ExcessMolarVolume
method), 105

validate() (openff.evaluator.properties.HostGuestBindingAffinity
method), 122

validate() (openff.evaluator.properties.SolvationFreeEnergy
method), 118

validate() (openff.evaluator.protocols.analysis.AverageDielectricConstant
method), 293

validate() (openff.evaluator.protocols.analysis.AverageFreeEnergies
method), 295

validate() (openff.evaluator.protocols.analysis.AverageObservable
method), 288

validate() (openff.evaluator.protocols.analysis.BaseAverageObservable
method), 282

validate() (openff.evaluator.protocols.analysis.BaseDecorrelateProtocol
method), 308

validate() (openff.evaluator.protocols.analysis.ComputeDipoleMoments
method), 303

validate() (openff.evaluator.protocols.analysis.DecorrelateObservables
method), 317

validate() (openff.evaluator.protocols.analysis.DecorrelateTrajectory
method), 313

validate() (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol
method), 323

validate() (openff.evaluator.protocols.coordinates.BuildDockedCoordinates
method), 335

validate() (openff.evaluator.protocols.coordinates.SolvateExistingStructure
method), 329

validate() (openff.evaluator.protocols.forcefield.BaseBuildSystem
method), 340

validate() (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
method), 351

validate() (openff.evaluator.protocols.forcefield.BuildSmirnoffSystem
method), 345

validate() (openff.evaluator.protocols.forcefield.BuildTLeapSystem
method), 356

validate() (openff.evaluator.protocols.gradients.ZeroGradients
method), 361

validate() (openff.evaluator.protocols.groups.ConditionalGroup
method), 367

validate() (openff.evaluator.protocols.groups.ConditionalGroup.Condition
method), 363

validate() (openff.evaluator.protocols.miscellaneous.AddValues
method), 372

validate() (openff.evaluator.protocols.miscellaneous.DivideValue
method), 386

validate() (openff.evaluator.protocols.miscellaneous.DummyProtocol
method), 401

validate() (openff.evaluator.protocols.miscellaneous.FilterSubstanceByRole
method), 393

validate() (openff.evaluator.protocols.miscellaneous.MultiplyValue
method), 382

validate() (openff.evaluator.protocols.miscellaneous.SubtractValues
method), 377

validate() (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
method), 391

validate() (openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation
method), 406

validate() (openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies
method), 418

validate() (openff.evaluator.protocols.openmm.OpenMMSimulation
method), 413

validate() (openff.evaluator.protocols.paprika.analysis.AnalyzeAPRPhase
method), 459

validate() (openff.evaluator.protocols.paprika.analysis.ComputeReferenceWork
method), 468

validate() (openff.evaluator.protocols.paprika.analysis.ComputeSymmetryCorrection
method), 464

validate() (openff.evaluator.protocols.paprika.coordinates.AddDummyAtoms
method), 433

validate() (openff.evaluator.protocols.paprika.coordinates.PreparePullCoordinates
method), 423

validate() (openff.evaluator.protocols.paprika.coordinates.PrepareReleaseCoordinates
method), 428

validate() (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
method), 454

validate() (openff.evaluator.protocols.paprika.restraints.GenerateAttachRestraints
method), 439

validate() (openff.evaluator.protocols.paprika.restraints.GeneratePullRestraints
method), 444

validate() (openff.evaluator.protocols.paprika.restraints.GenerateReleaseRestraints
method), 448

Index 619

OpenFF Evaluator Documentation

validate() (openff.evaluator.protocols.reweighting.BaseEvaluateEnergies
method), 483

validate() (openff.evaluator.protocols.reweighting.BaseMBARProtocol
method), 489

validate() (openff.evaluator.protocols.reweighting.ConcatenateObservables
method), 478

validate() (openff.evaluator.protocols.reweighting.ConcatenateTrajectories
method), 474

validate() (openff.evaluator.protocols.reweighting.ReweightDielectricConstant
method), 500

validate() (openff.evaluator.protocols.reweighting.ReweightObservable
method), 494

validate() (openff.evaluator.protocols.simulation.BaseEnergyMinimisation
method), 506

validate() (openff.evaluator.protocols.simulation.BaseSimulation
method), 512

validate() (openff.evaluator.protocols.storage.UnpackStoredSimulationData
method), 518

validate() (openff.evaluator.protocols.yank.BaseYankProtocol
method), 520

validate() (openff.evaluator.protocols.yank.LigandReceptorYankProtocol
method), 531

validate() (openff.evaluator.protocols.yank.SolvationYankProtocol
method), 540

validate() (openff.evaluator.server.Batch method), 91
validate() (openff.evaluator.storage.data.BaseSimulationData

method), 222
validate() (openff.evaluator.storage.data.BaseStoredData

method), 215
validate() (openff.evaluator.storage.data.ForceFieldData

method), 218
validate() (openff.evaluator.storage.data.HashableStoredData

method), 216
validate() (openff.evaluator.storage.data.ReplaceableData

method), 219
validate() (openff.evaluator.storage.data.StoredFreeEnergyData

method), 227
validate() (openff.evaluator.storage.data.StoredSimulationData

method), 225
validate() (openff.evaluator.storage.query.BaseDataQuery

method), 229
validate() (openff.evaluator.storage.query.BaseSimulationDataQuery

method), 234
validate() (openff.evaluator.storage.query.ForceFieldQuery

method), 232
validate() (openff.evaluator.storage.query.FreeEnergyDataQuery

method), 239
validate() (openff.evaluator.storage.query.SimulationDataQuery

method), 237
validate() (openff.evaluator.storage.query.SubstanceQuery

method), 230
validate() (openff.evaluator.substances.Amount

method), 129
validate() (openff.evaluator.substances.Component

method), 127
validate() (openff.evaluator.substances.ExactAmount

method), 130
validate() (openff.evaluator.substances.MoleFraction

method), 132
validate() (openff.evaluator.substances.Substance

method), 125
validate() (openff.evaluator.thermodynamics.ThermodynamicState

method), 134
validate() (openff.evaluator.workflow.Protocol

method), 258
validate() (openff.evaluator.workflow.ProtocolGroup

method), 263
validate() (openff.evaluator.workflow.schemas.ProtocolGroupSchema

method), 267
validate() (openff.evaluator.workflow.schemas.ProtocolSchema

method), 266
validate() (openff.evaluator.workflow.schemas.WorkflowSchema

method), 271
validate() (openff.evaluator.workflow.WorkflowResult

method), 253
value (openff.evaluator.datasets.PhysicalProperty

attribute), 94
value (openff.evaluator.properties.Density attribute),

102
value (openff.evaluator.properties.DielectricConstant

attribute), 109
value (openff.evaluator.properties.EnthalpyOfMixing at-

tribute), 112
value (openff.evaluator.properties.EnthalpyOfVaporization

attribute), 115
value (openff.evaluator.properties.ExcessMolarVolume

attribute), 106
value (openff.evaluator.properties.HostGuestBindingAffinity

attribute), 122
value (openff.evaluator.properties.SolvationFreeEnergy

attribute), 118
value (openff.evaluator.protocols.analysis.AverageDielectricConstant

attribute), 293
value (openff.evaluator.protocols.analysis.AverageObservable

attribute), 288
value (openff.evaluator.protocols.analysis.BaseAverageObservable

attribute), 279
value (openff.evaluator.protocols.miscellaneous.DivideValue

attribute), 383
value (openff.evaluator.protocols.miscellaneous.MultiplyValue

attribute), 378
value (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction

attribute), 388
value (openff.evaluator.protocols.reweighting.BaseMBARProtocol

attribute), 485
value (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

attribute), 500
value (openff.evaluator.protocols.reweighting.ReweightObservable

620 Index

OpenFF Evaluator Documentation

attribute), 494
value (openff.evaluator.substances.Amount attribute),

128
value (openff.evaluator.substances.ExactAmount at-

tribute), 130
value (openff.evaluator.substances.MoleFraction at-

tribute), 131
value (openff.evaluator.utils.observables.ObservableArray

property), 550
value (openff.evaluator.workflow.WorkflowResult at-

tribute), 252
value_a (openff.evaluator.protocols.miscellaneous.SubtractValues

attribute), 373
value_b (openff.evaluator.protocols.miscellaneous.SubtractValues

attribute), 373
values (openff.evaluator.protocols.analysis.AverageFreeEnergies

attribute), 295
values (openff.evaluator.protocols.miscellaneous.AddValues

attribute), 369
values() (openff.evaluator.utils.observables.ObservableFrame

method), 553
verbose (openff.evaluator.protocols.yank.BaseYankProtocol

attribute), 520
verbose (openff.evaluator.protocols.yank.LigandReceptorYankProtocol

attribute), 531
verbose (openff.evaluator.protocols.yank.SolvationYankProtocol

attribute), 540
verbose_packmol (openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol

attribute), 320
verbose_packmol (openff.evaluator.protocols.coordinates.SolvateExistingStructure

attribute), 330
volumes (openff.evaluator.protocols.analysis.AverageDielectricConstant

attribute), 289
volumes (openff.evaluator.protocols.reweighting.ReweightDielectricConstant

attribute), 496

W
wallclock_time_limit

(openff.evaluator.backends.QueueWorkerResources
property), 201

water_model (openff.evaluator.protocols.forcefield.BuildLigParGenSystem
attribute), 351

water_model (openff.evaluator.protocols.forcefield.BuildTLeapSystem
attribute), 356

WeightByMoleFraction (class in
openff.evaluator.protocols.miscellaneous),
387

weighted_value (openff.evaluator.protocols.miscellaneous.WeightByMoleFraction
attribute), 388

window_index (openff.evaluator.protocols.paprika.restraints.ApplyRestraints
attribute), 450

with_traceback() (openff.evaluator.utils.exceptions.EvaluatorException
method), 88

with_traceback() (openff.evaluator.workflow.WorkflowException
method), 250

Workflow (class in openff.evaluator.workflow), 247
workflow_id (openff.evaluator.workflow.WorkflowResult

attribute), 252
workflow_protocol() (in module

openff.evaluator.workflow), 264
workflow_schema (openff.evaluator.layers.reweighting.ReweightingSchema

attribute), 197
workflow_schema (openff.evaluator.layers.simulation.SimulationSchema

attribute), 194
workflow_schema (openff.evaluator.layers.workflow.WorkflowCalculationSchema

attribute), 190
workflow_to_layer_result()

(openff.evaluator.layers.reweighting.ReweightingLayer
static method), 195

workflow_to_layer_result()
(openff.evaluator.layers.simulation.SimulationLayer
static method), 192

workflow_to_layer_result()
(openff.evaluator.layers.workflow.WorkflowCalculationLayer
static method), 189

WorkflowCalculationLayer (class in
openff.evaluator.layers.workflow), 189

WorkflowCalculationSchema (class in
openff.evaluator.layers.workflow), 190

WorkflowException, 250
WorkflowGraph (class in openff.evaluator.workflow),

251
WorkflowResult (class in openff.evaluator.workflow),

252
WorkflowSchema (class in

openff.evaluator.workflow.schemas), 270

Z
ZeroGradients (class in

openff.evaluator.protocols.gradients), 357
zfill() (openff.evaluator.storage.attributes.FilePath

method), 245

Index 621

	Calculation Approaches
	Supported Physical Properties
	Installation
	Installation from Conda
	Recommended Dependencies
	Installation from Source

	Architecture
	Evaluator Client
	Requesting Estimates
	Request Options
	Force Field Sources

	Evaluator Server
	Estimation Batches

	Tutorial 01 - Loading Data Sets
	Extracting Data from ThermoML
	Filtering the Data Set
	Adding Extra Data
	Conclusion

	Tutorial 02 - Estimating Data Sets
	Loading the Data Set and Force Field Parameters
	Defining the Calculation Schemas
	Launching the Server
	Estimating the Data Set
	Inspecting the Results
	Conclusion

	Tutorial 03 - Analysing Data Sets
	Loading the Data Sets
	Extracting the Results
	Plotting the Results
	Conclusion

	Tutorial 04 - Optimizing Force Fields
	Setting up the ForceBalance Inputs
	Creating the Directory Structure
	Defining the Training Data Set
	Defining the Starting Force Field Parameters
	Creating the Main Input File
	Defining the Estimation Options

	Launching an Evaluator Server
	Running ForceBalance
	Plotting the results
	Conclusion

	Property Data Sets
	Physical Properties
	Substances
	Property Phases
	Thermodynamic States

	ThermoML Archive
	Registering Properties
	Loading Data Sets

	Taproom
	Data Set Curation
	Examples
	Data Extraction
	Filtration
	Data Selection
	Data Conversion

	Physical Properties
	Density
	Direct Simulation
	MBAR Reweighting

	Dielectric Constant
	Direct Simulation
	MBAR Reweighting

	Enthalpy of Vaporization
	Direct Simulation
	MBAR Reweighting

	Enthalpy of Mixing
	Direct Simulation
	MBAR Reweighting

	Excess Molar Volume
	Direct Simulation
	MBAR Reweighting

	Solvation Free Energies
	Host-Guest Binding Free Energy

	Common Workflows
	Direct Simulation
	MBAR Reweighting
	References

	Gradients
	Theory
	Computing d U / d i
	References

	Calculation Layers
	Defining a Calculation Layer
	Default Schemas

	Workflow Layers
	Default Metadata

	The Direct Simulation Layer
	Default Metadata

	The MBAR Reweighting Layer
	Theory
	Calculation Schema
	Default Metadata

	Workflows
	Building Workflows
	Workflow Schemas
	Metadata

	Replicators
	Nested Replicators

	Workflow Graphs
	Protocols
	Inputs and Outputs
	Task Execution
	Protocol Validation
	Schemas
	Merging Protocols

	Protocol Groups
	Conditional Protocol Groups

	Observables
	Observable Objects
	Supported Operations

	Observable Arrays
	Supported Operations

	Observable Frames
	Supported Operations

	Calculation Backends
	Dask Backends
	Dask Local Cluster
	Dask HPC Cluster
	Configuration

	Storage Backends
	Data Storage / Retrieval
	Implementation

	Data Classes and Queries
	Force Field Data
	Cached Simulation Data
	Single Simulation Data
	Free Energy Data

	Local File Storage
	Building the Docs
	API
	Client Side API
	EvaluatorClient
	BatchMode
	ConnectionOptions
	Request
	RequestOptions
	RequestResult
	EvaluatorException

	Server Side API
	EvaluatorServer
	Batch

	Physical Property API
	PhysicalProperty
	PropertyPhase
	Source
	CalculationSource
	MeasurementSource
	Density
	ExcessMolarVolume
	DielectricConstant
	EnthalpyOfMixing
	EnthalpyOfVaporization
	SolvationFreeEnergy
	HostGuestBindingAffinity
	Substance
	Component
	Amount
	ExactAmount
	MoleFraction
	ThermodynamicState

	Data Set API
	PhysicalPropertyDataSet
	ThermoMLDataSet
	register_thermoml_property
	thermoml_property
	TaproomDataSet
	TaproomSource
	CurationComponent
	CurationComponentSchema
	CurationWorkflow
	CurationWorkflowSchema
	FilterDuplicatesSchema
	FilterDuplicates
	FilterByTemperatureSchema
	FilterByTemperature
	FilterByPressureSchema
	FilterByPressure
	FilterByMoleFractionSchema
	FilterByMoleFraction
	FilterByRacemicSchema
	FilterByRacemic
	FilterByElementsSchema
	FilterByElements
	FilterByPropertyTypesSchema
	FilterByPropertyTypes
	FilterByStereochemistrySchema
	FilterByStereochemistry
	FilterByChargedSchema
	FilterByCharged
	FilterByIonicLiquidSchema
	FilterByIonicLiquid
	FilterBySmilesSchema
	FilterBySmiles
	FilterBySmirksSchema
	FilterBySmirks
	FilterByNComponentsSchema
	FilterByNComponents
	FilterBySubstancesSchema
	FilterBySubstances
	FilterByEnvironmentsSchema
	FilterByEnvironments
	ImportFreeSolvSchema
	ImportFreeSolv
	ImportThermoMLDataSchema
	ImportThermoMLData
	SelectSubstancesSchema
	SelectSubstances
	SelectDataPointsSchema
	SelectDataPoints
	State
	TargetState
	FingerPrintType
	ConvertExcessDensityDataSchema
	ConvertExcessDensityData

	Force Field API
	ForceFieldSource
	SmirnoffForceFieldSource
	TLeapForceFieldSource
	LigParGenForceFieldSource
	ParameterGradientKey
	ParameterGradient

	Calculation Layers API
	CalculationLayer
	CalculationLayerResult
	CalculationLayerSchema
	calculation_layer
	register_calculation_layer
	register_calculation_schema
	WorkflowCalculationLayer
	WorkflowCalculationSchema
	SimulationLayer
	SimulationSchema
	ReweightingLayer
	ReweightingSchema
	default_storage_query

	Calculation Backends API
	CalculationBackend
	ComputeResources
	QueueWorkerResources
	BaseDaskBackend
	BaseDaskJobQueueBackend
	DaskLocalCluster
	DaskLSFBackend
	DaskPBSBackend

	Storage API
	StorageBackend
	LocalFileStorage
	BaseStoredData
	HashableStoredData
	ForceFieldData
	ReplaceableData
	BaseSimulationData
	StoredSimulationData
	StoredFreeEnergyData
	BaseDataQuery
	SubstanceQuery
	ForceFieldQuery
	BaseSimulationDataQuery
	SimulationDataQuery
	FreeEnergyDataQuery
	FilePath
	StorageAttribute
	QueryAttribute

	Workflow API
	Workflow
	WorkflowException
	WorkflowGraph
	WorkflowResult
	Protocol
	ProtocolGraph
	ProtocolGroup
	workflow_protocol
	register_workflow_protocol
	ProtocolSchema
	ProtocolGroupSchema
	ProtocolReplicator
	WorkflowSchema
	BaseMergeBehaviour
	MergeBehaviour
	InequalityMergeBehaviour
	InputAttribute
	OutputAttribute
	ReplicatorValue
	ProtocolPath

	Built-in Workflow Protocols
	BaseAverageObservable
	AverageObservable
	AverageDielectricConstant
	AverageFreeEnergies
	ComputeDipoleMoments
	BaseDecorrelateProtocol
	DecorrelateTrajectory
	DecorrelateObservables
	BuildCoordinatesPackmol
	SolvateExistingStructure
	BuildDockedCoordinates
	BaseBuildSystem
	BuildSmirnoffSystem
	BuildLigParGenSystem
	BuildTLeapSystem
	ZeroGradients
	ConditionalGroup
	AddValues
	SubtractValues
	MultiplyValue
	DivideValue
	WeightByMoleFraction
	FilterSubstanceByRole
	DummyProtocol
	OpenMMEnergyMinimisation
	OpenMMSimulation
	OpenMMEvaluateEnergies
	PreparePullCoordinates
	PrepareReleaseCoordinates
	AddDummyAtoms
	GenerateAttachRestraints
	GeneratePullRestraints
	GenerateReleaseRestraints
	ApplyRestraints
	AnalyzeAPRPhase
	ComputeSymmetryCorrection
	ComputeReferenceWork
	ConcatenateTrajectories
	ConcatenateObservables
	BaseEvaluateEnergies
	BaseMBARProtocol
	ReweightObservable
	ReweightDielectricConstant
	BaseEnergyMinimisation
	BaseSimulation
	UnpackStoredSimulationData
	BaseYankProtocol
	LigandReceptorYankProtocol
	SolvationYankProtocol

	Workflow Construction Utilities
	SimulationProtocols
	ReweightingProtocols
	generate_base_reweighting_protocols
	generate_reweighting_protocols
	generate_simulation_protocols

	Attribute Utilities
	Attribute
	AttributeClass
	UNDEFINED
	PlaceholderValue

	Observable Utilities
	Observable
	ObservableArray
	ObservableType
	ObservableFrame
	bootstrap

	Plug-in Utilities
	register_default_plugins
	register_external_plugins

	Release History
	0.3.6
	Bugfixes
	New Features

	0.3.5
	Bugfixes
	New Features

	0.3.4
	Behaviour Changes

	0.3.3
	Bugfixes
	New Features

	0.3.2
	New Features

	0.3.1
	Bugfixes

	0.3.0
	Bugfixes
	New Features
	Behaviour Changes
	Breaking Changes

	0.2.2
	Documentation

	0.2.1
	Bugfixes
	New Features

	0.2.0
	New Features
	Breaking Changes

	0.1.2
	Bugfixes

	0.1.1
	Bugfixes
	Documentation

	0.1.0 - OpenFF Evaluator
	Clearer Branding
	Markedly Improved Documentation
	Support for RDKit
	Model Validation
	Batching of Similar Properties

	0.0.9 - Multi-state Reweighting Fix
	Bugfixes

	0.0.8 - ThermoML Improvements
	New Features
	Breaking Changes

	0.0.7 - Bug Quick Fixes
	Bugfixes

	0.0.6 - Solvation Free Energies
	New Features
	Bugfixes
	Breaking Changes
	Migration Guide

	0.0.5 - Fix For Merging of Estimation Requests
	Bugfixes

	0.0.4 - Initial Support for Non-SMIRNOFF FFs
	New Features
	Bugfixes
	Breaking Changes
	Migration Guide

	0.0.3 - ExcessMolarVolume and Typing Improvements
	New Features
	Bugfixes
	Breaking Changes
	Migration Guide

	0.0.2 - Replicator Quick Fixes
	Bugfixes

	0.0.1 - Initial Release

	Release Process
	1. Update the Release History
	2: Cut the Release on GitHub
	3: Trigger a New Build on Conda Forge
	4: Update the ReadTheDocs Build Versions

	Bibliography
	Index

